Measurement of the photon structure function F2(gamma) with the L3 detector at LEP.

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 622 (2005) 249-264, 2005.
Inspire Record 687095 DOI 10.17182/hepdata.48675

The e+e- -> e+e- hadrons reaction, where one of the two electrons is detected in a low polar-angle calorimeter, is analysed in order to measure the hadronic photon structure function F2gamma . The full high-energy and high-luminosity data set, collected with the L3 detector at centre-of-mass energies 189-209GeV, corresponding to an integrated luminosity of 608/pb is used. The Q^2 range 11-34GeV^2 and the x range 0.006-0.556 are considered. The data are compared with recent parton density functions.

16 data tables

Cross sections DELTA(SIG)/DELTA(X) in the Q**2 range 11 TO 14 GeV**2.

Cross sections DELTA(SIG)/DELTA(X) in the Q**2 range 14 TO 20 GeV**2.

Cross sections DELTA(SIG)/DELTA(X) in the Q**2 range 20 TO 34 GeV**2.

More…

Measurement of exclusive rho0 rho0 production in mid-virtuality two-photon interactions at LEP.

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 604 (2004) 48-60, 2004.
Inspire Record 662726 DOI 10.17182/hepdata.48649

Exclusive rho^0 rho^0 production in two-photon collisions between a quasi-real and a mid-virtuality photon is studied with data collected at LEP at centre-of-mass energies 183GeV < sqrt{s} < 209GeV with a total integrated luminosity of 684.8/pb. The cross section of the process gamma gamma* -> rho^0 rho^0 is determined as a function of the photon virtuality, q^2, and the two-photon centre-of-mass energy, Wgg, in the kinematic region: 0.2GeV^2 < q^2 < 0.85GeV^2 and 1.1GeV < Wgg < 3GeV.

4 data tables

Production cross section as a function of Q**2. Differential cross sectionsare corrected to the centre of each bin.

Production cross section for two-photon data as a function of Q**2.

Production cross section as a function of W.

More…

Measurement of exclusive rho+ rho- production in mid-virtuality two-photon interactions and study of the gamma gamma* --> rho rho process at LEP.

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 615 (2005) 19-30, 2005.
Inspire Record 680120 DOI 10.17182/hepdata.48814

Exclusive rho+rho- production in two-photon collisions between a quasi-real photon, gamma, and a mid-virtuality photon, gamma*, is studied with data collected at LEP at centre-of-mass energies root(s)=183-209GeV with a total integrated luminosity of 684.8pb^-1. The cross section of the gamma gamma* -> rho+ rho- process is determined as a function of the photon virtuality, Q^2, and the two-photon centre-of-mass energy, W_gg, in the kinematic region: 0.2GeV^2 < Q^2 <0.85GeV^2 and 1.1GeV < W_gg < 3GeV. These results, together with previous L3 measurements of rho0 rho0 and rho+ rho- production, allow a study of the gamma gamma* -> rho rho process over the Q^2-region 0.2GeV^2 < Q^2 < 30 GeV^2.

4 data tables

Production cross section as a function of Q**2. Differential cross sectionsare corrected to the centre of each bin.

Production cross section for two-photon data as a function of Q**2.

Production cross section as a function of W.

More…

Measurement of the probability of gluon splitting into charmed quarks in hadronic Z decays

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 476 (2000) 243-255, 2000.
Inspire Record 510061 DOI 10.17182/hepdata.49044

We have measured the probability, n(g->cc~), of a gluon splitting into a charm-quark pair using 1.7 million hadronic Z decays collected by the L3 detector. Two independent methods have been applied to events with a three-jet topology. One method relies on tagging charmed hadrons by identifying a lepton in the lowest energy jet. The other method uses a neural network based on global event shape parameters. Combining both methods, we measure n(g->cc~)= [2.45 +/- 0.29 +/- 0.53]%.

1 data table

No description provided.


Measurement of the tau branching fractions into leptons

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 507 (2001) 47-60, 2001.
Inspire Record 552995 DOI 10.17182/hepdata.54875

Using data collected with the L3 detector near the Z resonance, corresponding to an integrated luminosity of 150pb-1, the branching fractions of the tau lepton into electron and muon are measured to be B(tau->e nu nu) = (17.806 +- 0.104 (stat.) +- 0.076 (syst.)) %, B(tau->mu nu nu) = (17.342 +- 0.110 (stat.) +- 0.067 (syst.)) %. From these results the ratio of the charged current coupling constants of the muon and the electron is determined to be g_mu/g_e = 1.0007 +- 0.0051. Assuming electron-muon universality, the Fermi constant is measured in tau lepton decays as G_F = (1.1616 +- 0.0058) 10^{-5} GeV^{-2}. Furthermore, the coupling constant of the strong interaction at the tau mass scale is obtained as alpha_s(m_tau^2) = 0.322 +- 0.009 (exp.) +- 0.015 (theory).

1 data table

First DSYS error is experimental, the second is from theory.


Measurement of exclusive rho0 rho0 production in two photon collisions at high Q**2 at LEP

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 568 (2003) 11-22, 2003.
Inspire Record 619620 DOI 10.17182/hepdata.48855

Exclusive rho rho production in two-photon collisions involving a single highly virtual photon is studied with data collected at LEP at centre-of-mass energies 89GeV < \sqrt{s} < 209GeV with a total integrated luminosity of 854.7pb^-1 The cross section of the process gamma gamma^* -> rho rho is determined as a function of the photon virtuality, Q^2 and the two-photon centre-of-mass energy, Wgg, in the kinematic region: 1.2GeV^2 < Q^2 < 30GeV^2 and 1.1GeV < Wgg < 3GeV.

7 data tables

Production cross sections as a function of Q**2. The differential cross sections are corrected to the centre of each bin.

Production cross section for the two photon data as a function of Q**2.

Differential cross section for non-resonance and RHO0 RHO0 data corrected to the centre of each bin.

More…

Measurements of cross-sections and forward backward asymmetries at the Z resonance and determination of electroweak parameters

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Eur.Phys.J.C 16 (2000) 1-40, 2000.
Inspire Record 524027 DOI 10.17182/hepdata.49981

We report on measurements of hadronic and leptonic cross sections and leptonic forward-backward asymmetries performed with the L3 detector in the years 1993-95. A total luminosity of 103 pb^-1 was collected at centre-of-mass energies \sqrt{s} ~ m_Z and \sqrt{s} ~ m_Z +/- 1.8 GeV which corresponds to 2.5 million hadronic and 245 thousand leptonic events selected. These data lead to a significantly improved determination of Z parameters. From the total cross sections, combined with our measurements in 1990-92, we obtain the final results: m_Z = 91189.8 +/- 3.1 MeV, Gamma_Z = 2502.4 +/- 4.2 MeV, Gamma_had = 1741.1 +/- 3.8 MeV, Gamma_l = 84.14 +/- 0.17 MeV. An invisible width of Gamma_inv = 499.1 +/- 2.9 MeV is derived which in the Standard Model yields for the number of light neutrino species N_nu = 2.978 +/- 0.014. Adding our results on the leptonic forward-backward asymmetries and the tau polarisation, the effective vector and axial-vector coupling constants of the neutral weak current to charged leptons are determined to be \bar{g}_V^l = -0.0397 +/- 0.0017 and \bar{g}_A^l = -0.50153 +/- 0.00053.Including our measurements of the Z -> b \bar{b} forward-backward and quark charge asymmetries a value for the effective electroweak mixing angle of sin^2\bar{\theta}_W = 0.23093 +/- 0.00066 is derived. All these measurements are in good agreement with the Standard Model of electroweak interactions. Using all our measurements of electroweak observables an upper limit on the mass of the Standard Model Higgs boson of m_H &lt; 133 GeV is set at 95% confidence level.

22 data tables

Updated values of coupling constants and electroweak mixing angle.

Cross sections for hadron production from the 1993 data. The first DSYS error is the uncorrelated part of the systematic error. The second DSYS error is from the statistical error on the absolute luminosity. In addition there is a fully correlated multiplicative contribution to the systematic error of 0.039 PCT plus an absolute uncertainty of 3.2pb together with an additional error from the absolute luminosity of 0.105 PCT.

Cross sections for hadron production from the 1994 data. The first DSYS error is the uncorrelated part of the systematic error. The second DSYS error is from the statistical error on the absolute luminosity. In addition there is a fully correlated multiplicative contribution to the systematic error of 0.039 PCT plus an absolute uncertainty of 3.2pb together with an additional error from the absolute luminosity of 0.088 PCT.

More…

Measurement of the photon structure function at high Q**2 at LEP

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 483 (2000) 373-386, 2000.
Inspire Record 525764 DOI 10.17182/hepdata.49964

The structure functions of real and virtual photons are derived from cross section measurements of the reaction e^+e^ -> e^+e^- + hadrons at LEP. The reaction is studied at \sqrt{s} ~ 91 GeV with the L3 detector. One of the final state electrons is detected at a large angle relative to the beam direction, leading to Q^2 values between 40 GeV^2 and 500 GeV^2. The other final state electron is either undetected or it is detected at a four-momentum transfer squared P^2 between 1 GeV^2 and 8 GeV^2. These measurements are compared with predictions of the Quark Parton Model and other QCD based models.

4 data tables

Measured values of F2 for the single-tag data as a function of X for the full Q**2 range.

Measured values of F2 for the single-tag data as a function of Q**2 for different X ranges.

The effective F2 measured in double-tag events as a function of X.

More…

The Q**2 evolution of the hadronic photon structure function F2(gamma) at LEP.

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 447 (1999) 147-156, 1999.
Inspire Record 479052 DOI 10.17182/hepdata.49323

New measurements at a centre-of-mass energy s ≃183 GeV of the hadronic photon structure function F γ 2 ( x ) in the Q 2 interval, 9 GeV 2 ≤ Q 2 ≤30 GeV 2 , are presented. The data, collected in 1997 with the L3 detector, correspond to an integrated luminosity of 51.9 pb −1 . Combining with the data taken at a centre-of-mass energy of 91 GeV, the evolution of F γ 2 with Q 2 is measured in the Q 2 range from 1.2 GeV 2 to 30 GeV 2 . F γ 2 shows a linear growth with ln Q 2 ; the value of the slope α −1 d F γ 2 ( Q 2 )/dln Q 2 is measured in two x bins from 0.01 to 0.2 and is somewhat higher than predicted.

1 data table

Measured values of F2/ALPHA as a function of x. The second systematic error (DSYS) is that due to the model dependence and is the difference between the results obtained with PHOJET and TWOGAM. The full systematic error is the quadrature sum of the two systematic errors.


Measurement of the cross-section for the process gamma* gamma* --> hadrons at LEP.

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 453 (1999) 333-342, 1999.
Inspire Record 482478 DOI 10.17182/hepdata.49195

Measurements of the two-photon interaction e + e − → e + e − + hadrons at s ≃ 91 GeV and s ≃ 183 GeV are presented. The double-tag events, collected with the L3 detector, correspond to interated luminosities of 140 pb −1 at 91 GeV and 52 pb −1 at 183 GeV. The cross-section of γ ∗ γ ∗ collisions has been measured at 〈 Q 2 〉 = 3.5 GeV 2 and 〈 Q 2 〉 = 14 GeV 2 . The data agree well with predictions based on perturbative QCD, while the Quark Parton Model alone is insufficient to describe the data.

3 data tables

No description provided.

No description provided.

No description provided.