Search for heavy long-lived multi-charged particles in proton-proton collisions at $\sqrt{s}$ = 13 TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 052003, 2019.
Inspire Record 1707957 DOI 10.17182/hepdata.85615

A search for heavy long-lived multi-charged particles is performed using the ATLAS detector at the LHC. Data with an integrated luminosity of 36.1 fb$^{-1}$ collected in 2015 and 2016 from proton-proton collisions at $\sqrt{s}$ = 13 TeV are examined. Particles producing anomalously high ionization, consistent with long-lived massive particles with electric charges from |q|=2e to |q|=7e, are searched for. No events are observed, and 95% confidence level cross-section upper limits are interpreted as lower mass limits for a Drell-Yan production model. Multi-charged particles with masses between 50 GeV and 980-1220 GeV (depending on their electric charge) are excluded.

3 data tables

The signal efficiency values versus mass values for different charges.

Expected cross-section upper limits on the production cross-section of MCPs as a function of simulated particle mass for different charges.

Observed cross-section upper limits on the production cross-section of MCPs as a function of simulated particle mass for different charges.


Properties of $g\rightarrow b\bar{b}$ at small opening angles in $pp$ collisions with the ATLAS detector at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 052004, 2019.
Inspire Record 1711114 DOI 10.17182/hepdata.85697

The fragmentation of high-energy gluons at small opening angles is largely unconstrained by present measurements. Gluon splitting to $b$-quark pairs is a unique probe into the properties of gluon fragmentation because identified $b$-tagged jets provide a proxy for the quark daughters of the initial gluon. In this study, key differential distributions related to the $g\rightarrow b\bar{b}$ process are measured using 33 fb$^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collision data recorded by the ATLAS experiment at the LHC in 2016. Jets constructed from charged-particle tracks, clustered with the anti-$k_t$ jet algorithm with radius parameter $R = 0.2$, are used to probe angular scales below the $R=0.4$ jet radius. The observables are unfolded to particle level in order to facilitate direct comparisons with predictions from present and future simulations. Multiple significant differences are observed between the data and parton shower Monte Carlo predictions, providing input to improve these predictions of the main source of background events in analyses involving boosted Higgs bosons decaying into $b$-quarks.

4 data tables

Normalisaed differential cross section, $(1/\sigma_\text{fid})d\sigma_\text{fid}/d\Delta R(b,b)$, as a function of $\Delta R(b,b)$ - the angle in $\eta$ and $\phi$ between the two b-tagged jets.

Normalisaed differential cross section, $(1/\sigma_\text{fid})d\sigma_\text{fid}/d\Delta\theta_\text{gpp,gbb}/\pi$, the angle between production (gpp) and decay (gbb) planes ($\Delta\theta_\text{gpp,gbb}$).

Normalisaed differential cross section, $(1/\sigma_\text{fid})d\sigma_\text{fid}/dz(p_\text{T})$, as a function of $z(p_\text{T})=p_\text{T,2}/(p_\text{T,1}+p_\text{T,2})$.

More…

Search for a right-handed gauge boson decaying into a high-momentum heavy neutrino and a charged lepton in $pp$ collisions with the ATLAS detector at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 798 (2019) 134942, 2019.
Inspire Record 1731814 DOI 10.17182/hepdata.89455

A search for a right-handed gauge boson $W_{\mathrm{R}}$, decaying into a boosted right-handed heavy neutrino $N_{\mathrm{R}}$, in the framework of Left-Right Symmetric Models is presented. It is based on data from proton-proton collisions with a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider during the years 2015, 2016 and 2017, corresponding to an integrated luminosity of 80 fb$^{-1}$. The search is performed separately for electrons and muons in the final state. A distinguishing feature of the search is the use of large-radius jets containing electrons. Selections based on the signal topology result in smaller background compared with to expected signal. No significant deviation from the Standard Model prediction is observed and lower limits are set in the $W_{\mathrm{R}}$ and $N_{\mathrm{R}}$ mass plane. Mass values of the $W_{\mathrm{R}}$ smaller than 3.8-5 TeV are excluded for $N_{\mathrm{R}}$ in the mass range 0.1-1.8 TeV.

4 data tables

Expected 95% CL exclusion contours in the $(m_{N_R}, m_{W_R})$ plane in the electron channel.

Observed 95% CL exclusion contours in the $(m_{N_R}, m_{W_R})$ plane in the electron channel.

Expected 95% CL exclusion contours in the $(m_{N_R}, m_{W_R})$ plane in the muon channel.

More…

Measurement of fiducial and differential $W^+W^-$ production cross-sections at $\sqrt{s}=$13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 79 (2019) 884, 2019.
Inspire Record 1734263 DOI 10.17182/hepdata.89225

A measurement of fiducial and differential cross-sections for $W^+W^-$ production in proton-proton collisions at $\sqrt{s}=$13 TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of $36.1$ fb$^{-1}$ is presented. Events with one electron and one muon are selected, corresponding to the decay of the diboson system as $WW\rightarrow e^{\pm}\nu\mu^{\mp}\nu$. To suppress top-quark background, events containing jets with a transverse momentum exceeding 35 GeV are not included in the measurement phase space. The fiducial cross-section, six differential distributions and the cross-section as a function of the jet-veto transverse momentum threshold are measured and compared with several theoretical predictions. Constraints on anomalous electroweak gauge boson self-interactions are also presented in the framework of a dimension-six effective field theory.

43 data tables

Measured fiducial cross-section as a function of the jet-veto $p_{T}$ threshold. The value at the jet-veto $p_{T}$ threshold of 35GeV corresponds to the nominal fiducial cross section measured in this publication.

Statistical correlation between bins in data for the measured fiducial cross-section as a function of the jet-veto $p_{T}$ threshold. The value at the jet-veto $p_{T}$ threshold of 35GeV corresponds to the nominal fiducial cross section measured in this publication.

Total correlation between bins in data for the measured fiducial cross-section as a function of the jet-veto $p_{T}$ threshold. The value at the jet-veto $p_{T}$ threshold of 35GeV corresponds to the nominal fiducial cross section measured in this publication.

More…

Version 2
Search for heavy charged long-lived particles in the ATLAS detector in 31.6 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 092007, 2019.
Inspire Record 1718558 DOI 10.17182/hepdata.86565

A search for heavy charged long-lived particles is performed using a data sample of 36.1 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the Large Hadron Collider. The search is based on observables related to ionization energy loss and time of flight, which are sensitive to the velocity of heavy charged particles traveling significantly slower than the speed of light. Multiple search strategies for a wide range of lifetimes, corresponding to path lengths of a few meters, are defined as model-independently as possible, by referencing several representative physics cases that yield long-lived particles within supersymmetric models, such as gluinos/squarks ($R$-hadrons), charginos and staus. No significant deviations from the expected Standard Model background are observed. Upper limits at 95% confidence level are provided on the production cross sections of long-lived $R$-hadrons as well as directly pair-produced staus and charginos. These results translate into lower limits on the masses of long-lived gluino, sbottom and stop $R$-hadrons, as well as staus and charginos of 2000 GeV, 1250 GeV, 1340 GeV, 430 GeV and 1090 GeV, respectively.

60 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Lower mass requirement for signal regions.</b> <ul> <li><a href="86565?version=1&table=Table1">Gluinos and squarks</a></li> <li><a href="86565?version=1&table=Table2">Staus and charginos</a></li> </ul> <b>Discovery regions:</b> <ul> <li><a href="86565?version=1&table=Table3">Yields</a></li> <li><a href="86565?version=1&table=Table6">p0-values and limits</a></li> </ul> <b>Signal yield tables:</b> <ul> <li><a href="86565?version=1&table=Table4">MS-agnostic R-hadron search</a></li> <li><a href="86565?version=1&table=Table5">Full-detector R-hadron search</a></li> <li><a href="86565?version=1&table=Table7">MS-agnostic search for metastable gluino R-hadrons</a></li> <li><a href="86565?version=1&table=Table8">Full-detector direct-stau search</a></li> <li><a href="86565?version=1&table=Table9">Full-detector chargino search</a></li> </ul> <b>Limits:</b> <ul> <li><a href="86565?version=1&table=Table10">Gluino R-hadron search</a></li> <li><a href="86565?version=1&table=Table11">Sbottom R-hadron search</a></li> <li><a href="86565?version=1&table=Table12">Stop R-hadron search</a></li> <li><a href="86565?version=1&table=Table13">Stau search</a></li> <li><a href="86565?version=1&table=Table14">Chargino search</a></li> <li><a href="86565?version=1&table=Table15">Meta-stable gluino R-hadron search</a></li> <li><a href="86565?version=1&table=Table17">Meta-stable gluino R-hadron search</a></li> </ul> <b>Acceptance and efficiency:</b> <ul> <li><a href="86565?version=1&table=Table16">MS-agnostic R-hadron search</a></li> </ul> <b>Truth quantities:</b> <ul> <li><a href="86565?version=1&table=Table18">Flavor composition of 800 GeV stop R-hadrons simulated using the generic model</a></li> <li><a href="86565?version=1&table=Table19">Flavor composition of 800 GeV anti-stop R-hadrons simulated using the generic model</a></li> <li><a href="86565?version=1&table=Table20">Flavor composition of 800 GeV stop R-hadrons simulated using the Regge model</a></li> <li><a href="86565?version=1&table=Table21">Flavor composition of 800 GeV anti-stop R-hadrons simulated using the Regge model</a></li> </ul> <b>Reinterpretation material:</b> <ul> <li><a href="86565?version=1&table=Table22">ETmiss trigger efficiency as function of true ETmiss</a></li> <li><a href="86565?version=1&table=Table23">Single-muon trigger efficiency as function of |eta| and beta</a></li> <li><a href="86565?version=1&table=Table24">Candidate reconstruction efficiency for ID+Calo selection</a></li> <li><a href="86565?version=1&table=Table25">Candidate reconstruction efficiency for loose selection</a></li> <li><a href="86565?version=1&table=Table26">Efficiency for a loose candidate to be promoted to a tight candidate</a></li> <li><a href="86565?version=1&table=Table27">Resolution and average of reconstructed dE/dx mass for a given simulated mass for ID+calo candidates</a></li> <li><a href="86565?version=1&table=Table28">Resolution and average of reconstructed ToF mass for a given simulated mass for ID+calo candidates</a></li> <li><a href="86565?version=1&table=Table29">Resolution and average of reconstructed ToF mass for a given simulated mass for FullDet candidates</a></li> </ul> <p><b>Pseudo-code snippets</b> and <b>example SLHA setups</b> are available in the "Resources" linked on the left, and more detailed reinterpretation material is available at <a href="http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-32/hepdata_info.pdf">http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-32/hepdata_info.pdf</a>.</p>

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Lower mass requirement for signal regions.</b> <ul> <li><a href="86565?version=1&table=Table1">Gluinos and squarks</a></li> <li><a href="86565?version=1&table=Table2">Staus and charginos</a></li> </ul> <b>Discovery regions:</b> <ul> <li><a href="86565?version=1&table=Table3">Yields</a></li> <li><a href="86565?version=1&table=Table6">p0-values and limits</a></li> </ul> <b>Signal yield tables:</b> <ul> <li><a href="86565?version=1&table=Table4">MS-agnostic R-hadron search</a></li> <li><a href="86565?version=1&table=Table5">Full-detector R-hadron search</a></li> <li><a href="86565?version=1&table=Table7">MS-agnostic search for metastable gluino R-hadrons</a></li> <li><a href="86565?version=1&table=Table8">Full-detector direct-stau search</a></li> <li><a href="86565?version=1&table=Table9">Full-detector chargino search</a></li> </ul> <b>Limits:</b> <ul> <li><a href="86565?version=1&table=Table10">Gluino R-hadron search</a></li> <li><a href="86565?version=1&table=Table11">Sbottom R-hadron search</a></li> <li><a href="86565?version=1&table=Table12">Stop R-hadron search</a></li> <li><a href="86565?version=1&table=Table13">Stau search</a></li> <li><a href="86565?version=1&table=Table14">Chargino search</a></li> <li><a href="86565?version=1&table=Table15">Meta-stable gluino R-hadron search</a></li> <li><a href="86565?version=1&table=Table17">Meta-stable gluino R-hadron search</a></li> </ul> <b>Acceptance and efficiency:</b> <ul> <li><a href="86565?version=1&table=Table16">MS-agnostic R-hadron search</a></li> </ul> <b>Truth quantities:</b> <ul> <li><a href="86565?version=1&table=Table18">Flavor composition of 800 GeV stop R-hadrons simulated using the generic model</a></li> <li><a href="86565?version=1&table=Table19">Flavor composition of 800 GeV anti-stop R-hadrons simulated using the generic model</a></li> <li><a href="86565?version=1&table=Table20">Flavor composition of 800 GeV stop R-hadrons simulated using the Regge model</a></li> <li><a href="86565?version=1&table=Table21">Flavor composition of 800 GeV anti-stop R-hadrons simulated using the Regge model</a></li> </ul> <b>Reinterpretation material:</b> <ul> <li><a href="86565?version=1&table=Table22">ETmiss trigger efficiency as function of true ETmiss</a></li> <li><a href="86565?version=1&table=Table23">Single-muon trigger efficiency as function of |eta| and beta</a></li> <li><a href="86565?version=1&table=Table24">Candidate reconstruction efficiency for ID+Calo selection</a></li> <li><a href="86565?version=1&table=Table25">Candidate reconstruction efficiency for loose selection</a></li> <li><a href="86565?version=1&table=Table26">Efficiency for a loose candidate to be promoted to a tight candidate</a></li> <li><a href="86565?version=1&table=Table27">Resolution and average of reconstructed dE/dx mass for a given simulated mass for ID+calo candidates</a></li> <li><a href="86565?version=1&table=Table28">Resolution and average of reconstructed ToF mass for a given simulated mass for ID+calo candidates</a></li> <li><a href="86565?version=1&table=Table29">Resolution and average of reconstructed ToF mass for a given simulated mass for FullDet candidates</a></li> </ul> <p><b>Pseudo-code snippets</b> and <b>example SLHA setups</b> are available in the "Resources" linked on the left, and more detailed reinterpretation material is available at <a href="http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-32/hepdata_info.pdf">http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-32/hepdata_info.pdf</a>.</p>

Lower mass requirement for signal regions.

More…

Measurement of jet-substructure observables in top quark, $W$ boson and light jet production in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 08 (2019) 033, 2019.
Inspire Record 1724098 DOI 10.17182/hepdata.89324

A measurement of jet substructure variables is presented using data collected in 2016 by the ATLAS experiment at the LHC with proton-proton collisions at $\sqrt{s}=13$ TeV. Large-radius jets groomed with the trimming and soft-drop algorithms are studied. Dedicated event selections are used to study jets produced by light quarks or gluons, and hadronically decaying top quarks and $W$ bosons. The variables measured are sensitive to pronged substructure, and therefore are typically used for tagging jets from boosted massive particles. These include the energy correlation functions and the $N$-subjettiness variables. The number of subjets and the Les Houches angularity are also considered. The distributions of the substructure variables, corrected for detector effects, are compared to the predictions of various Monte Carlo event generators. They are also compared between the large-radius jets originating from light quarks or gluons, and hadronically decaying top quarks and $W$ bosons.

88 data tables

Figure 3a, Normalised differential Nsubjets distribution for soft-drop groomed jets, Dijet selection.

Figure 4a, Normalised differential LHA distribution for soft-drop groomed jets, Dijet selection

Figure 5a, Normalised differential C2 distribution for soft-drop groomed jets, Dijet selection

More…

Measurements of inclusive and differential fiducial cross-sections of $t\bar{t}\gamma$ production in leptonic final states at $\sqrt{s}$ = 13 TeV in ATLAS

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 79 (2019) 382, 2019.
Inspire Record 1707015 DOI 10.17182/hepdata.88061

Inclusive and differential cross-sections for the production of a top-quark pair in association with a photon are measured with proton-proton collision data corresponding to an integrated luminosity of 36.1 fb$^{-1}$, collected by the ATLAS detector at the LHC in 2015 and 2016 at a centre-of-mass energy of 13 TeV. The measurements are performed in single-lepton and dilepton final states in a fiducial volume. Events with exactly one photon, one or two leptons, a channel-dependent minimum number of jets, and at least one $b$-jet are selected. Neural network algorithms are used to separate the signal from the backgrounds. The fiducial cross-sections are measured to be 521 $\pm$ 9(stat.) $\pm$ 41(sys.) fb and 69 $\pm$ 3(stat.) $\pm$ 4(sys.) fb for the single-lepton and dilepton channels, respectively. The differential cross-sections are measured as a function of photon transverse momentum, photon absolute pseudorapidity, and angular distance between the photon and its closest lepton in both channels, as well as azimuthal opening angle and absolute pseudorapidity difference between the two leptons in the dilepton channel. All measurements are in agreement with the theoretical predictions.

20 data tables

The measured fiducial cross section in the single lepton channel. The first uncertainty is the statistical uncertainty and the second one is the systematic uncertainty.

The measured fiducial cross section in the dilepton channel. The first uncertainty is the statistical uncertainty and the second one is the systematic uncertainty.

The measured normalized differential cross section as a function of the photon pT in the single lepton channel. The uncertainty is decomposed into five components which are the signal modelling uncertainty, the experimental uncertainty, the ttbar modelling uncertainty, the other background estimation uncertainty, and the data statistical uncertainty.

More…

Measurement of the $t\bar{t}Z$ and $t\bar{t}W$ cross sections in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 072009, 2019.
Inspire Record 1713423 DOI 10.17182/hepdata.88175

A measurement of the associated production of a top-quark pair ($t\bar{t}$) with a vector boson ($W$, $Z$) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented, using $36.1$ fb$^{-1}$ of integrated luminosity collected by the ATLAS detector at the Large Hadron Collider. Events are selected in channels with two same- or opposite-sign leptons (electrons or muons), three leptons or four leptons, and each channel is further divided into multiple regions to maximize the sensitivity of the measurement. The $t\bar{t}Z$ and $t\bar{t}W$ production cross sections are simultaneously measured using a combined fit to all regions. The best-fit values of the production cross sections are $\sigma_{t\bar{t}Z} = 0.95 \pm 0.08_{\mathrm{stat.}} \pm 0.10_{\mathrm{syst.}}$ pb and $\sigma_{t\bar{t}W} = 0.87 \pm 0.13_{\mathrm{stat.}} \pm 0.14_{\mathrm{syst.}}$ pb in agreement with the Standard Model predictions. The measurement of the $t\bar{t}Z$ cross section is used to set constraints on effective field theory operators which modify the $t\bar{t}Z$ vertex.

5 data tables

The result of the simultaneous fit to the $t\bar{t}Z$ and $t\bar{t}W$ cross sections.

68% confidence level (CL) contours of the measured $t\bar{t}Z$ and $t\bar{t}W$ cross sections.

95% confidence level (CL) contours of the measured $t\bar{t}Z$ and $t\bar{t}W$ cross sections.

More…

Measurement of the ratio of cross sections for inclusive isolated-photon production in $pp$ collisions at $\sqrt s = 13$ and $8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 04 (2019) 093, 2019.
Inspire Record 1717495 DOI 10.17182/hepdata.89370

The ratio of the cross sections for inclusive isolated-photon production in $pp$ collisions at centre-of-mass energies of 13 and 8 TeV is measured using the ATLAS detector at the LHC. The integrated luminosities of the 13 TeV and 8 TeV datasets are 3.2 fb$^{-1}$ and 20.2 fb$^{-1}$, respectively. The ratio is measured as a function of the photon transverse energy in different regions of the photon pseudorapidity. The predictions from next-to-leading-order perturbative QCD calculations are compared with the measured ratio. The experimental systematic uncertainties as well as the uncertainties affecting the predictions are evaluated taking into account the correlations between the two centre-of-mass energies, resulting in a reduction of up to a factor of $2.5$ ($5$) in the experimental (theoretical) systematic uncertainties. The predictions based on several parameterisations of the proton parton distribution functions agree with the data within the reduced experimental and theoretical uncertainties. In addition, this ratio to that of the fiducial cross sections for $Z$ boson production at 13 and 8 TeV using the decay channels $Z \rightarrow e^+e^-$ and $Z \rightarrow \mu^+\mu^-$ is made and compared with the theoretical predictions. In this double ratio, a further reduction of the experimental uncertainty is obtained because the uncertainties arising from the luminosity measurement cancel out. The predictions describe the measurements of the double ratio within the theoretical and experimental uncertainties.

16 data tables

Measured ratio of cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $|\eta^{\gamma}|<0.6$.

Predicted ratio of cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $|\eta^{\gamma}|<0.6$.

Measured ratio of cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.6<|\eta^{\gamma}|<1.37$.

More…

Search for the electroweak diboson production in association with a high-mass dijet system in semileptonic final states in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 100 (2019) 032007, 2019.
Inspire Record 1735560 DOI 10.17182/hepdata.89647

This paper reports on a search for the electroweak diboson ($WW/WZ/ZZ$) production in association with a high-mass dijet system, using data from proton-proton collisions at a center-of-mass energy of $\sqrt{s}=13$ TeV. The data, corresponding to an integrated luminosity of 35.5 fb$^{-1}$, were recorded with the ATLAS detector in 2015 and 2016 at the Large Hadron Collider. The search is performed in final states in which one boson decays leptonically, and the other boson decays hadronically. The hadronically decaying $W/Z$ boson is reconstructed as either two small-radius jets or one large-radius jet using jet substructure techniques. The electroweak production of $WW/WZ/ZZ$ in association with two jets is measured with an observed (expected) significance of 2.7 (2.5) standard deviations, and the fiducial cross section is measured to be $45.1 \pm 8.6(\mathrm{stat.}) ^{+15.9} _{-14.6} (\mathrm{syst.})$ fb.

2 data tables

Summary of predicted and measured fiducial cross sections for EW $VVjj$ production. The three lepton channels are combined. For the measured fiducial cross sections in the merged and resolved categories, two signal-strength parameters are used in the combined fit, one for the merged category and the other one for the resolved category; while for the measured fiducial cross section in the inclusive fiducial phase space, a single signal-strength parameter is used. For the SM predicted cross section, the error is the theoretical uncertainty (theo.). For the measured cross section, the first error is the statistical uncertainty (stat.), and the second error is the systematic uncertainty (syst.).

Summary of predicted and measured fiducial cross sections for EW $VVjj$ production. in the three lepton channels. The measured values are obtained from a simultaneous fit where each lepton channel has its own signal-strength parameter, and in each lepton channel the same signal-strength parameter is applied to both the merged and resolved categories. For the SM predicted cross section, the error is the theoretical uncertainty (theo.). For the measured cross section, the first error is the statistical uncertainty (stat.), and the second error is the systematic uncertainty (syst.).


Search for heavy particles decaying into a top-quark pair in the fully hadronic final state in $pp$ collisions at $\sqrt{s} =13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 092004, 2019.
Inspire Record 1722036 DOI 10.17182/hepdata.89050

A search for new particles decaying into a pair of top quarks is performed using proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider at a center-of-mass energy of $\sqrt{s} = $13 TeV corresponding to an integrated luminosity of 36.1 fb$^{-1}$. Events consistent with top-quark pair production and the fully hadronic decay mode of the top quarks are selected by requiring multiple high transverse momentum jets including those containing $b$-hadrons. Two analysis techniques, exploiting dedicated top-quark pair reconstruction in different kinematic regimes, are used to optimize the search sensitivity to new hypothetical particles over a wide mass range. The invariant mass distribution of the two reconstructed top-quark candidates is examined for resonant production of new particles with various spins and decay widths. No significant deviation from the Standard Model prediction is observed and limits are set on the production cross-section times branching fraction for new hypothetical $Z'$ bosons, dark-matter mediators, Kaluza-Klein gravitons and Kaluza-Klein gluons. By comparing with the predicted production cross-sections, the $Z'$ boson in the topcolor-assisted-technicolor model is excluded for masses up to 3.1$-$3.6 TeV, the dark-matter mediators in a simplified framework are excluded in the mass ranges from 0.8 TeV to 0.9 TeV and from 2.0 TeV to 2.2 TeV, and the Kaluza-Klein gluon is excluded for masses up to 3.4 TeV, depending on the decay widths of the particles.

25 data tables

Acceptance times selection efficiency for topcolor-assisted-technicolor Z$^{\prime}_{TC2}$ as a function of top-quark pair mass for all regions A–D in the resolved analysis and the combination of all SRs in the boosted analysis.

Acceptance times selection efficiency for Kaluza-Klein graviton as a function of top-quark pair mass for all regions A–D in the resolved analysis and the combination of all SRs in the boosted analysis.

Acceptance times selection efficiency for Kaluza-Klein gluon Γ=30% as a function of top-quark pair mass for all regions A–D in the resolved analysis and the combination of all SRs in the boosted analysis.

More…

Search for low-mass resonances decaying into two jets and produced in association with a photon using $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 795 (2019) 56-75, 2019.
Inspire Record 1717700 DOI 10.17182/hepdata.85763

A search is performed for localised excesses in dijet mass distributions of low-dijet-mass events produced in association with a high transverse energy photon. The search uses up to 79.8 fb$^{-1}$ of LHC proton-proton collisions collected by the ATLAS experiment at a centre-of-mass energy of 13 TeV during 2015-2017. Two variants are presented: one which makes no jet flavour requirements and one which requires both jets to be tagged as $b$-jets. The observed mass distributions are consistent with multi-jet processes in the Standard Model. The data are used to set upper limits on the production cross-section for a benchmark $Z^\prime$ model and, separately, on generic Gaussian-shape contributions to the mass distributions, extending the current ATLAS constraints on dijet resonances to the mass range between 225 and 1100 GeV.

16 data tables

Dijet mass distribution for the flavour inclusive category. Data, estimated background and uncertainties are shown. Events are collected using the single-photon trigger and contain a $E_T^{\gamma} > 150$ GeV photon and two $p_T^{jet} > 25$ GeV jets.

Dijet mass distribution for the flavour inclusive category. Data, estimated background and uncertainties are shown. Events are collected using the combined trigger and contain a $E_T^{\gamma} > 95$ GeV photon and two $p_T^{jet} > 65$ GeV jets.

Dijet mass distribution for the b-tagged category. Data, estimated background and uncertainties are shown. Events are collected using the single-photon trigger and contain a $E_T^{\gamma} > 150$ GeV photon and two $p_T^{jet} > 25$ GeV jets.

More…

Search for long-lived neutral particles in $pp$ collisions at $\sqrt{s}$ = 13 TeV that decay into displaced hadronic jets in the ATLAS calorimeter

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 79 (2019) 481, 2019.
Inspire Record 1719200 DOI 10.17182/hepdata.86552

This paper describes a search for pairs of neutral, long-lived particles decaying in the ATLAS calorimeter. Long-lived particles occur in many extensions to the Standard Model and may elude searches for new promptly decaying particles. The analysis considers neutral, long-lived scalars with masses between 5 GeV and 400 GeV, produced from decays of heavy bosons with masses between 125 GeV and 1000 GeV, where the long-lived scalars decay into Standard Model fermions. The analysis uses either 10.8 fb$^{-1}$ or 33.0 fb$^{-1}$ of data (depending on the trigger) recorded in 2016 at the LHC with the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV. No significant excess is observed, and limits are reported on the production cross section times branching ratio as a function of the proper decay length of the long-lived particles.

39 data tables

Trigger efficiency of simulated signal events as a function of the LLP $p_T$ for a selection of signal samples.

Trigger efficiency of simulated signal events as a function of the LLP decay position in the $x-y$ plane for LLPs decaying in the HCal barrel for three signal samples.

Trigger efficiency of simulated signal events as a function of the LLP decay position in the $z$ direction for LLPs decaying in the HCal endcaps for three signal samples.

More…

Search for excited electrons singly produced in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment at the LHC

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 79 (2019) 803, 2019.
Inspire Record 1738845 DOI 10.17182/hepdata.90452

A search for excited electrons produced in $pp$ collisions at $\sqrt{s} = 13$ TeV via a contact interaction $q\bar{q} \to ee^*$ is presented. The search uses 36.1 fb$^{-1}$ of data collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider. Decays of the excited electron via a contact interaction into an electron and a pair of quarks ($eq\bar{q}$) are targeted in final states with two electrons and two hadronic jets, and decays via a gauge interaction into a neutrino and a $W$ boson ($\nu W$) are probed in final states with an electron, missing transverse momentum, and a large-radius jet consistent with a hadronically decaying $W$ boson. No significant excess is observed over the expected backgrounds. Upper limits are calculated for the $pp \to ee^* \to eeq\bar{q}$ and $pp \to ee^* \to e\nu W$ production cross sections as a function of the excited electron mass $m_{e^*}$ at 95% confidence level. The limits are translated into lower bounds on the compositeness scale parameter $\Lambda$ of the model as a function of $m_{e^*}$. For $m_{e^*} < 0.5$ TeV, the lower bound for $\Lambda$ is 11 TeV. In the special case of $m_{e^*} = \Lambda$, the values of $m_{e^*} < 4.8$ TeV are excluded. The presented limits on $\Lambda$ are more stringent than those obtained in previous searches.

7 data tables

The distribution of $m_{lljj}$ used to discriminate the signal from background processes in the $eejj$ channel. The distribution is shown after applying the preselection criteria. The background contributions are constrained using the CRs. The signal models assume $\Lambda$ = 5 TeV. The uncertainties for the expected backgrounds represent all considered systematic and statistical sources.

The distribution of $m_{T}^{\nu W}$ used to discriminate the signal and background processes in the $e\nu J$ channel. The distribution is shown after applying the preselection criteria. The background contributions are constrained using the CRs. The signal models assume $\Lambda$ = 5 TeV. The last bin includes overflow events (the underflow is not shown). The uncertainties for the expected backgrounds represent all considered systematic and statistical sources.

Upper limits on $\sigma\times B$ as a function of $m_{e^*}$ in the $eejj$ channel. The $\pm 1(2)\sigma$ uncertainty bands around the expected limit represent all sources of systematic and statistical uncertainties.

More…

Search for magnetic monopoles and stable high-electric-charge objects in 13 TeV proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 124 (2020) 031802, 2020.
Inspire Record 1736730 DOI 10.17182/hepdata.89874

A search for magnetic monopoles and high-electric-charge objects is presented using 34.4 fb$^{-1}$ of 13 TeV $pp$ collision data collected by the ATLAS detector at the LHC during 2015 and 2016. The considered signature is based upon high ionization in the transition radiation tracker of the inner detector associated with a pencil-shape energy deposit in the electromagnetic calorimeter. The data were collected by a dedicated trigger based on the tracker high-threshold hit capability. The results are interpreted in models of Drell-Yan pair production of stable particles with two spin hypotheses (0 and 1/2) and masses ranging from 200 GeV to 4000 GeV. The search improves by approximately a factor of five the constraints on the direct production of magnetic monopoles carrying one or two Dirac magnetic charges and stable objects with electric charge in the range $20\le|z|\le60$ and extends the charge range to $60<|z|\le100$.

60 data tables

Observed 95% confidence-level upper limits on the cross section for Drell-Yan spin-0 monopole production as a function of mass for magnetic charges $|g|=1g_D$ and $|g|=2g_D$.

Observed 95% confidence-level upper limits on the cross section for Drell-Yan spin-0 HECO production as a function of mass for various values of electric charge in the range $20\le|z|\le100$.

Observed 95% confidence-level upper limits on the cross section for Drell-Yan spin-1/2 monopole production as a function of mass for magnetic charges $|g|=1g_D$ and $|g|=2g_D$.

More…

Measurement of distributions sensitive to the underlying event in inclusive $Z$-boson production in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 666, 2019.
Inspire Record 1736531 DOI 10.17182/hepdata.90831

This paper presents measurements of charged-particle distributions sensitive to the properties of the underlying event in events containing a $Z$ boson decaying into a muon pair. The data were obtained using the ATLAS detector at the LHC in proton-proton collisions at a centre-of-mass energy of 13 TeV with an integrated luminosity of 3.2 fb$^{-1}$. Distributions of the charged-particle multiplicity and of the charged-particle transverse momentum are measured in regions of the azimuth defined relative to the $Z$ boson direction. The measured distributions are compared with the predictions of various Monte Carlo generators which implement different underlying-event models. The Monte Carlo model predictions qualitatively describe the data well, but with some significant discrepancies.

525 data tables

Figure 09d, mean sumPt toward, toward region : Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)

transverse region : Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)

Figure 09c, mean sumPt transmin, transmin region : Mean sum of transverse momenta ($\langle \Sigma p_{T} \rangle \pm stat. \pm syst.det. \pm syst.gen.[GeV]$)

More…

Measurement of the inclusive isolated-photon cross section in $pp$ collisions at $\sqrt{s}=13$ TeV using 36 fb$^{-1}$ of ATLAS data

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 10 (2019) 203, 2019.
Inspire Record 1748270 DOI 10.17182/hepdata.91968

The differential cross section for isolated-photon production in $pp$ collisions is measured at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC using an integrated luminosity of 36.1 fb$^{-1}$. The differential cross section is presented as a function of the photon transverse energy in different regions of photon pseudorapidity. The differential cross section as a function of the absolute value of the photon pseudorapidity is also presented in different regions of photon transverse energy. Next-to-leading-order QCD calculations from JETPHOX and SHERPA as well as next-to-next-to-leading-order QCD calculations from NNLOJET are compared with the measurement, using several parameterisations of the proton parton distribution functions. The predictions provide a good description of the data within the experimental and theoretical uncertainties.

8 data tables

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $|\eta^{\gamma}|<0.6$.

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.6<|\eta^{\gamma}|<1.37$.

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $1.56<|\eta^{\gamma}|<1.81$.

More…

Search for a heavy charged boson in events with a charged lepton and missing transverse momentum from $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 100 (2019) 052013, 2019.
Inspire Record 1739784 DOI 10.17182/hepdata.90193

A search for a heavy charged-boson resonance decaying into a charged lepton (electron or muon) and a neutrino is reported. A data sample of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 13$ TeV collected with the ATLAS detector at the LHC during 2015-2018 is used in the search. The observed transverse mass distribution computed from the lepton and missing transverse momenta is consistent with the distribution expected from the Standard Model, and upper limits on the cross section for $pp \to W^\prime \to \ell\nu$ are extracted ($\ell = e$ or $\mu$). These vary between 1.3 pb and 0.05 fb depending on the resonance mass in the range between 0.15 and 7.0 TeV at 95% confidence level for the electron and muon channels combined. Gauge bosons with a mass below 6.0 TeV and 5.1 TeV are excluded in the electron and muon channels, respectively, in a model with a resonance that has couplings to fermions identical to those of the Standard Model $W$ boson. Cross-section limits are also provided for resonances with several fixed $\Gamma / m$ values in the range between 1% and 15%. Model-independent limits are derived in single-bin signal regions defined by a varying minimum transverse mass threshold. The resulting visible cross-section upper limits range between 4.6 (15) pb and 22 (22) ab as the threshold increases from 130 (110) GeV to 5.1 (5.1) TeV in the electron (muon) channel.

14 data tables

Transverse mass distribution for events satisfying all selection criteria in the electron channel.

Transverse mass distribution for events satisfying all selection criteria in the muon channel.

Upper limits at the 95% CL on the cross section for SSM $W^\prime$ production and decay to the electron+neutrino channel as a function of the $W^\prime$ pole mass.

More…

Combination of searches for Higgs boson pairs in $pp$ collisions at $\sqrt{s} = $13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 800 (2020) 135103, 2020.
Inspire Record 1738524 DOI 10.17182/hepdata.90521

This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy $\sqrt{s} = 13$ TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the bbbb, bbWW, bb$\tau\tau$, WWWW, bb$\gamma \gamma$ and WW$\gamma\gamma$ final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio ($ \kappa_{\lambda} $) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to $ -5.0 < \kappa_{\lambda} <12.0 $ ($ -5.8 < \kappa_{\lambda} <12.0 $). In addition, limits are set on the production of narrow scalar resonances and spin-2 Kaluza-Klein Randall-Sundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model.

42 data tables

Signal acceptance times efficiency as a function of &kappa;<sub>&lambda;</sub> for the $b\bar{b}b\bar{b}$, $b\bar{b}\tau^{+}\tau^{-}$ and $b\bar{b}\gamma\gamma$ analyses. The $b\bar{b}b\bar{b}$ curve is the average of the 2015 and 2016 curves weighted by the integrated luminosities of the two datasets

Upper limits at 95% CL on the cross-section of the ggF non-resonant SM HH production as a function of &kappa;<sub>&lambda;</sub>. The observed (expected) limits are shown as solid (dashed) lines. In the $b\bar{b}\gamma\gamma$ final state, the observed and expected limits coincide. The $\pm 1 \sigma$ and $\pm 2\sigma$ bands are only shown for the combined expected limit. The theoretical prediction of the cross-section as a function of &kappa;<sub>&lambda;</sub> is also shown.

Upper limits at 95% CL on the cross-section of the resonant Higgs boson pair production for a spin-0 heavy scalar

More…

Search for displaced vertices of oppositely charged leptons from decays of long-lived particles in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 801 (2020) 135114, 2020.
Inspire Record 1745920 DOI 10.17182/hepdata.90606

A search for long-lived particles decaying into an oppositely charged lepton pair, $\mu\mu$, $ee$, or $e\mu$, is presented using 32.8 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s}=13$ TeV by the ATLAS detector at the LHC. Candidate leptons are required to form a vertex, within the inner tracking volume of ATLAS, displaced from the primary $pp$ interaction region. No lepton pairs with an invariant mass greater than 12 GeV are observed, consistent with the background expectations derived from data. The detection efficiencies for generic resonances with lifetimes ($c\tau$) of 100-1000 mm decaying into a dilepton pair with masses between 0.1-1.0 TeV are presented as a function of $p_T$ and decay radius of the resonances to allow the extraction of upper limits on the cross sections for theoretical models. The result is also interpreted in a supersymmetric model in which the lightest neutralino, produced via squark-antisquark production, decays into $\ell^{+}\ell^{'-}\nu$ ($\ell, \ell^{'} = e$, $\mu$) with a finite lifetime due to the presence of R-parity violating couplings. Cross-section limits are presented for specific squark and neutralino masses. For a 700 GeV squark, neutralinos with masses of 50-500 GeV and mean proper lifetimes corresponding to $c\tau$ values between 1 mm to 6 m are excluded. For a 1.6 TeV squark, $c\tau$ values between 3 mm to 1 m are excluded for 1.3 TeV neutralinos.

65 data tables

<h1>Overview of reinterpretation material</h1><p><b>Important note:</b> A detailed explanation of the reinterpretation material can be found <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2017-04/hepdata_info.pdf">here</a>.<br/>Please read this stand-alone document before reinterpreting the search.</p><h2>Parameterized detection efficiencies</h2><p>RPV SUSY model: Tables <a href="90606?version=1&table=Table27">27</a> to <a href="90606?version=1&table=Table44">44</a><br/>Z' toy model: Tables <a href="90606?version=1&table=Table45">45</a> to <a href="90606?version=1&table=Table59">59</a></p><h2>Further material for the RPV SUSY model</h2><p>Acceptances: Tables <a href="90606?version=1&table=Table18">18</a> (ee), <a href="90606?version=1&table=Table19">19</a> (emu) and <a href="90606?version=1&table=Table20">20</a> (mumu)<br/>Detection efficiencies: Tables <a href="90606?version=1&table=Table21">21</a> (ee), <a href="90606?version=1&table=Table22">22</a> (emu) and <a href="90606?version=1&table=Table23">23</a> (mumu)<br/>Overall signal efficiencies: Tables <a href="90606?version=1&table=Table24">24</a> (ee), <a href="90606?version=1&table=Table25">25</a> (emu) and <a href="90606?version=1&table=Table26">26</a> (mumu)</p><h2>Further material for the Z' toy model</h2><p>Acceptances, detection efficiencies and overall signal efficiencies: Tables <a href="90606?version=1&table=Table60">60</a> (mZ' = 100 GeV) to <a href="90606?version=1&table=Table64">64</a> (mZ' = 1000 GeV)</p>

dRcos distribution of dimuon pairs (scaled) and dimuon vertices in the cosmic rays control region. The distribution of all dimuon pairs is scaled to the DV distribution.

Dependence of the overall signal efficiency on the transverse decay radius Rxy of the long-lived Z' for Z' -> ee. The error bars indicate the total uncertainties.

More…

Version 2
Search for diboson resonances in hadronic final states in 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 09 (2019) 091, 2019.
Inspire Record 1740685 DOI 10.17182/hepdata.91052

Narrow resonances decaying into $WW$, $WZ$ or $ZZ$ boson pairs are searched for in 139 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV recorded with the ATLAS detector at the Large Hadron Collider from 2015 to 2018. The diboson system is reconstructed using pairs of high transverse momentum, large-radius jets. These jets are built from a combination of calorimeter- and tracker-inputs compatible with the hadronic decay of a boosted $W$ or $Z$ boson, using jet mass and substructure properties. The search is performed for diboson resonances with masses greater than 1.3 TeV. No significant deviations from the background expectations are observed. Exclusion limits at the 95% confidence level are set on the production cross-section times branching ratio into dibosons for resonances in a range of theories beyond the Standard Model, with the highest excluded mass of a new gauge boson at 3.8 TeV in the context of mass-degenerate resonances that couple predominantly to gauge bosons.

20 data tables

Limit Plot

Limit Plot

Limit Plot

More…

Version 3
Search for bottom-squark pair production with the ATLAS detector in final states containing Higgs bosons, $b$-jets and missing transverse momentum

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 12 (2019) 060, 2019.
Inspire Record 1748602 DOI 10.17182/hepdata.89408

The result of a search for the pair production of the lightest supersymmetric partner of the bottom quark ($\tilde{b}_{1}$) using 139 fb$^{-1}$ of proton-proton data collected at $\sqrt{s} = 13$ TeV by the ATLAS detector is reported. In the supersymmetric scenarios considered both of the bottom-squarks decay into a $b$-quark and the second-lightest neutralino, $\tilde{b}_{1} \rightarrow b + \tilde{\chi}^{0}_{2}$. Each $\tilde{\chi}^{0}_{2}$ is assumed to subsequently decay with 100% branching ratio into a Higgs boson ($h$) like the one in the Standard Model and the lightest neutralino: $\tilde{\chi}^{0}_{2} \rightarrow h + \tilde{\chi}^{0}_{1}$. The $\tilde{\chi}^{0}_{1}$ is assumed to be the lightest supersymmetric particle (LSP) and is stable. Two signal mass configurations are targeted: the first has a constant LSP mass of 60 GeV; and the second has a constant mass difference between the $\tilde{\chi}^{0}_{2}$ and $\tilde{\chi}^{0}_{1}$ of 130 GeV. The final states considered contain no charged leptons, three or more $b$-jets, and large missing transverse momentum. No significant excess of events over the Standard Model background expectation is observed in any of the signal regions considered. Limits at the 95% confidence level are placed in the supersymmetric models considered, and bottom-squarks with mass up to 1.5 TeV are excluded.

144 data tables

Distributions of ${E}_{\mathrm{T}}^{\mathrm{miss}}$ after the background-only fit. The backgrounds which contribute only a small amount (diboson, W+jets and ttbar+W/Z/h) are grouped and labelled as `Other'.

Distributions of ${E}_{\mathrm{T}}^{\mathrm{miss}}$ after the background-only fit. The backgrounds which contribute only a small amount (diboson, W+jets and ttbar+W/Z/h) are grouped and labelled as `Other'.

Distributions of ${E}_{\mathrm{T}}^{\mathrm{miss}}$ after the background-only fit. The backgrounds which contribute only a small amount (diboson, W+jets and ttbar+W/Z/h) are grouped and labelled as `Other'.

More…

Measurement of the $CP$-violating phase $\phi_s$ in $B^0_s \to J/\psi\phi$ decays in ATLAS at 13 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 81 (2021) 342, 2021.
Inspire Record 1776624 DOI 10.17182/hepdata.103066

A measurement of the $B^0_s \to J/\psi\phi$ decay parameters using 80.5 $\mathrm{fb}^{-1}$ of integrated luminosity collected with the ATLAS detector from 13 TeV proton-proton collisions at the LHC is presented. The measured parameters include the $CP$-violating phase $\phi_s$, the width difference $\Delta\Gamma_{s}$ between the $B^0_s$ meson mass eigenstates and the average decay width $\Gamma_{s}$. The values measured for the physical parameters are combined with those from 19.2 $\mathrm{fb}^{-1}$ of 7 TeV and 8 TeV data, leading to the following: \begin{eqnarray*} \phi_s & = & -0.087\phantom{0} \pm 0.036\phantom{0} ~\mathrm{(stat.)} \pm 0.021\phantom{0} ~\mathrm{(syst.)~rad} \\ \Delta\Gamma_{s} & = & \phantom{-}0.0657 \pm 0.0043 ~\mathrm{(stat.)} \pm 0.0037 ~\mathrm{(syst.)~ps}^{-1} \\ \Gamma_{s} & = & \phantom{-}0.6703 \pm 0.0014 ~\mathrm{(stat.)} \pm 0.0018 ~\mathrm{(syst.)~ps}^{-1} \\ \end{eqnarray*} Results for $\phi_s$ and $\Delta\Gamma_{s}$ are also presented as 68% confidence level contours in the $\phi_s$-$\Delta\Gamma_{s}$ plane. Furthermore, the transversity amplitudes and corresponding strong phases are measured. $\phi_s$ and $\Delta\Gamma_{s}$ measurements are in agreement with the Standard Model predictions.

9 data tables

Fitted values for the physical parameters of interest with their statistical and systematic uncertainties, for the result of solution (a).

Fitted values for the physical parameters of interest with their statistical and systematic uncertainties, for the result of solution (b).

Fit correlations between the physical parameters of interest, obtained from the fit for solution (a).

More…

Version 4
Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in $\sqrt{s}=13$ TeV $pp$ collisions using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 123, 2020.
Inspire Record 1750597 DOI 10.17182/hepdata.89413

A search for the electroweak production of charginos and sleptons decaying into final states with two electrons or muons is presented. The analysis is based on 139 fb$^{-1}$ of proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider at $\sqrt{s}=13$ TeV. Three $R$-parity-conserving scenarios where the lightest neutralino is the lightest supersymmetric particle are considered: the production of chargino pairs with decays via either $W$ bosons or sleptons, and the direct production of slepton pairs. The analysis is optimised for the first of these scenarios, but the results are also interpreted in the others. No significant deviations from the Standard Model expectations are observed and limits at 95 % confidence level are set on the masses of relevant supersymmetric particles in each of the scenarios. For a massless lightest neutralino, masses up to 420 GeV are excluded for the production of the lightest-chargino pairs assuming $W$-boson-mediated decays and up to 1 TeV for slepton-mediated decays, whereas for slepton-pair production masses up to 700 GeV are excluded assuming three generations of mass-degenerate sleptons.

616 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Background Fit results:</b> <ul> <li><a href="89413?version=1&table=Backgroundfit1">CRs</a> <li><a href="89413?version=1&table=Backgroundfit2">VRs</a> <li><a href="89413?version=1&table=Backgroundfit5">inclusive DF-0J SRs</a> <li><a href="89413?version=1&table=Backgroundfit6">inclusive DF-1J SRs</a> <li><a href="89413?version=1&table=Backgroundfit3">inclusive SF-0J SRs</a> <li><a href="89413?version=1&table=Backgroundfit4">inclusive SF-1J SRs</a> </ul> <b>Kinematic distributions in VRs:</b> <ul> <li><a href="89413?version=1&table=VRkinematics1">$m_{T2}$ in VR-top-low</a> <li><a href="89413?version=1&table=VRkinematics2">$m_{T2}$ in VR-top-high</a> <li><a href="89413?version=1&table=VRkinematics3">$E_T^{miss}$ in VR-WW-0J</a> <li><a href="89413?version=1&table=VRkinematics4">$E_T^{miss}$ in VR-WW-1J</a> <li><a href="89413?version=1&table=VRkinematics5">$E_T^{miss}$ sig in VR-VZ</a> <li><a href="89413?version=1&table=VRkinematics6">$E_T^{miss}$ sig in VR-top-WW</a> </ul> <b>Kinematic distributions in SRs:</b> <ul> <li><a href="89413?version=1&table=SRkinematics1">$m_{T2}$ in SR-SF-0J</a> <li><a href="89413?version=1&table=SRkinematics2">$m_{T2}$ in SR-SF-1J</a> <li><a href="89413?version=1&table=SRkinematics3">$m_{T2}$ in SR-DF-0J</a> <li><a href="89413?version=1&table=SRkinematics4">$m_{T2}$ in SR-DF-1J</a> </ul> <b>Systematic uncertaities:</b> <ul> <li><a href="89413?version=1&table=Systematic uncertainties">dominant systematic uncertainties in the inclusive SRs</a> </ul> <b>Exclusion contours:</b> <ul> <li><a href="89413?version=1&table=Exclusioncontour(obs)1">expected exclusion contour direct chargino-pair production via W decay grid</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)1">observed exclusion contour direct chargino-pair production via W decay grid</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)2">expected exclusion contour direct chargino-pair production via slepton decay grid</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)2">observed exclusion contour direct chargino-pair production via slepton decay grid</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)3">expected exclusion contour direct slepton-pair production grid</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)3">observed exclusion contour direct slepton-pair production grid</a> </ul> <br/><br/><b>AUXILIARY MATERIAL</b><br/> <b>Background Fit in binned SRs:</b> <ul> <li><a href="89413?version=1&table=Backgroundfit7">binned DF-0J SRs</a> <li><a href="89413?version=1&table=Backgroundfit8">binned DF-1J SRs</a> <li><a href="89413?version=1&table=Backgroundfit9">binned SF-0J SRs</a> <li><a href="89413?version=1&table=Backgroundfit10">binned SF-1J SRs</a> </ul> <b>Exclusion contours:</b> <ul> <li><a href="89413?version=1&table=Exclusioncontour(obs)4">expected exclusion contour left-handed slepton-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)4">observed exclusion contour left-handed slepton-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)5">expected exclusion contour right-handed slepton-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)5">observed exclusion contour right-handed slepton-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)6">expected exclusion contour selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)6">observed exclusion contour selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)7">expected exclusion contour left-handed selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)7">observed exclusion contour left-handed selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)8">expected exclusion contour right-handed selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)8">observed exclusion contour right-handed selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)9">expected exclusion contour smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)9">observed exclusion contour smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)10">expected exclusion contour left-handed smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)10">observed exclusion contour left-handed smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)11">expected exclusion contour right-handed smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)11">observed exclusion contour right-handed smuon-pair production</a> </ul> <b>Cross section upper limits:</b> <ul> <li><a href="89413?version=1&table=xsecupperlimits1">upper limits on signal cross section for direct chargino-pair production via W decay</a> <li><a href="89413?version=1&table=xsecupperlimits2">upper limits on signal cross section for direct chargino-pair production via slepton decay</a> <li><a href="89413?version=1&table=xsecupperlimits3">upper limits on signal cross section for direct slepton-pair production</a> </ul> <b>Acceptances and Efficiencies for direct chargino-pair production via W decay grid </b> <ul> <li> <b>Acceptance</b> <br/> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[100,inf)forC1C1WWgrid">SR-DF-0J-[100,inf) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[160,inf)forC1C1WWgrid">SR-DF-0J-[160,inf) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[100,120)forC1C1WWgrid">SR-DF-0J-[100,120) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[120,160)forC1C1WWgrid">SR-DF-0J-[120,160) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[100,105)forC1C1WWgrid">SR-DF-0J-[100,105) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[105,110)forC1C1WWgrid">SR-DF-0J-[105,110) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[110,120)forC1C1WWgrid">SR-DF-0J-[110,120) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[120,140)forC1C1WWgrid">SR-DF-0J-[120,140) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[140,160)forC1C1WWgrid">SR-DF-0J-[140,160) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[160,180)forC1C1WWgrid">SR-DF-0J-[160,180) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[180,220)forC1C1WWgrid">SR-DF-0J-[180,220) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[220,260)forC1C1WWgrid">SR-DF-0J-[220,260) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[260,inf)forC1C1WWgrid">SR-DF-0J-[260,inf) </a><br/> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[100,inf)forC1C1WWgrid">SR-DF-1J-[100,inf) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[160,inf)forC1C1WWgrid">SR-DF-1J-[160,inf) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[100,120)forC1C1WWgrid">SR-DF-1J-[100,120) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[120,160)forC1C1WWgrid">SR-DF-1J-[120,160) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[100,105)forC1C1WWgrid">SR-DF-1J-[100,105) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[105,110)forC1C1WWgrid">SR-DF-1J-[105,110) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[110,120)forC1C1WWgrid">SR-DF-1J-[110,120) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[120,140)forC1C1WWgrid">SR-DF-1J-[120,140) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[140,160)forC1C1WWgrid">SR-DF-1J-[140,160) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[160,180)forC1C1WWgrid">SR-DF-1J-[160,180) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[180,220)forC1C1WWgrid">SR-DF-1J-[180,220) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[220,260)forC1C1WWgrid">SR-DF-1J-[220,260) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[260,inf)forC1C1WWgrid">SR-DF-1J-[260,inf) </a><br/> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[100,inf)forC1C1WWgrid">SR-SF-0J-[100,inf) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[160,inf)forC1C1WWgrid">SR-SF-0J-[160,inf) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[100,120)forC1C1WWgrid">SR-SF-0J-[100,120) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[120,160)forC1C1WWgrid">SR-SF-0J-[120,160) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[100,105)forC1C1WWgrid">SR-SF-0J-[100,105) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[105,110)forC1C1WWgrid">SR-SF-0J-[105,110) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[110,120)forC1C1WWgrid">SR-SF-0J-[110,120) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[120,140)forC1C1WWgrid">SR-SF-0J-[120,140) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[140,160)forC1C1WWgrid">SR-SF-0J-[140,160) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[160,180)forC1C1WWgrid">SR-SF-0J-[160,180) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[180,220)forC1C1WWgrid">SR-SF-0J-[180,220) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[220,260)forC1C1WWgrid">SR-SF-0J-[220,260) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[260,inf)forC1C1WWgrid">SR-SF-0J-[260,inf) </a><br/> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[100,inf)forC1C1WWgrid">SR-SF-1J-[100,inf) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[160,inf)forC1C1WWgrid">SR-SF-1J-[160,inf) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[100,120)forC1C1WWgrid">SR-SF-1J-[100,120) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[120,160)forC1C1WWgrid">SR-SF-1J-[120,160) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[100,105)forC1C1WWgrid">SR-SF-1J-[100,105) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[105,110)forC1C1WWgrid">SR-SF-1J-[105,110) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[110,120)forC1C1WWgrid">SR-SF-1J-[110,120) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[120,140)forC1C1WWgrid">SR-SF-1J-[120,140) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[140,160)forC1C1WWgrid">SR-SF-1J-[140,160) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[160,180)forC1C1WWgrid">SR-SF-1J-[160,180) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[180,220)forC1C1WWgrid">SR-SF-1J-[180,220) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[220,260)forC1C1WWgrid">SR-SF-1J-[220,260) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[260,inf)forC1C1WWgrid">SR-SF-1J-[260,inf) </a><br/> <li> <b>Efficiency</b> <br/> <a href="89413?version=1&table=EfficiencySR-DF-0J-[100,inf)forC1C1WWgrid">SR-DF-0J-[100,inf) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[160,inf)forC1C1WWgrid">SR-DF-0J-[160,inf) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[100,120)forC1C1WWgrid">SR-DF-0J-[100,120) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[120,160)forC1C1WWgrid">SR-DF-0J-[120,160) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[100,105)forC1C1WWgrid">SR-DF-0J-[100,105) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[105,110)forC1C1WWgrid">SR-DF-0J-[105,110) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[110,120)forC1C1WWgrid">SR-DF-0J-[110,120) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[120,140)forC1C1WWgrid">SR-DF-0J-[120,140) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[140,160)forC1C1WWgrid">SR-DF-0J-[140,160) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[160,180)forC1C1WWgrid">SR-DF-0J-[160,180) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[180,220)forC1C1WWgrid">SR-DF-0J-[180,220) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[220,260)forC1C1WWgrid">SR-DF-0J-[220,260) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[260,inf)forC1C1WWgrid">SR-DF-0J-[260,inf) </a><br/> <a href="89413?version=1&table=EfficiencySR-DF-1J-[100,inf)forC1C1WWgrid">SR-DF-1J-[100,inf) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[160,inf)forC1C1WWgrid">SR-DF-1J-[160,inf) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[100,120)forC1C1WWgrid">SR-DF-1J-[100,120) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[120,160)forC1C1WWgrid">SR-DF-1J-[120,160) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[100,105)forC1C1WWgrid">SR-DF-1J-[100,105) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[105,110)forC1C1WWgrid">SR-DF-1J-[105,110) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[110,120)forC1C1WWgrid">SR-DF-1J-[110,120) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[120,140)forC1C1WWgrid">SR-DF-1J-[120,140) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[140,160)forC1C1WWgrid">SR-DF-1J-[140,160) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[160,180)forC1C1WWgrid">SR-DF-1J-[160,180) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[180,220)forC1C1WWgrid">SR-DF-1J-[180,220) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[220,260)forC1C1WWgrid">SR-DF-1J-[220,260) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[260,inf)forC1C1WWgrid">SR-DF-1J-[260,inf) </a><br/> <a href="89413?version=1&table=EfficiencySR-SF-0J-[100,inf)forC1C1WWgrid">SR-SF-0J-[100,inf) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[160,inf)forC1C1WWgrid">SR-SF-0J-[160,inf) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[100,120)forC1C1WWgrid">SR-SF-0J-[100,120) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[120,160)forC1C1WWgrid">SR-SF-0J-[120,160) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[100,105)forC1C1WWgrid">SR-SF-0J-[100,105) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[105,110)forC1C1WWgrid">SR-SF-0J-[105,110) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[110,120)forC1C1WWgrid">SR-SF-0J-[110,120) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[120,140)forC1C1WWgrid">SR-SF-0J-[120,140) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[140,160)forC1C1WWgrid">SR-SF-0J-[140,160) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[160,180)forC1C1WWgrid">SR-SF-0J-[160,180) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[180,220)forC1C1WWgrid">SR-SF-0J-[180,220) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[220,260)forC1C1WWgrid">SR-SF-0J-[220,260) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[260,inf)forC1C1WWgrid">SR-SF-0J-[260,inf) </a><br/> <a href="89413?version=1&table=EfficiencySR-SF-1J-[100,inf)forC1C1WWgrid">SR-SF-1J-[100,inf) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[160,inf)forC1C1WWgrid">SR-SF-1J-[160,inf) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[100,120)forC1C1WWgrid">SR-SF-1J-[100,120) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[120,160)forC1C1WWgrid">SR-SF-1J-[120,160) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[100,105)forC1C1WWgrid">SR-SF-1J-[100,105) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[105,110)forC1C1WWgrid">SR-SF-1J-[105,110) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[110,120)forC1C1WWgrid">SR-SF-1J-[110,120) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[120,140)forC1C1WWgrid">SR-SF-1J-[120,140) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[140,160)forC1C1WWgrid">SR-SF-1J-[140,160) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[160,180)forC1C1WWgrid">SR-SF-1J-[160,180) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[180,220)forC1C1WWgrid">SR-SF-1J-[180,220) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[220,260)forC1C1WWgrid">SR-SF-1J-[220,260) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[260,inf)forC1C1WWgrid">SR-SF-1J-[260,inf) </a><br/> </ul> <b>Cutflow:</b> <ul> <li><a href="89413?version=1&table=Cutflow1">Cutflow for direct chargino-pair production via W decay $m(\tilde{\chi}^{\pm}_1,\tilde{\chi}^{0}_1)=(300,50) GeV$</a> <li><a href="89413?version=1&table=Cutflow1">Cutflow for direct chargino-pair production via slepton decay $m(\tilde{\chi}^{\pm}_1,\tilde{l},\tilde{\chi}^{0}_1)=(600,300,1) GeV$</a> <li><a href="89413?version=1&table=Cutflow1">Cutflow for direct slepton-pair production $m(\tilde{l},\tilde{\chi}^{0}_1)=(400,200) GeV$</a> </ul> <b>Truth Code snippets</b> are available under "Resources" (purple button on the left)

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Background Fit results:</b> <ul> <li><a href="89413?version=1&table=Backgroundfit1">CRs</a> <li><a href="89413?version=1&table=Backgroundfit2">VRs</a> <li><a href="89413?version=1&table=Backgroundfit5">inclusive DF-0J SRs</a> <li><a href="89413?version=1&table=Backgroundfit6">inclusive DF-1J SRs</a> <li><a href="89413?version=1&table=Backgroundfit3">inclusive SF-0J SRs</a> <li><a href="89413?version=1&table=Backgroundfit4">inclusive SF-1J SRs</a> </ul> <b>Kinematic distributions in VRs:</b> <ul> <li><a href="89413?version=1&table=VRkinematics1">$m_{T2}$ in VR-top-low</a> <li><a href="89413?version=1&table=VRkinematics2">$m_{T2}$ in VR-top-high</a> <li><a href="89413?version=1&table=VRkinematics3">$E_T^{miss}$ in VR-WW-0J</a> <li><a href="89413?version=1&table=VRkinematics4">$E_T^{miss}$ in VR-WW-1J</a> <li><a href="89413?version=1&table=VRkinematics5">$E_T^{miss}$ sig in VR-VZ</a> <li><a href="89413?version=1&table=VRkinematics6">$E_T^{miss}$ sig in VR-top-WW</a> </ul> <b>Kinematic distributions in SRs:</b> <ul> <li><a href="89413?version=1&table=SRkinematics1">$m_{T2}$ in SR-SF-0J</a> <li><a href="89413?version=1&table=SRkinematics2">$m_{T2}$ in SR-SF-1J</a> <li><a href="89413?version=1&table=SRkinematics3">$m_{T2}$ in SR-DF-0J</a> <li><a href="89413?version=1&table=SRkinematics4">$m_{T2}$ in SR-DF-1J</a> </ul> <b>Systematic uncertaities:</b> <ul> <li><a href="89413?version=1&table=Systematic uncertainties">dominant systematic uncertainties in the inclusive SRs</a> </ul> <b>Exclusion contours:</b> <ul> <li><a href="89413?version=1&table=Exclusioncontour(obs)1">expected exclusion contour direct chargino-pair production via W decay grid</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)1">observed exclusion contour direct chargino-pair production via W decay grid</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)2">expected exclusion contour direct chargino-pair production via slepton decay grid</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)2">observed exclusion contour direct chargino-pair production via slepton decay grid</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)3">expected exclusion contour direct slepton-pair production grid</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)3">observed exclusion contour direct slepton-pair production grid</a> </ul> <br/><br/><b>AUXILIARY MATERIAL</b><br/> <b>Background Fit in binned SRs:</b> <ul> <li><a href="89413?version=1&table=Backgroundfit7">binned DF-0J SRs</a> <li><a href="89413?version=1&table=Backgroundfit8">binned DF-1J SRs</a> <li><a href="89413?version=1&table=Backgroundfit9">binned SF-0J SRs</a> <li><a href="89413?version=1&table=Backgroundfit10">binned SF-1J SRs</a> </ul> <b>Exclusion contours:</b> <ul> <li><a href="89413?version=1&table=Exclusioncontour(obs)4">expected exclusion contour left-handed slepton-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)4">observed exclusion contour left-handed slepton-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)5">expected exclusion contour right-handed slepton-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)5">observed exclusion contour right-handed slepton-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)6">expected exclusion contour selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)6">observed exclusion contour selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)7">expected exclusion contour left-handed selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)7">observed exclusion contour left-handed selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)8">expected exclusion contour right-handed selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)8">observed exclusion contour right-handed selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)9">expected exclusion contour smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)9">observed exclusion contour smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)10">expected exclusion contour left-handed smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)10">observed exclusion contour left-handed smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)11">expected exclusion contour right-handed smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)11">observed exclusion contour right-handed smuon-pair production</a> </ul> <b>Cross section upper limits:</b> <ul> <li><a href="89413?version=1&table=xsecupperlimits1">upper limits on signal cross section for direct chargino-pair production via W decay</a> <li><a href="89413?version=1&table=xsecupperlimits2">upper limits on signal cross section for direct chargino-pair production via slepton decay</a> <li><a href="89413?version=1&table=xsecupperlimits3">upper limits on signal cross section for direct slepton-pair production</a> </ul> <b>Acceptances and Efficiencies for direct chargino-pair production via W decay grid </b> <ul> <li> <b>Acceptance</b> <br/> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[100,inf)forC1C1WWgrid">SR-DF-0J-[100,inf) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[160,inf)forC1C1WWgrid">SR-DF-0J-[160,inf) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[100,120)forC1C1WWgrid">SR-DF-0J-[100,120) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[120,160)forC1C1WWgrid">SR-DF-0J-[120,160) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[100,105)forC1C1WWgrid">SR-DF-0J-[100,105) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[105,110)forC1C1WWgrid">SR-DF-0J-[105,110) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[110,120)forC1C1WWgrid">SR-DF-0J-[110,120) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[120,140)forC1C1WWgrid">SR-DF-0J-[120,140) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[140,160)forC1C1WWgrid">SR-DF-0J-[140,160) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[160,180)forC1C1WWgrid">SR-DF-0J-[160,180) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[180,220)forC1C1WWgrid">SR-DF-0J-[180,220) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[220,260)forC1C1WWgrid">SR-DF-0J-[220,260) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[260,inf)forC1C1WWgrid">SR-DF-0J-[260,inf) </a><br/> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[100,inf)forC1C1WWgrid">SR-DF-1J-[100,inf) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[160,inf)forC1C1WWgrid">SR-DF-1J-[160,inf) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[100,120)forC1C1WWgrid">SR-DF-1J-[100,120) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[120,160)forC1C1WWgrid">SR-DF-1J-[120,160) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[100,105)forC1C1WWgrid">SR-DF-1J-[100,105) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[105,110)forC1C1WWgrid">SR-DF-1J-[105,110) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[110,120)forC1C1WWgrid">SR-DF-1J-[110,120) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[120,140)forC1C1WWgrid">SR-DF-1J-[120,140) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[140,160)forC1C1WWgrid">SR-DF-1J-[140,160) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[160,180)forC1C1WWgrid">SR-DF-1J-[160,180) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[180,220)forC1C1WWgrid">SR-DF-1J-[180,220) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[220,260)forC1C1WWgrid">SR-DF-1J-[220,260) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[260,inf)forC1C1WWgrid">SR-DF-1J-[260,inf) </a><br/> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[100,inf)forC1C1WWgrid">SR-SF-0J-[100,inf) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[160,inf)forC1C1WWgrid">SR-SF-0J-[160,inf) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[100,120)forC1C1WWgrid">SR-SF-0J-[100,120) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[120,160)forC1C1WWgrid">SR-SF-0J-[120,160) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[100,105)forC1C1WWgrid">SR-SF-0J-[100,105) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[105,110)forC1C1WWgrid">SR-SF-0J-[105,110) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[110,120)forC1C1WWgrid">SR-SF-0J-[110,120) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[120,140)forC1C1WWgrid">SR-SF-0J-[120,140) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[140,160)forC1C1WWgrid">SR-SF-0J-[140,160) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[160,180)forC1C1WWgrid">SR-SF-0J-[160,180) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[180,220)forC1C1WWgrid">SR-SF-0J-[180,220) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[220,260)forC1C1WWgrid">SR-SF-0J-[220,260) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[260,inf)forC1C1WWgrid">SR-SF-0J-[260,inf) </a><br/> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[100,inf)forC1C1WWgrid">SR-SF-1J-[100,inf) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[160,inf)forC1C1WWgrid">SR-SF-1J-[160,inf) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[100,120)forC1C1WWgrid">SR-SF-1J-[100,120) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[120,160)forC1C1WWgrid">SR-SF-1J-[120,160) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[100,105)forC1C1WWgrid">SR-SF-1J-[100,105) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[105,110)forC1C1WWgrid">SR-SF-1J-[105,110) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[110,120)forC1C1WWgrid">SR-SF-1J-[110,120) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[120,140)forC1C1WWgrid">SR-SF-1J-[120,140) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[140,160)forC1C1WWgrid">SR-SF-1J-[140,160) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[160,180)forC1C1WWgrid">SR-SF-1J-[160,180) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[180,220)forC1C1WWgrid">SR-SF-1J-[180,220) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[220,260)forC1C1WWgrid">SR-SF-1J-[220,260) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[260,inf)forC1C1WWgrid">SR-SF-1J-[260,inf) </a><br/> <li> <b>Efficiency</b> <br/> <a href="89413?version=1&table=EfficiencySR-DF-0J-[100,inf)forC1C1WWgrid">SR-DF-0J-[100,inf) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[160,inf)forC1C1WWgrid">SR-DF-0J-[160,inf) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[100,120)forC1C1WWgrid">SR-DF-0J-[100,120) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[120,160)forC1C1WWgrid">SR-DF-0J-[120,160) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[100,105)forC1C1WWgrid">SR-DF-0J-[100,105) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[105,110)forC1C1WWgrid">SR-DF-0J-[105,110) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[110,120)forC1C1WWgrid">SR-DF-0J-[110,120) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[120,140)forC1C1WWgrid">SR-DF-0J-[120,140) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[140,160)forC1C1WWgrid">SR-DF-0J-[140,160) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[160,180)forC1C1WWgrid">SR-DF-0J-[160,180) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[180,220)forC1C1WWgrid">SR-DF-0J-[180,220) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[220,260)forC1C1WWgrid">SR-DF-0J-[220,260) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[260,inf)forC1C1WWgrid">SR-DF-0J-[260,inf) </a><br/> <a href="89413?version=1&table=EfficiencySR-DF-1J-[100,inf)forC1C1WWgrid">SR-DF-1J-[100,inf) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[160,inf)forC1C1WWgrid">SR-DF-1J-[160,inf) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[100,120)forC1C1WWgrid">SR-DF-1J-[100,120) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[120,160)forC1C1WWgrid">SR-DF-1J-[120,160) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[100,105)forC1C1WWgrid">SR-DF-1J-[100,105) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[105,110)forC1C1WWgrid">SR-DF-1J-[105,110) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[110,120)forC1C1WWgrid">SR-DF-1J-[110,120) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[120,140)forC1C1WWgrid">SR-DF-1J-[120,140) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[140,160)forC1C1WWgrid">SR-DF-1J-[140,160) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[160,180)forC1C1WWgrid">SR-DF-1J-[160,180) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[180,220)forC1C1WWgrid">SR-DF-1J-[180,220) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[220,260)forC1C1WWgrid">SR-DF-1J-[220,260) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[260,inf)forC1C1WWgrid">SR-DF-1J-[260,inf) </a><br/> <a href="89413?version=1&table=EfficiencySR-SF-0J-[100,inf)forC1C1WWgrid">SR-SF-0J-[100,inf) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[160,inf)forC1C1WWgrid">SR-SF-0J-[160,inf) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[100,120)forC1C1WWgrid">SR-SF-0J-[100,120) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[120,160)forC1C1WWgrid">SR-SF-0J-[120,160) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[100,105)forC1C1WWgrid">SR-SF-0J-[100,105) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[105,110)forC1C1WWgrid">SR-SF-0J-[105,110) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[110,120)forC1C1WWgrid">SR-SF-0J-[110,120) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[120,140)forC1C1WWgrid">SR-SF-0J-[120,140) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[140,160)forC1C1WWgrid">SR-SF-0J-[140,160) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[160,180)forC1C1WWgrid">SR-SF-0J-[160,180) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[180,220)forC1C1WWgrid">SR-SF-0J-[180,220) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[220,260)forC1C1WWgrid">SR-SF-0J-[220,260) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[260,inf)forC1C1WWgrid">SR-SF-0J-[260,inf) </a><br/> <a href="89413?version=1&table=EfficiencySR-SF-1J-[100,inf)forC1C1WWgrid">SR-SF-1J-[100,inf) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[160,inf)forC1C1WWgrid">SR-SF-1J-[160,inf) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[100,120)forC1C1WWgrid">SR-SF-1J-[100,120) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[120,160)forC1C1WWgrid">SR-SF-1J-[120,160) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[100,105)forC1C1WWgrid">SR-SF-1J-[100,105) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[105,110)forC1C1WWgrid">SR-SF-1J-[105,110) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[110,120)forC1C1WWgrid">SR-SF-1J-[110,120) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[120,140)forC1C1WWgrid">SR-SF-1J-[120,140) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[140,160)forC1C1WWgrid">SR-SF-1J-[140,160) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[160,180)forC1C1WWgrid">SR-SF-1J-[160,180) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[180,220)forC1C1WWgrid">SR-SF-1J-[180,220) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[220,260)forC1C1WWgrid">SR-SF-1J-[220,260) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[260,inf)forC1C1WWgrid">SR-SF-1J-[260,inf) </a><br/> </ul> <b>Cutflow:</b> <ul> <li><a href="89413?version=1&table=Cutflow1">Cutflow for direct chargino-pair production via W decay $m(\tilde{\chi}^{\pm}_1,\tilde{\chi}^{0}_1)=(300,50) GeV$</a> <li><a href="89413?version=1&table=Cutflow1">Cutflow for direct chargino-pair production via slepton decay $m(\tilde{\chi}^{\pm}_1,\tilde{l},\tilde{\chi}^{0}_1)=(600,300,1) GeV$</a> <li><a href="89413?version=1&table=Cutflow1">Cutflow for direct slepton-pair production $m(\tilde{l},\tilde{\chi}^{0}_1)=(400,200) GeV$</a> </ul> <b>SimpleAnalysis framework implementation</b> of the search SRs is available under "Resources" (purple button on the left)

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Background Fit results:</b> <ul> <li><a href="89413?version=3&table=Background fit 1">CRs</a> <li><a href="89413?version=3&table=Background fit 2">VRs</a> <li><a href="89413?version=3&table=Background fit 5">inclusive DF-0J SRs</a> <li><a href="89413?version=3&table=Background fit 6">inclusive DF-1J SRs</a> <li><a href="89413?version=3&table=Background fit 3">inclusive SF-0J SRs</a> <li><a href="89413?version=3&table=Background fit 4">inclusive SF-1J SRs</a> </ul> <b>Kinematic distributions in VRs:</b> <ul> <li><a href="89413?version=3&table=VR kinematics 1">$m_{T2}$ in VR-top-low</a> <li><a href="89413?version=3&table=VR kinematics 2">$m_{T2}$ in VR-top-high</a> <li><a href="89413?version=3&table=VR kinematics 3">$E_T^{miss}$ in VR-WW-0J</a> <li><a href="89413?version=3&table=VR kinematics 4">$E_T^{miss}$ in VR-WW-1J</a> <li><a href="89413?version=3&table=VR kinematics 5">$E_T^{miss}$ sig in VR-VZ</a> <li><a href="89413?version=3&table=VR kinematics 6">$E_T^{miss}$ sig in VR-top-WW</a> </ul> <b>Kinematic distributions in SRs:</b> <ul> <li><a href="89413?version=3&table=SR kinematics 1">$m_{T2}$ in SR-SF-0J</a> <li><a href="89413?version=3&table=SR kinematics 2">$m_{T2}$ in SR-SF-1J</a> <li><a href="89413?version=3&table=SR kinematics 3">$m_{T2}$ in SR-DF-0J</a> <li><a href="89413?version=3&table=SR kinematics 4">$m_{T2}$ in SR-DF-1J</a> </ul> <b>Systematic uncertaities:</b> <ul> <li><a href="89413?version=3&table=Systematic uncertainties">dominant systematic uncertainties in the inclusive SRs</a> </ul> <b>Exclusion contours:</b> <ul> <li><a href="89413?version=3&table=Exclusion contour (exp) 1">expected exclusion contour direct chargino-pair production via W decay grid</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 1">observed exclusion contour direct chargino-pair production via W decay grid</a> <li><a href="89413?version=3&table=Exclusion contour (exp) 2">expected exclusion contour direct chargino-pair production via slepton decay grid</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 2">observed exclusion contour direct chargino-pair production via slepton decay grid</a> <li><a href="89413?version=3&table=Exclusion contour (exp) 3">expected exclusion contour direct slepton-pair production grid</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 3">observed exclusion contour direct slepton-pair production grid</a> </ul> <br/><br/><b>AUXILIARY MATERIAL</b><br/> <b>Background Fit in binned SRs:</b> <ul> <li><a href="89413?version=3&table=Background fit 7">binned DF-0J SRs</a> <li><a href="89413?version=3&table=Background fit 8">binned DF-1J SRs</a> <li><a href="89413?version=3&table=Background fit 9">binned SF-0J SRs</a> <li><a href="89413?version=3&table=Background fit 10">binned SF-1J SRs</a> </ul> <b>Exclusion contours:</b> <ul> <li><a href="89413?version=3&table=Exclusion contour (exp) 4">expected exclusion contour left-handed slepton-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 4">observed exclusion contour left-handed slepton-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (exp) 5">expected exclusion contour right-handed slepton-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 5">observed exclusion contour right-handed slepton-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (exp) 6">expected exclusion contour selectron-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 6">observed exclusion contour selectron-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (exp) 7">expected exclusion contour left-handed selectron-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 7">observed exclusion contour left-handed selectron-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (exp) 8">expected exclusion contour right-handed selectron-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 8">observed exclusion contour right-handed selectron-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (exp) 9">expected exclusion contour smuon-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 9">observed exclusion contour smuon-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (exp) 10">expected exclusion contour left-handed smuon-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 10">observed exclusion contour left-handed smuon-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (exp) 11">expected exclusion contour right-handed smuon-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 11">observed exclusion contour right-handed smuon-pair production</a> </ul> <b>Cross section upper limits:</b> <ul> <li><a href="89413?version=3&table=xsec upper limits 1">upper limits on signal cross section for direct chargino-pair production via W decay</a> <li><a href="89413?version=3&table=xsec upper limits 2">upper limits on signal cross section for direct chargino-pair production via slepton decay</a> <li><a href="89413?version=3&table=xsec upper limits 3">upper limits on signal cross section for direct slepton-pair production</a> </ul> <b>Acceptances and Efficiencies for direct chargino-pair production via W decay grid </b> <ul> <li> <b>Acceptance</b> <br/> <a href="89413?version=3&table=Acceptance SR-DF-0J-[100,inf) for C1C1WW grid">SR-DF-0J-[100,inf) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[160,inf) for C1C1WW grid">SR-DF-0J-[160,inf) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[100,120) for C1C1WW grid">SR-DF-0J-[100,120) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[120,160) for C1C1WW grid">SR-DF-0J-[120,160) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[100,105) for C1C1WW grid">SR-DF-0J-[100,105) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[105,110) for C1C1WW grid">SR-DF-0J-[105,110) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[110,120) for C1C1WW grid">SR-DF-0J-[110,120) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[120,140) for C1C1WW grid">SR-DF-0J-[120,140) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[140,160) for C1C1WW grid">SR-DF-0J-[140,160) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[160,180) for C1C1WW grid">SR-DF-0J-[160,180) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[180,220) for C1C1WW grid">SR-DF-0J-[180,220) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[220,260) for C1C1WW grid">SR-DF-0J-[220,260) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[260,inf) for C1C1WW grid">SR-DF-0J-[260,inf) </a><br/> <a href="89413?version=3&table=Acceptance SR-DF-1J-[100,inf) for C1C1WW grid">SR-DF-1J-[100,inf) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[160,inf) for C1C1WW grid">SR-DF-1J-[160,inf) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[100,120) for C1C1WW grid">SR-DF-1J-[100,120) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[120,160) for C1C1WW grid">SR-DF-1J-[120,160) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[100,105) for C1C1WW grid">SR-DF-1J-[100,105) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[105,110) for C1C1WW grid">SR-DF-1J-[105,110) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[110,120) for C1C1WW grid">SR-DF-1J-[110,120) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[120,140) for C1C1WW grid">SR-DF-1J-[120,140) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[140,160) for C1C1WW grid">SR-DF-1J-[140,160) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[160,180) for C1C1WW grid">SR-DF-1J-[160,180) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[180,220) for C1C1WW grid">SR-DF-1J-[180,220) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[220,260) for C1C1WW grid">SR-DF-1J-[220,260) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[260,inf) for C1C1WW grid">SR-DF-1J-[260,inf) </a><br/> <a href="89413?version=3&table=Acceptance SR-SF-0J-[100,inf) for C1C1WW grid">SR-SF-0J-[100,inf) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[160,inf) for C1C1WW grid">SR-SF-0J-[160,inf) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[100,120) for C1C1WW grid">SR-SF-0J-[100,120) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[120,160) for C1C1WW grid">SR-SF-0J-[120,160) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[100,105) for C1C1WW grid">SR-SF-0J-[100,105) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[105,110) for C1C1WW grid">SR-SF-0J-[105,110) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[110,120) for C1C1WW grid">SR-SF-0J-[110,120) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[120,140) for C1C1WW grid">SR-SF-0J-[120,140) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[140,160) for C1C1WW grid">SR-SF-0J-[140,160) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[160,180) for C1C1WW grid">SR-SF-0J-[160,180) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[180,220) for C1C1WW grid">SR-SF-0J-[180,220) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[220,260) for C1C1WW grid">SR-SF-0J-[220,260) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[260,inf) for C1C1WW grid">SR-SF-0J-[260,inf) </a><br/> <a href="89413?version=3&table=Acceptance SR-SF-1J-[100,inf) for C1C1WW grid">SR-SF-1J-[100,inf) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[160,inf) for C1C1WW grid">SR-SF-1J-[160,inf) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[100,120) for C1C1WW grid">SR-SF-1J-[100,120) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[120,160) for C1C1WW grid">SR-SF-1J-[120,160) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[100,105) for C1C1WW grid">SR-SF-1J-[100,105) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[105,110) for C1C1WW grid">SR-SF-1J-[105,110) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[110,120) for C1C1WW grid">SR-SF-1J-[110,120) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[120,140) for C1C1WW grid">SR-SF-1J-[120,140) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[140,160) for C1C1WW grid">SR-SF-1J-[140,160) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[160,180) for C1C1WW grid">SR-SF-1J-[160,180) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[180,220) for C1C1WW grid">SR-SF-1J-[180,220) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[220,260) for C1C1WW grid">SR-SF-1J-[220,260) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[260,inf) for C1C1WW grid">SR-SF-1J-[260,inf) </a><br/> <li> <b>Efficiency</b> <br/> <a href="89413?version=3&table=Efficiency SR-DF-0J-[100,inf) for C1C1WW grid">SR-DF-0J-[100,inf) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[160,inf) for C1C1WW grid">SR-DF-0J-[160,inf) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[100,120) for C1C1WW grid">SR-DF-0J-[100,120) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[120,160) for C1C1WW grid">SR-DF-0J-[120,160) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[100,105) for C1C1WW grid">SR-DF-0J-[100,105) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[105,110) for C1C1WW grid">SR-DF-0J-[105,110) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[110,120) for C1C1WW grid">SR-DF-0J-[110,120) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[120,140) for C1C1WW grid">SR-DF-0J-[120,140) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[140,160) for C1C1WW grid">SR-DF-0J-[140,160) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[160,180) for C1C1WW grid">SR-DF-0J-[160,180) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[180,220) for C1C1WW grid">SR-DF-0J-[180,220) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[220,260) for C1C1WW grid">SR-DF-0J-[220,260) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[260,inf) for C1C1WW grid">SR-DF-0J-[260,inf) </a><br/> <a href="89413?version=3&table=Efficiency SR-DF-1J-[100,inf) for C1C1WW grid">SR-DF-1J-[100,inf) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[160,inf) for C1C1WW grid">SR-DF-1J-[160,inf) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[100,120) for C1C1WW grid">SR-DF-1J-[100,120) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[120,160) for C1C1WW grid">SR-DF-1J-[120,160) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[100,105) for C1C1WW grid">SR-DF-1J-[100,105) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[105,110) for C1C1WW grid">SR-DF-1J-[105,110) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[110,120) for C1C1WW grid">SR-DF-1J-[110,120) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[120,140) for C1C1WW grid">SR-DF-1J-[120,140) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[140,160) for C1C1WW grid">SR-DF-1J-[140,160) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[160,180) for C1C1WW grid">SR-DF-1J-[160,180) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[180,220) for C1C1WW grid">SR-DF-1J-[180,220) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[220,260) for C1C1WW grid">SR-DF-1J-[220,260) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[260,inf) for C1C1WW grid">SR-DF-1J-[260,inf) </a><br/> <a href="89413?version=3&table=Efficiency SR-SF-0J-[100,inf) for C1C1WW grid">SR-SF-0J-[100,inf) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[160,inf) for C1C1WW grid">SR-SF-0J-[160,inf) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[100,120) for C1C1WW grid">SR-SF-0J-[100,120) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[120,160) for C1C1WW grid">SR-SF-0J-[120,160) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[100,105) for C1C1WW grid">SR-SF-0J-[100,105) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[105,110) for C1C1WW grid">SR-SF-0J-[105,110) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[110,120) for C1C1WW grid">SR-SF-0J-[110,120) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[120,140) for C1C1WW grid">SR-SF-0J-[120,140) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[140,160) for C1C1WW grid">SR-SF-0J-[140,160) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[160,180) for C1C1WW grid">SR-SF-0J-[160,180) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[180,220) for C1C1WW grid">SR-SF-0J-[180,220) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[220,260) for C1C1WW grid">SR-SF-0J-[220,260) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[260,inf) for C1C1WW grid">SR-SF-0J-[260,inf) </a><br/> <a href="89413?version=3&table=Efficiency SR-SF-1J-[100,inf) for C1C1WW grid">SR-SF-1J-[100,inf) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[160,inf) for C1C1WW grid">SR-SF-1J-[160,inf) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[100,120) for C1C1WW grid">SR-SF-1J-[100,120) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[120,160) for C1C1WW grid">SR-SF-1J-[120,160) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[100,105) for C1C1WW grid">SR-SF-1J-[100,105) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[105,110) for C1C1WW grid">SR-SF-1J-[105,110) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[110,120) for C1C1WW grid">SR-SF-1J-[110,120) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[120,140) for C1C1WW grid">SR-SF-1J-[120,140) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[140,160) for C1C1WW grid">SR-SF-1J-[140,160) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[160,180) for C1C1WW grid">SR-SF-1J-[160,180) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[180,220) for C1C1WW grid">SR-SF-1J-[180,220) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[220,260) for C1C1WW grid">SR-SF-1J-[220,260) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[260,inf) for C1C1WW grid">SR-SF-1J-[260,inf) </a><br/> </ul> <b>Cutflow:</b> <ul> <li><a href="89413?version=3&table=Cutflow 1">Cutflow for direct chargino-pair production via W decay $m(\tilde{\chi}^{\pm}_1,\tilde{\chi}^{0}_1)=(300,50) GeV$</a> <li><a href="89413?version=3&table=Cutflow 2">Cutflow for direct chargino-pair production via slepton decay $m(\tilde{\chi}^{\pm}_1,\tilde{l},\tilde{\chi}^{0}_1)=(600,300,1) GeV$</a> <li><a href="89413?version=3&table=Cutflow 3">Cutflow for direct slepton-pair production $m(\tilde{l},\tilde{\chi}^{0}_1)=(400,200) GeV$</a> </ul> <b>SimpleAnalysis framework implementation</b> of the search SRs is available under "Resources" (purple button on the left)

More…

Search for light long-lived neutral particles produced in $pp$ collisions at $\sqrt{s} =$ 13 TeV and decaying into collimated leptons or light hadrons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 450, 2020.
Inspire Record 1752519 DOI 10.17182/hepdata.91132

Several models of physics beyond the Standard Model predict the existence of dark photons, light neutral particles decaying into collimated leptons or light hadrons. This paper presents a search for long-lived dark photons produced from the decay of a Higgs boson or a heavy scalar boson and decaying into displaced collimated Standard Model fermions. The search uses data corresponding to an integrated luminosity of 36.1 fb$^{-1}$ collected in proton-proton collisions at $\sqrt{s} =$ 13 TeV recorded in 2015-2016 with the ATLAS detector at the Large Hadron Collider. The observed number of events is consistent with the expected background, and limits on the production cross section times branching fraction as a function of the proper decay length of the dark photon are reported. A cross section times branching fraction above 4 pb is excluded for a Higgs boson decaying into two dark photons for dark-photon decay lengths between 1.5 mm and 307 mm.

19 data tables

Upper limits at 95% CL on the cross section times branching fraction for the process $H \to 2\gamma_d + X$ with $m_H$ = 125 GeV in the muon-muon final state.

Upper limits at 95% CL on the cross section times branching fraction for the process $H \to 4\gamma_d + X$ with $m_H$ = 125 GeV in the muon-muon final state.

Upper limits at 95% CL on the cross section times branching fraction for the process $H \to 2\gamma_d + X$ with $m_H$ = 800 GeV in the muon-muon final state.

More…

Version 3
Search for high-mass dilepton resonances using 139 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s}=$13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 796 (2019) 68-87, 2019.
Inspire Record 1725190 DOI 10.17182/hepdata.88425

A search for high-mass dielectron and dimuon resonances in the mass range of 250 GeV to 6 TeV is presented. The data were recorded by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=$13 TeV during Run 2 of the Large Hadron Collider and correspond to an integrated luminosity of 139 fb$^{-1}$. A functional form is fitted to the dilepton invariant-mass distribution to model the contribution from background processes, and a generic signal shape is used to determine the significance of observed deviations from this background estimate. No significant deviation is observed and upper limits are placed at the 95% confidence level on the fiducial cross-section times branching ratio for various resonance width hypotheses. The derived limits are shown to be applicable to spin-0, spin-1 and spin-2 signal hypotheses. For a set of benchmark models, the limits are converted into lower limits on the resonance mass and reach 4.5 TeV for the E6-motivated $Z^\prime_\psi$ boson. Also presented are limits on Heavy Vector Triplet model couplings.

72 data tables

Distribution of the dielectron invariant mass for events passing the full selection.

Distribution of the dielectron invariant mass for events passing the full selection.

Distribution of the dielectron invariant mass for events passing the full selection.

More…

Evidence for the production of three massive vectorbosons in $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
PoS DIS2019 (2019) 135, 2019.
Inspire Record 1726499 DOI 10.17182/hepdata.89323

A search for the production of three massive vector bosons in proton--proton collisions is performed using data at $\sqrt{s}=13\,TeV$ recorded with the ATLAS detector at the Large Hadron Collider in the years 2015--2017, corresponding to an integrated luminosity of $79.8\,\text{fb}^{-1}$. Events with two same-sign leptons $\ell$ (electrons or muons) and at least two reconstructed jets are selected to search for $WWW\to\ell\nu\ell\nu qq$. Events with three leptons without any same-flavour opposite-sign lepton pairs are used to search for $WWW\to\ell\nu\ell\nu\ell\nu$, while events with three leptons and at least one same-flavour opposite-sign lepton pair and one or more reconstructed jets are used to search for $WWZ\to\ell\nu qq \ell\ell$. Finally, events with four leptons are analysed to search for $WWZ\to\ell\nu\ell\nu\ell\ell$ and $WZZ\to qq \ell\ell\ell\ell$. Evidence for the joint production of three massive vector bosons is observed with a significance of 4.0 standard deviations, where the expectation is 3.1 standard deviations.

2 data tables

Measurement of the $WWW$ cross section.

Measurement of the $WWZ$ cross section.


Searches for lepton-flavour-violating decays of the Higgs boson in $\sqrt{s}=13$ TeV pp collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 800 (2020) 135069, 2020.
Inspire Record 1743838 DOI 10.17182/hepdata.96299

This Letter presents direct searches for lepton flavour violation in Higgs boson decays, $H\rightarrow e\tau$ and $H\rightarrow\mu\tau$, performed with the ATLAS detector at the LHC. The searches are based on a data sample of proton-proton collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of $36.1\,\mathrm{fb}^{-1}$. No significant excess is observed above the expected background from Standard Model processes. The observed (median expected) 95 % confidence-level upper limits on the lepton-flavour-violating branching ratios are $0.47\%$ ($0.34^{+0.13}_{-0.10}\,\%$) and $0.28\%$ ($0.37^{+0.14}_{-0.10}\,\%$) for $H\to e\tau$ and $H\to\mu\tau$, respectively.

2 data tables

95% CL upper limits on the branching ratio H --> e tau.

95% CL upper limits on the branching ratio H --> mu tau.


Version 2
Properties of jet fragmentation using charged particles measured with the ATLAS detector in $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 100 (2019) 052011, 2019.
Inspire Record 1740909 DOI 10.17182/hepdata.89321

This paper presents a measurement of quantities related to the formation of jets from high-energy quarks and gluons (fragmentation). Jets with transverse momentum 100 GeV $<p_T<$ 2.5 TeV and pseudorapidity $|\eta| < 2.1$ from an integrated luminosity of 33 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collisions are reconstructed with the ATLAS detector at the Large Hadron Collider. Charged-particle tracks with $p_T > 500$ MeV and $|\eta| < 2.5$ are used to probe the detailed structure of the jet. The fragmentation properties of the more forward and the more central of the two leading jets from each event are studied. The data are unfolded to correct for detector resolution and acceptance effects. Comparisons with parton shower Monte Carlo generators indicate that existing models provide a reasonable description of the data across a wide range of phase space, but there are also significant differences. Furthermore, the data are interpreted in the context of quark- and gluon-initiated jets by exploiting the rapidity dependence of the jet flavor fraction. A first measurement of the charged-particle multiplicity using model-independent jet labels (topic modeling) provides a promising alternative to traditional quark and gluon extractions using input from simulation. The simulations provide a reasonable description of the quark-like data across the jet $p_T$ range presented in this measurement, but the gluon-like data have systematically fewer charged particles than the simulations.

368 data tables

$\langle n_{ch} \rangle$, forward jet.

$\langle n_{ch} \rangle$, forward jet.

$\langle n_{ch} \rangle$, central jet.

More…

Two-particle Bose-Einstein correlations in pp collisions at ${\sqrt{s} = 13}$ TeV measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 82 (2022) 608, 2022.
Inspire Record 2027827 DOI 10.17182/hepdata.132012

This paper presents studies of Bose-Einstein correlations (BEC) in proton-proton collisions at a centre-of-mass energy of 13 TeV, using data from the ATLAS detector at the CERN Large Hadron Collider. Data were collected in a special low-luminosity configuration with a minimum-bias trigger and a high-multiplicity track trigger, accumulating integrated luminosities of 151 $\mu$b$^{-1}$ and 8.4 nb$^{-1}$ respectively. The BEC are measured for pairs of like-sign charged particles, each with $|\eta|$ < 2.5, for two kinematic ranges: the first with particle $p_T$ > 100 MeV and the second with particle $p_T$ > 500 MeV. The BEC parameters, characterizing the source radius and particle correlation strength, are investigated as functions of charged-particle multiplicity (up to 300) and average transverse momentum of the pair (up to 1.5 GeV). The double-differential dependence on charged-particle multiplicity and average transverse momentum of the pair is also studied. The BEC radius is found to be independent of the charged-particle multiplicity for high charged-particle multiplicity (above 100), confirming a previous observation at lower energy. This saturation occurs independent of the transverse momentum of the pair.

154 data tables

Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the opposite hemisphere (OHP) like-charge particles pairs reference sample for k<sub>T</sub> - interval 1000 &lt; k<sub>T</sub> &le; 1500&nbsp;MeV.

Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - interval 1000 &lt; k<sub>T</sub> &le; 1500&nbsp;MeV.

The Bose-Einstein correlation (BEC) parameter R as a function of n<sub>ch</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.

More…

Search for flavour-changing neutral currents in processes with one top quark and a photon using 81 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 800 (2020) 135082, 2020.
Inspire Record 1750600 DOI 10.17182/hepdata.91241

A search for flavour-changing neutral current (FCNC) events via the coupling of a top quark, a photon, and an up or charm quark is presented using 81 fb$^{-1}$ of proton-proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Events with a photon, an electron or muon, a $b$-tagged jet, and missing transverse momentum are selected. A neural network based on kinematic variables differentiates between events from signal and background processes. The data are consistent with the background-only hypothesis, and limits are set on the strength of the $tq\gamma$ coupling in an effective field theory. These are also interpreted as 95% CL upper limits on the cross section for FCNC $t\gamma$ production via a left-handed (right-handed) $tu\gamma$ coupling of 36 fb (78 fb) and on the branching ratio for $t\rightarrow \gamma u$ of $2.8\times 10^{-5}$ ($6.1\times 10^{-5}$). In addition, they are interpreted as 95% CL upper limits on the cross section for FCNC $t\gamma$ production via a left-handed (right-handed) $tc\gamma$ coupling of 40 fb (33 fb) and on the branching ratio for $t\rightarrow \gamma c$ of $22\times 10^{-5}$ ($18\times 10^{-5}$).

5 data tables

Post-fit distributions of a background-only fit to the signal region (SR) and the control regions (CRs) of the NN output in the SR. In addition, the expected signal is overlaid for an effective coupling strength corresponding to the observed limit multiplied by a factor of ten.

Observed (expected) 95 % CL limits on the effective coupling strengths for different vertices and couplings, the production cross section, and the branching ratio. For the former, the energy scale is assumed to be $\Lambda$ = 1 TeV.

Post-fit distributions of a background-only fit to the SR and the CRs of the NN output in the SR for the $tu\gamma$ right-handed coupling. In addition, the expected signal is overlaid for an effective coupling strength corresponding to the observed limit multiplied by a factor of ten.

More…

Search for direct production of electroweakinos in final states with missing transverse momentum and a Higgs boson decaying into photons in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 10 (2020) 005, 2020.
Inspire Record 1792399 DOI 10.17182/hepdata.90017

A search for a chargino$-$neutralino pair decaying via the 125 GeV Higgs boson into photons is presented. The study is based on the data collected between 2015 and 2018 with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 139 fb$^{-1}$ of $pp$ collisions at a centre-of-mass energy of 13 TeV. No significant excess over the expected background is observed. Upper limits at 95% confidence level for a massless $\tilde{\chi}^{0}_{1}$ are set on several electroweakino production cross-sections and the visible cross-section for beyond the Standard Model processes. In the context of simplified supersymmetric models, 95% confidence-level limits of up to 310 GeV in $m(\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2})$, where $m(\tilde{\chi}^{0}_{1})=0.5$ GeV, are set. Limits at 95% confidence level are also set on the $\tilde{\chi}^{\pm}_{1}\tilde{\chi}^{0}_{2}$ cross-section in the mass plane of $m(\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2})$ and $m(\tilde{\chi}^{0}_{1})$, and on scenarios with gravitino as the lightest supersymmetric particle. Upper limits at the 95% confidence-level are set on the higgsino production cross-section. Higgsino masses below 380 GeV are excluded for the case of the higgsino fully decaying into a Higgs boson and a gravitino.

25 data tables

The 95% CL model-independent upper limits computed from individual fits in each of 12 categories on the visible cross-section $\sigma_{\mathrm{vis}}^{\mathrm{BSM}} = \sigma \times A \times \epsilon$ for any $pp\to h(125~GeV) + E^{miss}_{T} \to \gamma\gamma + E^{miss}_{T}$ BSM processes.

Expected and observed 95% CL exclusion upper limits on the production cross-section of $\tilde{\chi}^{\pm}_{1}\tilde{\chi}^{0}_{2} \to W^{\pm}\tilde{\chi}^{0}_{1} h \tilde{\chi}^{0}_{1}$ as a function of $m(\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2})$.

The observed exclusion limit contours at 95% CL for the $\tilde{\chi}^{\pm}_{1}\tilde{\chi}^{0}_{2}$ production in the $m(\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2})$-$m(\tilde{\chi}^{0}_{1})$ plane.

More…

Measurements of top-quark pair differential and double-differential cross-sections in the $\ell$+jets channel with $pp$ collisions at $\sqrt{s}=13$ TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 1028, 2019.
Inspire Record 1750330 DOI 10.17182/hepdata.95758

Single- and double-differential cross-section measurements are presented for the production of top-quark pairs, in the lepton + jets channel at particle and parton level. Two topologies, resolved and boosted, are considered and the results are presented as a function of several kinematic variables characterising the top and $t\bar{t}$ system and jet multiplicities. The study was performed using data from $pp$ collisions at centre-of-mass energy of 13 TeV collected in 2015 and 2016 by the ATLAS detector at the CERN Large Hadron Collider (LHC), corresponding to an integrated luminosity of $36~\mathrm{fb}^{-1}$. Due to the large $t\bar{t}$ cross-section at the LHC, such measurements allow a detailed study of the properties of top-quark production and decay, enabling precision tests of several Monte Carlo generators and fixed-order Standard Model predictions. Overall, there is good agreement between the theoretical predictions and the data.

1129 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Fiducial phase space definitions:</b><br/> <i>Resolved:</i> <ul> <li> NLEP = 1, either E or MU, PT &gt; 27 GeV, ABS ETA &lt; 2.5 <li> NJETS &gt;= 4, PT &gt; 25 GeV, ABS ETA &lt; 2.5 <li> NBJETS &gt;= 2 </ul><br/> <i>Boosted:</i> <ul> <li> NLEP = 1, either E or MU, PT &gt; 27 GeV, ABS ETA &lt; 2.5 <li> NJETS &gt;= 1, R = 0.4, PT &gt; 25 GeV, ABS ETA &lt; 2.5 <li> NBJETS &gt;= 1 <li> NJETS &gt;= 1, R=1, PT &gt; 350 GeV, ABS ETA &lt; 2.0, top-tagged </ul><br/> <b>Particle level:</b><br/> <i>Resolved:</i><br/> <u>1D:</u><br/> Spectra: <ul> <li>1/SIG*DSIG/DPT_THAD (<a href="95758?version=1&table=Table 1">Table 1</a> ) <li>DSIG/DPT_THAD (<a href="95758?version=1&table=Table 3">Table 3</a> ) <li>1/SIG*DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 5">Table 5</a> ) <li>DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 7">Table 7</a> ) <li>1/SIG*DSIG/DPT_T1 (<a href="95758?version=1&table=Table 9">Table 9</a> ) <li>DSIG/DPT_T1 (<a href="95758?version=1&table=Table 11">Table 11</a> ) <li>1/SIG*DSIG/DPT_T2 (<a href="95758?version=1&table=Table 13">Table 13</a> ) <li>DSIG/DPT_T2 (<a href="95758?version=1&table=Table 15">Table 15</a> ) <li>1/SIG*DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 17">Table 17</a> ) <li>DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 19">Table 19</a> ) <li>1/SIG*DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 21">Table 21</a> ) <li>DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 23">Table 23</a> ) <li>1/SIG*DSIG/DABS_POUT_THAD (<a href="95758?version=1&table=Table 25">Table 25</a> ) <li>DSIG/DABS_POUT_THAD (<a href="95758?version=1&table=Table 27">Table 27</a> ) <li>1/SIG*DSIG/DDPHI_TTBAR (<a href="95758?version=1&table=Table 29">Table 29</a> ) <li>DSIG/DDPHI_TTBAR (<a href="95758?version=1&table=Table 31">Table 31</a> ) <li>1/SIG*DSIG/DHT_TTBAR (<a href="95758?version=1&table=Table 33">Table 33</a> ) <li>DSIG/DHT_TTBAR (<a href="95758?version=1&table=Table 35">Table 35</a> ) <li>1/SIG*DSIG/DN_EXTRAJETS (<a href="95758?version=1&table=Table 37">Table 37</a> ) <li>DSIG/DN_EXTRAJETS (<a href="95758?version=1&table=Table 39">Table 39</a> ) <li>1/SIG*DSIG/DABS_Y_TTBAR (<a href="95758?version=1&table=Table 41">Table 41</a> ) <li>DSIG/DABS_Y_TTBAR (<a href="95758?version=1&table=Table 43">Table 43</a> ) <li>1/SIG*DSIG/DABS_Y_BOOST (<a href="95758?version=1&table=Table 45">Table 45</a> ) <li>DSIG/DABS_Y_BOOST (<a href="95758?version=1&table=Table 47">Table 47</a> ) <li>1/SIG*DSIG/DCHI_TT (<a href="95758?version=1&table=Table 49">Table 49</a> ) <li>DSIG/DCHI_TT (<a href="95758?version=1&table=Table 51">Table 51</a> ) <li>SIG (<a href="95758?version=1&table=Table 53">Table 53</a> ) </ul><br/> Covariances: <ul> <li>1/SIG*DSIG/DPT_THAD (<a href="95758?version=1&table=Table 2">Table 2</a> ) <li>DSIG/DPT_THAD (<a href="95758?version=1&table=Table 4">Table 4</a> ) <li>1/SIG*DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 6">Table 6</a> ) <li>DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 8">Table 8</a> ) <li>1/SIG*DSIG/DPT_T1 (<a href="95758?version=1&table=Table 10">Table 10</a> ) <li>DSIG/DPT_T1 (<a href="95758?version=1&table=Table 12">Table 12</a> ) <li>1/SIG*DSIG/DPT_T2 (<a href="95758?version=1&table=Table 14">Table 14</a> ) <li>DSIG/DPT_T2 (<a href="95758?version=1&table=Table 16">Table 16</a> ) <li>1/SIG*DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 18">Table 18</a> ) <li>DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 20">Table 20</a> ) <li>1/SIG*DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 22">Table 22</a> ) <li>DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 24">Table 24</a> ) <li>1/SIG*DSIG/DABS_POUT_THAD (<a href="95758?version=1&table=Table 26">Table 26</a> ) <li>DSIG/DABS_POUT_THAD (<a href="95758?version=1&table=Table 28">Table 28</a> ) <li>1/SIG*DSIG/DDPHI_TTBAR (<a href="95758?version=1&table=Table 30">Table 30</a> ) <li>DSIG/DDPHI_TTBAR (<a href="95758?version=1&table=Table 32">Table 32</a> ) <li>1/SIG*DSIG/DHT_TTBAR (<a href="95758?version=1&table=Table 34">Table 34</a> ) <li>DSIG/DHT_TTBAR (<a href="95758?version=1&table=Table 36">Table 36</a> ) <li>1/SIG*DSIG/DN_EXTRAJETS (<a href="95758?version=1&table=Table 38">Table 38</a> ) <li>DSIG/DN_EXTRAJETS (<a href="95758?version=1&table=Table 40">Table 40</a> ) <li>1/SIG*DSIG/DABS_Y_TTBAR (<a href="95758?version=1&table=Table 42">Table 42</a> ) <li>DSIG/DABS_Y_TTBAR (<a href="95758?version=1&table=Table 44">Table 44</a> ) <li>1/SIG*DSIG/DABS_Y_BOOST (<a href="95758?version=1&table=Table 46">Table 46</a> ) <li>DSIG/DABS_Y_BOOST (<a href="95758?version=1&table=Table 48">Table 48</a> ) <li>1/SIG*DSIG/DCHI_TT (<a href="95758?version=1&table=Table 50">Table 50</a> ) <li>DSIG/DCHI_TT (<a href="95758?version=1&table=Table 52">Table 52</a> ) </ul><br/> Inter-spectra correlations: <ul> <li>Statistical correlation between DSIG/DPT_THAD and DSIG/DPT_THAD (<a href="95758?version=1&table=Table 518">Table 518</a> ) <li>Statistical correlation between DSIG/DABS_Y_THAD and DSIG/DPT_THAD (<a href="95758?version=1&table=Table 519">Table 519</a> ) <li>Statistical correlation between DSIG/DABS_Y_THAD and DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 520">Table 520</a> ) <li>Statistical correlation between DSIG/DPT_T1 and DSIG/DPT_THAD (<a href="95758?version=1&table=Table 521">Table 521</a> ) <li>Statistical correlation between DSIG/DPT_T1 and DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 522">Table 522</a> ) <li>Statistical correlation between DSIG/DPT_T1 and DSIG/DPT_T1 (<a href="95758?version=1&table=Table 523">Table 523</a> ) <li>Statistical correlation between DSIG/DPT_T2 and DSIG/DPT_THAD (<a href="95758?version=1&table=Table 524">Table 524</a> ) <li>Statistical correlation between DSIG/DPT_T2 and DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 525">Table 525</a> ) <li>Statistical correlation between DSIG/DPT_T2 and DSIG/DPT_T1 (<a href="95758?version=1&table=Table 526">Table 526</a> ) <li>Statistical correlation between DSIG/DPT_T2 and DSIG/DPT_T2 (<a href="95758?version=1&table=Table 527">Table 527</a> ) <li>Statistical correlation between DSIG/DM_TTBAR and DSIG/DPT_THAD (<a href="95758?version=1&table=Table 528">Table 528</a> ) <li>Statistical correlation between DSIG/DM_TTBAR and DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 529">Table 529</a> ) <li>Statistical correlation between DSIG/DM_TTBAR and DSIG/DPT_T1 (<a href="95758?version=1&table=Table 530">Table 530</a> ) <li>Statistical correlation between DSIG/DM_TTBAR and DSIG/DPT_T2 (<a href="95758?version=1&table=Table 531">Table 531</a> ) <li>Statistical correlation between DSIG/DM_TTBAR and DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 532">Table 532</a> ) <li>Statistical correlation between DSIG/DPT_TTBAR and DSIG/DPT_THAD (<a href="95758?version=1&table=Table 533">Table 533</a> ) <li>Statistical correlation between DSIG/DPT_TTBAR and DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 534">Table 534</a> ) <li>Statistical correlation between DSIG/DPT_TTBAR and DSIG/DPT_T1 (<a href="95758?version=1&table=Table 535">Table 535</a> ) <li>Statistical correlation between DSIG/DPT_TTBAR and DSIG/DPT_T2 (<a href="95758?version=1&table=Table 536">Table 536</a> ) <li>Statistical correlation between DSIG/DPT_TTBAR and DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 537">Table 537</a> ) <li>Statistical correlation between DSIG/DPT_TTBAR and DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 538">Table 538</a> ) <li>Statistical correlation between DSIG/DABS_POUT_THAD and DSIG/DPT_THAD (<a href="95758?version=1&table=Table 539">Table 539</a> ) <li>Statistical correlation between DSIG/DABS_POUT_THAD and DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 540">Table 540</a> ) <li>Statistical correlation between DSIG/DABS_POUT_THAD and DSIG/DPT_T1 (<a href="95758?version=1&table=Table 541">Table 541</a> ) <li>Statistical correlation between DSIG/DABS_POUT_THAD and DSIG/DPT_T2 (<a href="95758?version=1&table=Table 542">Table 542</a> ) <li>Statistical correlation between DSIG/DABS_POUT_THAD and DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 543">Table 543</a> ) <li>Statistical correlation between DSIG/DABS_POUT_THAD and DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 544">Table 544</a> ) <li>Statistical correlation between DSIG/DABS_POUT_THAD and DSIG/DABS_POUT_THAD (<a href="95758?version=1&table=Table 545">Table 545</a> ) <li>Statistical correlation between DSIG/DDPHI_TTBAR and DSIG/DPT_THAD (<a href="95758?version=1&table=Table 546">Table 546</a> ) <li>Statistical correlation between DSIG/DDPHI_TTBAR and DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 547">Table 547</a> ) <li>Statistical correlation between DSIG/DDPHI_TTBAR and DSIG/DPT_T1 (<a href="95758?version=1&table=Table 548">Table 548</a> ) <li>Statistical correlation between DSIG/DDPHI_TTBAR and DSIG/DPT_T2 (<a href="95758?version=1&table=Table 549">Table 549</a> ) <li>Statistical correlation between DSIG/DDPHI_TTBAR and DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 550">Table 550</a> ) <li>Statistical correlation between DSIG/DDPHI_TTBAR and DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 551">Table 551</a> ) <li>Statistical correlation between DSIG/DDPHI_TTBAR and DSIG/DABS_POUT_THAD (<a href="95758?version=1&table=Table 552">Table 552</a> ) <li>Statistical correlation between DSIG/DDPHI_TTBAR and DSIG/DDPHI_TTBAR (<a href="95758?version=1&table=Table 553">Table 553</a> ) <li>Statistical correlation between DSIG/DHT_TTBAR and DSIG/DPT_THAD (<a href="95758?version=1&table=Table 554">Table 554</a> ) <li>Statistical correlation between DSIG/DHT_TTBAR and DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 555">Table 555</a> ) <li>Statistical correlation between DSIG/DHT_TTBAR and DSIG/DPT_T1 (<a href="95758?version=1&table=Table 556">Table 556</a> ) <li>Statistical correlation between DSIG/DHT_TTBAR and DSIG/DPT_T2 (<a href="95758?version=1&table=Table 557">Table 557</a> ) <li>Statistical correlation between DSIG/DHT_TTBAR and DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 558">Table 558</a> ) <li>Statistical correlation between DSIG/DHT_TTBAR and DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 559">Table 559</a> ) <li>Statistical correlation between DSIG/DHT_TTBAR and DSIG/DABS_POUT_THAD (<a href="95758?version=1&table=Table 560">Table 560</a> ) <li>Statistical correlation between DSIG/DHT_TTBAR and DSIG/DDPHI_TTBAR (<a href="95758?version=1&table=Table 561">Table 561</a> ) <li>Statistical correlation between DSIG/DHT_TTBAR and DSIG/DHT_TTBAR (<a href="95758?version=1&table=Table 562">Table 562</a> ) <li>Statistical correlation between DSIG/DN_EXTRAJETS and DSIG/DPT_THAD (<a href="95758?version=1&table=Table 563">Table 563</a> ) <li>Statistical correlation between DSIG/DN_EXTRAJETS and DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 564">Table 564</a> ) <li>Statistical correlation between DSIG/DN_EXTRAJETS and DSIG/DPT_T1 (<a href="95758?version=1&table=Table 565">Table 565</a> ) <li>Statistical correlation between DSIG/DN_EXTRAJETS and DSIG/DPT_T2 (<a href="95758?version=1&table=Table 566">Table 566</a> ) <li>Statistical correlation between DSIG/DN_EXTRAJETS and DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 567">Table 567</a> ) <li>Statistical correlation between DSIG/DN_EXTRAJETS and DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 568">Table 568</a> ) <li>Statistical correlation between DSIG/DN_EXTRAJETS and DSIG/DABS_POUT_THAD (<a href="95758?version=1&table=Table 569">Table 569</a> ) <li>Statistical correlation between DSIG/DN_EXTRAJETS and DSIG/DDPHI_TTBAR (<a href="95758?version=1&table=Table 570">Table 570</a> ) <li>Statistical correlation between DSIG/DN_EXTRAJETS and DSIG/DHT_TTBAR (<a href="95758?version=1&table=Table 571">Table 571</a> ) <li>Statistical correlation between DSIG/DN_EXTRAJETS and DSIG/DN_EXTRAJETS (<a href="95758?version=1&table=Table 572">Table 572</a> ) <li>Statistical correlation between DSIG/DABS_Y_TTBAR and DSIG/DPT_THAD (<a href="95758?version=1&table=Table 573">Table 573</a> ) <li>Statistical correlation between DSIG/DABS_Y_TTBAR and DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 574">Table 574</a> ) <li>Statistical correlation between DSIG/DABS_Y_TTBAR and DSIG/DPT_T1 (<a href="95758?version=1&table=Table 575">Table 575</a> ) <li>Statistical correlation between DSIG/DABS_Y_TTBAR and DSIG/DPT_T2 (<a href="95758?version=1&table=Table 576">Table 576</a> ) <li>Statistical correlation between DSIG/DABS_Y_TTBAR and DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 577">Table 577</a> ) <li>Statistical correlation between DSIG/DABS_Y_TTBAR and DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 578">Table 578</a> ) <li>Statistical correlation between DSIG/DABS_Y_TTBAR and DSIG/DABS_POUT_THAD (<a href="95758?version=1&table=Table 579">Table 579</a> ) <li>Statistical correlation between DSIG/DABS_Y_TTBAR and DSIG/DDPHI_TTBAR (<a href="95758?version=1&table=Table 580">Table 580</a> ) <li>Statistical correlation between DSIG/DABS_Y_TTBAR and DSIG/DHT_TTBAR (<a href="95758?version=1&table=Table 581">Table 581</a> ) <li>Statistical correlation between DSIG/DABS_Y_TTBAR and DSIG/DN_EXTRAJETS (<a href="95758?version=1&table=Table 582">Table 582</a> ) <li>Statistical correlation between DSIG/DABS_Y_TTBAR and DSIG/DABS_Y_TTBAR (<a href="95758?version=1&table=Table 583">Table 583</a> ) <li>Statistical correlation between DSIG/DABS_Y_BOOST and DSIG/DPT_THAD (<a href="95758?version=1&table=Table 584">Table 584</a> ) <li>Statistical correlation between DSIG/DABS_Y_BOOST and DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 585">Table 585</a> ) <li>Statistical correlation between DSIG/DABS_Y_BOOST and DSIG/DPT_T1 (<a href="95758?version=1&table=Table 586">Table 586</a> ) <li>Statistical correlation between DSIG/DABS_Y_BOOST and DSIG/DPT_T2 (<a href="95758?version=1&table=Table 587">Table 587</a> ) <li>Statistical correlation between DSIG/DABS_Y_BOOST and DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 588">Table 588</a> ) <li>Statistical correlation between DSIG/DABS_Y_BOOST and DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 589">Table 589</a> ) <li>Statistical correlation between DSIG/DABS_Y_BOOST and DSIG/DABS_POUT_THAD (<a href="95758?version=1&table=Table 590">Table 590</a> ) <li>Statistical correlation between DSIG/DABS_Y_BOOST and DSIG/DDPHI_TTBAR (<a href="95758?version=1&table=Table 591">Table 591</a> ) <li>Statistical correlation between DSIG/DABS_Y_BOOST and DSIG/DHT_TTBAR (<a href="95758?version=1&table=Table 592">Table 592</a> ) <li>Statistical correlation between DSIG/DABS_Y_BOOST and DSIG/DN_EXTRAJETS (<a href="95758?version=1&table=Table 593">Table 593</a> ) <li>Statistical correlation between DSIG/DABS_Y_BOOST and DSIG/DABS_Y_TTBAR (<a href="95758?version=1&table=Table 594">Table 594</a> ) <li>Statistical correlation between DSIG/DABS_Y_BOOST and DSIG/DABS_Y_BOOST (<a href="95758?version=1&table=Table 595">Table 595</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DPT_THAD (<a href="95758?version=1&table=Table 596">Table 596</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 597">Table 597</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DPT_T1 (<a href="95758?version=1&table=Table 598">Table 598</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DPT_T2 (<a href="95758?version=1&table=Table 599">Table 599</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 600">Table 600</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 601">Table 601</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DABS_POUT_THAD (<a href="95758?version=1&table=Table 602">Table 602</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DDPHI_TTBAR (<a href="95758?version=1&table=Table 603">Table 603</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DHT_TTBAR (<a href="95758?version=1&table=Table 604">Table 604</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DN_EXTRAJETS (<a href="95758?version=1&table=Table 605">Table 605</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DABS_Y_TTBAR (<a href="95758?version=1&table=Table 606">Table 606</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DABS_Y_BOOST (<a href="95758?version=1&table=Table 607">Table 607</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DCHI_TT (<a href="95758?version=1&table=Table 608">Table 608</a> ) </ul><br/> <u>2D:</u><br/> Spectra: <ul> <li>1/SIG*D2SIG/DPT_THAD/DM_TTBAR ( 200.0 GeV < M_TTBAR < 400.0 GeV) (<a href="95758?version=1&table=Table 54">Table 54</a> ) <li>1/SIG*D2SIG/DPT_THAD/DM_TTBAR ( 400.0 GeV < M_TTBAR < 550.0 GeV) (<a href="95758?version=1&table=Table 55">Table 55</a> ) <li>1/SIG*D2SIG/DPT_THAD/DM_TTBAR ( 550.0 GeV < M_TTBAR < 700.0 GeV) (<a href="95758?version=1&table=Table 56">Table 56</a> ) <li>1/SIG*D2SIG/DPT_THAD/DM_TTBAR ( 700.0 GeV < M_TTBAR < 1000.0 GeV) (<a href="95758?version=1&table=Table 57">Table 57</a> ) <li>1/SIG*D2SIG/DPT_THAD/DM_TTBAR ( 1000.0 GeV < M_TTBAR < 2000.0 GeV) (<a href="95758?version=1&table=Table 58">Table 58</a> ) <li>D2SIG/DPT_THAD/DM_TTBAR ( 200.0 GeV < M_TTBAR < 400.0 GeV) (<a href="95758?version=1&table=Table 74">Table 74</a> ) <li>D2SIG/DPT_THAD/DM_TTBAR ( 400.0 GeV < M_TTBAR < 550.0 GeV) (<a href="95758?version=1&table=Table 75">Table 75</a> ) <li>D2SIG/DPT_THAD/DM_TTBAR ( 550.0 GeV < M_TTBAR < 700.0 GeV) (<a href="95758?version=1&table=Table 76">Table 76</a> ) <li>D2SIG/DPT_THAD/DM_TTBAR ( 700.0 GeV < M_TTBAR < 1000.0 GeV) (<a href="95758?version=1&table=Table 77">Table 77</a> ) <li>D2SIG/DPT_THAD/DM_TTBAR ( 1000.0 GeV < M_TTBAR < 2000.0 GeV) (<a href="95758?version=1&table=Table 78">Table 78</a> ) <li>1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR ( 200.0 GeV < M_TTBAR < 400.0 GeV) (<a href="95758?version=1&table=Table 94">Table 94</a> ) <li>1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR ( 400.0 GeV < M_TTBAR < 550.0 GeV) (<a href="95758?version=1&table=Table 95">Table 95</a> ) <li>1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR ( 550.0 GeV < M_TTBAR < 700.0 GeV) (<a href="95758?version=1&table=Table 96">Table 96</a> ) <li>1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR ( 700.0 GeV < M_TTBAR < 1000.0 GeV) (<a href="95758?version=1&table=Table 97">Table 97</a> ) <li>1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR ( 1000.0 GeV < M_TTBAR < 2000.0 GeV) (<a href="95758?version=1&table=Table 98">Table 98</a> ) <li>D2SIG/DPT_TTBAR/DM_TTBAR ( 200.0 GeV < M_TTBAR < 400.0 GeV) (<a href="95758?version=1&table=Table 114">Table 114</a> ) <li>D2SIG/DPT_TTBAR/DM_TTBAR ( 400.0 GeV < M_TTBAR < 550.0 GeV) (<a href="95758?version=1&table=Table 115">Table 115</a> ) <li>D2SIG/DPT_TTBAR/DM_TTBAR ( 550.0 GeV < M_TTBAR < 700.0 GeV) (<a href="95758?version=1&table=Table 116">Table 116</a> ) <li>D2SIG/DPT_TTBAR/DM_TTBAR ( 700.0 GeV < M_TTBAR < 1000.0 GeV) (<a href="95758?version=1&table=Table 117">Table 117</a> ) <li>D2SIG/DPT_TTBAR/DM_TTBAR ( 1000.0 GeV < M_TTBAR < 2000.0 GeV) (<a href="95758?version=1&table=Table 118">Table 118</a> ) <li>1/SIG*D2SIG/DABS_POUT_THAD/DPT_THAD ( 0.0 GeV < PT_THAD < 60.0 GeV) (<a href="95758?version=1&table=Table 134">Table 134</a> ) <li>1/SIG*D2SIG/DABS_POUT_THAD/DPT_THAD ( 60.0 GeV < PT_THAD < 120.0 GeV) (<a href="95758?version=1&table=Table 135">Table 135</a> ) <li>1/SIG*D2SIG/DABS_POUT_THAD/DPT_THAD ( 120.0 GeV < PT_THAD < 200.0 GeV) (<a href="95758?version=1&table=Table 136">Table 136</a> ) <li>1/SIG*D2SIG/DABS_POUT_THAD/DPT_THAD ( 200.0 GeV < PT_THAD < 300.0 GeV) (<a href="95758?version=1&table=Table 137">Table 137</a> ) <li>1/SIG*D2SIG/DABS_POUT_THAD/DPT_THAD ( 300.0 GeV < PT_THAD < 1000.0 GeV) (<a href="95758?version=1&table=Table 138">Table 138</a> ) <li>D2SIG/DABS_POUT_THAD/DPT_THAD ( 0.0 GeV < PT_THAD < 60.0 GeV) (<a href="95758?version=1&table=Table 154">Table 154</a> ) <li>D2SIG/DABS_POUT_THAD/DPT_THAD ( 60.0 GeV < PT_THAD < 120.0 GeV) (<a href="95758?version=1&table=Table 155">Table 155</a> ) <li>D2SIG/DABS_POUT_THAD/DPT_THAD ( 120.0 GeV < PT_THAD < 200.0 GeV) (<a href="95758?version=1&table=Table 156">Table 156</a> ) <li>D2SIG/DABS_POUT_THAD/DPT_THAD ( 200.0 GeV < PT_THAD < 300.0 GeV) (<a href="95758?version=1&table=Table 157">Table 157</a> ) <li>D2SIG/DABS_POUT_THAD/DPT_THAD ( 300.0 GeV < PT_THAD < 1000.0 GeV) (<a href="95758?version=1&table=Table 158">Table 158</a> ) <li>1/SIG*D2SIG/DPT_THAD/DN_JETS (N_JETS = 4.0) (<a href="95758?version=1&table=Table 174">Table 174</a> ) <li>1/SIG*D2SIG/DPT_THAD/DN_JETS (N_JETS = 5.0) (<a href="95758?version=1&table=Table 175">Table 175</a> ) <li>1/SIG*D2SIG/DPT_THAD/DN_JETS (N_JETS = 6.0) (<a href="95758?version=1&table=Table 176">Table 176</a> ) <li>1/SIG*D2SIG/DPT_THAD/DN_JETS (N_JETS $\geq$ 7.0) (<a href="95758?version=1&table=Table 177">Table 177</a> ) <li>D2SIG/DPT_THAD/DN_JETS (N_JETS = 4.0) (<a href="95758?version=1&table=Table 188">Table 188</a> ) <li>D2SIG/DPT_THAD/DN_JETS (N_JETS = 5.0) (<a href="95758?version=1&table=Table 189">Table 189</a> ) <li>D2SIG/DPT_THAD/DN_JETS (N_JETS = 6.0) (<a href="95758?version=1&table=Table 190">Table 190</a> ) <li>D2SIG/DPT_THAD/DN_JETS (N_JETS $\geq$ 7.0) (<a href="95758?version=1&table=Table 191">Table 191</a> ) <li>1/SIG*D2SIG/DM_TTBAR/DN_JETS (N_JETS = 4.0) (<a href="95758?version=1&table=Table 202">Table 202</a> ) <li>1/SIG*D2SIG/DM_TTBAR/DN_JETS (N_JETS = 5.0) (<a href="95758?version=1&table=Table 203">Table 203</a> ) <li>1/SIG*D2SIG/DM_TTBAR/DN_JETS (N_JETS $\geq$ 6.0) (<a href="95758?version=1&table=Table 204">Table 204</a> ) <li>D2SIG/DM_TTBAR/DN_JETS (N_JETS = 4.0) (<a href="95758?version=1&table=Table 211">Table 211</a> ) <li>D2SIG/DM_TTBAR/DN_JETS (N_JETS = 5.0) (<a href="95758?version=1&table=Table 212">Table 212</a> ) <li>D2SIG/DM_TTBAR/DN_JETS (N_JETS $\geq$ 6.0) (<a href="95758?version=1&table=Table 213">Table 213</a> ) <li>1/SIG*D2SIG/DPT_TTBAR/DN_JETS (N_JETS = 4.0) (<a href="95758?version=1&table=Table 220">Table 220</a> ) <li>1/SIG*D2SIG/DPT_TTBAR/DN_JETS (N_JETS = 5.0) (<a href="95758?version=1&table=Table 221">Table 221</a> ) <li>1/SIG*D2SIG/DPT_TTBAR/DN_JETS (N_JETS = 6.0) (<a href="95758?version=1&table=Table 222">Table 222</a> ) <li>1/SIG*D2SIG/DPT_TTBAR/DN_JETS (N_JETS $\geq$ 7.0) (<a href="95758?version=1&table=Table 223">Table 223</a> ) <li>D2SIG/DPT_TTBAR/DN_JETS (N_JETS = 4.0) (<a href="95758?version=1&table=Table 234">Table 234</a> ) <li>D2SIG/DPT_TTBAR/DN_JETS (N_JETS = 5.0) (<a href="95758?version=1&table=Table 235">Table 235</a> ) <li>D2SIG/DPT_TTBAR/DN_JETS (N_JETS = 6.0) (<a href="95758?version=1&table=Table 236">Table 236</a> ) <li>D2SIG/DPT_TTBAR/DN_JETS (N_JETS $\geq$ 7.0) (<a href="95758?version=1&table=Table 237">Table 237</a> ) <li>1/SIG*D2SIG/DABS_POUT_THAD/DN_JETS (N_JETS = 4.0) (<a href="95758?version=1&table=Table 248">Table 248</a> ) <li>1/SIG*D2SIG/DABS_POUT_THAD/DN_JETS (N_JETS = 5.0) (<a href="95758?version=1&table=Table 249">Table 249</a> ) <li>1/SIG*D2SIG/DABS_POUT_THAD/DN_JETS (N_JETS = 6.0) (<a href="95758?version=1&table=Table 250">Table 250</a> ) <li>1/SIG*D2SIG/DABS_POUT_THAD/DN_JETS (N_JETS $\geq$ 7.0) (<a href="95758?version=1&table=Table 251">Table 251</a> ) <li>D2SIG/DABS_POUT_THAD/DN_JETS (N_JETS = 4.0) (<a href="95758?version=1&table=Table 262">Table 262</a> ) <li>D2SIG/DABS_POUT_THAD/DN_JETS (N_JETS = 5.0) (<a href="95758?version=1&table=Table 263">Table 263</a> ) <li>D2SIG/DABS_POUT_THAD/DN_JETS (N_JETS = 6.0) (<a href="95758?version=1&table=Table 264">Table 264</a> ) <li>D2SIG/DABS_POUT_THAD/DN_JETS (N_JETS $\geq$ 7.0) (<a href="95758?version=1&table=Table 265">Table 265</a> ) <li>1/SIG*D2SIG/DDPHI_TTBAR/DN_JETS ( 3.5 < N_JETS < 4.5 ) (<a href="95758?version=1&table=Table 276">Table 276</a> ) <li>1/SIG*D2SIG/DDPHI_TTBAR/DN_JETS ( 4.5 < N_JETS < 5.5 ) (<a href="95758?version=1&table=Table 277">Table 277</a> ) <li>1/SIG*D2SIG/DDPHI_TTBAR/DN_JETS ( 5.5 < N_JETS < 6.5 ) (<a href="95758?version=1&table=Table 278">Table 278</a> ) <li>1/SIG*D2SIG/DDPHI_TTBAR/DN_JETS ( 6.5 < N_JETS < 7.5 ) (<a href="95758?version=1&table=Table 279">Table 279</a> ) <li>D2SIG/DDPHI_TTBAR/DN_JETS ( 3.5 < N_JETS < 4.5 ) (<a href="95758?version=1&table=Table 290">Table 290</a> ) <li>D2SIG/DDPHI_TTBAR/DN_JETS ( 4.5 < N_JETS < 5.5 ) (<a href="95758?version=1&table=Table 291">Table 291</a> ) <li>D2SIG/DDPHI_TTBAR/DN_JETS ( 5.5 < N_JETS < 6.5 ) (<a href="95758?version=1&table=Table 292">Table 292</a> ) <li>D2SIG/DDPHI_TTBAR/DN_JETS ( 6.5 < N_JETS < 7.5 ) (<a href="95758?version=1&table=Table 293">Table 293</a> ) <li>1/SIG*D2SIG/DHT_TTBAR/DN_JETS (N_JETS = 4.0) (<a href="95758?version=1&table=Table 304">Table 304</a> ) <li>1/SIG*D2SIG/DHT_TTBAR/DN_JETS (N_JETS = 5.0) (<a href="95758?version=1&table=Table 305">Table 305</a> ) <li>1/SIG*D2SIG/DHT_TTBAR/DN_JETS (N_JETS = 6.0) (<a href="95758?version=1&table=Table 306">Table 306</a> ) <li>1/SIG*D2SIG/DHT_TTBAR/DN_JETS (N_JETS $\geq$ 7.0) (<a href="95758?version=1&table=Table 307">Table 307</a> ) <li>D2SIG/DHT_TTBAR/DN_JETS (N_JETS = 4.0) (<a href="95758?version=1&table=Table 318">Table 318</a> ) <li>D2SIG/DHT_TTBAR/DN_JETS (N_JETS = 5.0) (<a href="95758?version=1&table=Table 319">Table 319</a> ) <li>D2SIG/DHT_TTBAR/DN_JETS (N_JETS = 6.0) (<a href="95758?version=1&table=Table 320">Table 320</a> ) <li>D2SIG/DHT_TTBAR/DN_JETS (N_JETS $\geq$ 7.0) (<a href="95758?version=1&table=Table 321">Table 321</a> ) <li>1/SIG*D2SIG/DABS_Y_THAD/DN_JETS (N_JETS = 4.0) (<a href="95758?version=1&table=Table 332">Table 332</a> ) <li>1/SIG*D2SIG/DABS_Y_THAD/DN_JETS (N_JETS = 5.0) (<a href="95758?version=1&table=Table 333">Table 333</a> ) <li>1/SIG*D2SIG/DABS_Y_THAD/DN_JETS (N_JETS = 6.0) (<a href="95758?version=1&table=Table 334">Table 334</a> ) <li>1/SIG*D2SIG/DABS_Y_THAD/DN_JETS (N_JETS $\geq$ 7.0) (<a href="95758?version=1&table=Table 335">Table 335</a> ) <li>D2SIG/DABS_Y_THAD/DN_JETS (N_JETS = 4.0) (<a href="95758?version=1&table=Table 346">Table 346</a> ) <li>D2SIG/DABS_Y_THAD/DN_JETS (N_JETS = 5.0) (<a href="95758?version=1&table=Table 347">Table 347</a> ) <li>D2SIG/DABS_Y_THAD/DN_JETS (N_JETS = 6.0) (<a href="95758?version=1&table=Table 348">Table 348</a> ) <li>D2SIG/DABS_Y_THAD/DN_JETS (N_JETS $\geq$ 7.0) (<a href="95758?version=1&table=Table 349">Table 349</a> ) <li>1/SIG*D2SIG/DABS_Y_TTBAR/DN_JETS (N_JETS = 4.0) (<a href="95758?version=1&table=Table 360">Table 360</a> ) <li>1/SIG*D2SIG/DABS_Y_TTBAR/DN_JETS (N_JETS = 5.0) (<a href="95758?version=1&table=Table 361">Table 361</a> ) <li>1/SIG*D2SIG/DABS_Y_TTBAR/DN_JETS (N_JETS = 6.0) (<a href="95758?version=1&table=Table 362">Table 362</a> ) <li>1/SIG*D2SIG/DABS_Y_TTBAR/DN_JETS (N_JETS $\geq$ 7.0) (<a href="95758?version=1&table=Table 363">Table 363</a> ) <li>D2SIG/DABS_Y_TTBAR/DN_JETS (N_JETS = 4.0) (<a href="95758?version=1&table=Table 374">Table 374</a> ) <li>D2SIG/DABS_Y_TTBAR/DN_JETS (N_JETS = 5.0) (<a href="95758?version=1&table=Table 375">Table 375</a> ) <li>D2SIG/DABS_Y_TTBAR/DN_JETS (N_JETS = 6.0) (<a href="95758?version=1&table=Table 376">Table 376</a> ) <li>D2SIG/DABS_Y_TTBAR/DN_JETS (N_JETS $\geq$ 7.0) (<a href="95758?version=1&table=Table 377">Table 377</a> ) <li>1/SIG*D2SIG/DCHI_TT/DN_JETS (N_JETS = 4.0) (<a href="95758?version=1&table=Table 388">Table 388</a> ) <li>1/SIG*D2SIG/DCHI_TT/DN_JETS (N_JETS = 5.0) (<a href="95758?version=1&table=Table 389">Table 389</a> ) <li>1/SIG*D2SIG/DCHI_TT/DN_JETS (N_JETS = 6.0) (<a href="95758?version=1&table=Table 390">Table 390</a> ) <li>1/SIG*D2SIG/DCHI_TT/DN_JETS (N_JETS $\geq$ 7.0) (<a href="95758?version=1&table=Table 391">Table 391</a> ) <li>D2SIG/DCHI_TT/DN_JETS (N_JETS = 4.0) (<a href="95758?version=1&table=Table 402">Table 402</a> ) <li>D2SIG/DCHI_TT/DN_JETS (N_JETS = 5.0) (<a href="95758?version=1&table=Table 403">Table 403</a> ) <li>D2SIG/DCHI_TT/DN_JETS (N_JETS = 6.0) (<a href="95758?version=1&table=Table 404">Table 404</a> ) <li>D2SIG/DCHI_TT/DN_JETS (N_JETS $\geq$ 7.0) (<a href="95758?version=1&table=Table 405">Table 405</a> ) <li>1/SIG*D2SIG/DPT_THAD/DABS_Y_THAD ( 0.0 < ABS_Y_THAD < 0.7 ) (<a href="95758?version=1&table=Table 416">Table 416</a> ) <li>1/SIG*D2SIG/DPT_THAD/DABS_Y_THAD ( 0.7 < ABS_Y_THAD < 1.4 ) (<a href="95758?version=1&table=Table 417">Table 417</a> ) <li>1/SIG*D2SIG/DPT_THAD/DABS_Y_THAD ( 1.4 < ABS_Y_THAD < 2.5 ) (<a href="95758?version=1&table=Table 418">Table 418</a> ) <li>D2SIG/DPT_THAD/DABS_Y_THAD ( 0.0 < ABS_Y_THAD < 0.7 ) (<a href="95758?version=1&table=Table 425">Table 425</a> ) <li>D2SIG/DPT_THAD/DABS_Y_THAD ( 0.7 < ABS_Y_THAD < 1.4 ) (<a href="95758?version=1&table=Table 426">Table 426</a> ) <li>D2SIG/DPT_THAD/DABS_Y_THAD ( 1.4 < ABS_Y_THAD < 2.5 ) (<a href="95758?version=1&table=Table 427">Table 427</a> ) <li>1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR ( 0.0 < ABS_Y_TTBAR < 0.4 ) (<a href="95758?version=1&table=Table 434">Table 434</a> ) <li>1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR ( 0.4 < ABS_Y_TTBAR < 0.8 ) (<a href="95758?version=1&table=Table 435">Table 435</a> ) <li>1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR ( 0.8 < ABS_Y_TTBAR < 1.2 ) (<a href="95758?version=1&table=Table 436">Table 436</a> ) <li>1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR ( 1.2 < ABS_Y_TTBAR < 2.5 ) (<a href="95758?version=1&table=Table 437">Table 437</a> ) <li>D2SIG/DPT_TTBAR/DABS_Y_TTBAR ( 0.0 < ABS_Y_TTBAR < 0.4 ) (<a href="95758?version=1&table=Table 448">Table 448</a> ) <li>D2SIG/DPT_TTBAR/DABS_Y_TTBAR ( 0.4 < ABS_Y_TTBAR < 0.8 ) (<a href="95758?version=1&table=Table 449">Table 449</a> ) <li>D2SIG/DPT_TTBAR/DABS_Y_TTBAR ( 0.8 < ABS_Y_TTBAR < 1.2 ) (<a href="95758?version=1&table=Table 450">Table 450</a> ) <li>D2SIG/DPT_TTBAR/DABS_Y_TTBAR ( 1.2 < ABS_Y_TTBAR < 2.5 ) (<a href="95758?version=1&table=Table 451">Table 451</a> ) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR ( 0.0 < ABS_Y_TTBAR < 0.4 ) (<a href="95758?version=1&table=Table 462">Table 462</a> ) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR ( 0.4 < ABS_Y_TTBAR < 0.8 ) (<a href="95758?version=1&table=Table 463">Table 463</a> ) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR ( 0.8 < ABS_Y_TTBAR < 1.2 ) (<a href="95758?version=1&table=Table 464">Table 464</a> ) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR ( 1.2 < ABS_Y_TTBAR < 2.5 ) (<a href="95758?version=1&table=Table 465">Table 465</a> ) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR ( 0.0 < ABS_Y_TTBAR < 0.4 ) (<a href="95758?version=1&table=Table 476">Table 476</a> ) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR ( 0.4 < ABS_Y_TTBAR < 0.8 ) (<a href="95758?version=1&table=Table 477">Table 477</a> ) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR ( 0.8 < ABS_Y_TTBAR < 1.2 ) (<a href="95758?version=1&table=Table 478">Table 478</a> ) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR ( 1.2 < ABS_Y_TTBAR < 2.5 ) (<a href="95758?version=1&table=Table 479">Table 479</a> ) <li>1/SIG*D2SIG/DPT_THAD/DPT_TTBAR ( 0.0 GeV < PT_TTBAR < 30.0 GeV) (<a href="95758?version=1&table=Table 490">Table 490</a> ) <li>1/SIG*D2SIG/DPT_THAD/DPT_TTBAR ( 30.0 GeV < PT_TTBAR < 80.0 GeV) (<a href="95758?version=1&table=Table 491">Table 491</a> ) <li>1/SIG*D2SIG/DPT_THAD/DPT_TTBAR ( 80.0 GeV < PT_TTBAR < 190.0 GeV) (<a href="95758?version=1&table=Table 492">Table 492</a> ) <li>1/SIG*D2SIG/DPT_THAD/DPT_TTBAR ( 190.0 GeV < PT_TTBAR < 800.0 GeV) (<a href="95758?version=1&table=Table 493">Table 493</a> ) <li>D2SIG/DPT_THAD/DPT_TTBAR ( 0.0 GeV < PT_TTBAR < 30.0 GeV) (<a href="95758?version=1&table=Table 504">Table 504</a> ) <li>D2SIG/DPT_THAD/DPT_TTBAR ( 30.0 GeV < PT_TTBAR < 80.0 GeV) (<a href="95758?version=1&table=Table 505">Table 505</a> ) <li>D2SIG/DPT_THAD/DPT_TTBAR ( 80.0 GeV < PT_TTBAR < 190.0 GeV) (<a href="95758?version=1&table=Table 506">Table 506</a> ) <li>D2SIG/DPT_THAD/DPT_TTBAR ( 190.0 GeV < PT_TTBAR < 800.0 GeV) (<a href="95758?version=1&table=Table 507">Table 507</a> ) </ul><br/> Covariances:<br/><ul> <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DM_TTBAR between the 1th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 59">Table 59</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DM_TTBAR between the 2th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 60">Table 60</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DM_TTBAR between the 2th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 61">Table 61</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DM_TTBAR between the 3th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 62">Table 62</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DM_TTBAR between the 3th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 63">Table 63</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DM_TTBAR between the 3th and 3th bins of M_TTBAR (<a href="95758?version=1&table=Table 64">Table 64</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DM_TTBAR between the 4th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 65">Table 65</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DM_TTBAR between the 4th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 66">Table 66</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DM_TTBAR between the 4th and 3th bins of M_TTBAR (<a href="95758?version=1&table=Table 67">Table 67</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DM_TTBAR between the 4th and 4th bins of M_TTBAR (<a href="95758?version=1&table=Table 68">Table 68</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DM_TTBAR between the 5th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 69">Table 69</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DM_TTBAR between the 5th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 70">Table 70</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DM_TTBAR between the 5th and 3th bins of M_TTBAR (<a href="95758?version=1&table=Table 71">Table 71</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DM_TTBAR between the 5th and 4th bins of M_TTBAR (<a href="95758?version=1&table=Table 72">Table 72</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DM_TTBAR between the 5th and 5th bins of M_TTBAR (<a href="95758?version=1&table=Table 73">Table 73</a> ) <li>Matrix for D2SIG/DPT_THAD/DM_TTBAR between the 1th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 79">Table 79</a> ) <li>Matrix for D2SIG/DPT_THAD/DM_TTBAR between the 2th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 80">Table 80</a> ) <li>Matrix for D2SIG/DPT_THAD/DM_TTBAR between the 2th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 81">Table 81</a> ) <li>Matrix for D2SIG/DPT_THAD/DM_TTBAR between the 3th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 82">Table 82</a> ) <li>Matrix for D2SIG/DPT_THAD/DM_TTBAR between the 3th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 83">Table 83</a> ) <li>Matrix for D2SIG/DPT_THAD/DM_TTBAR between the 3th and 3th bins of M_TTBAR (<a href="95758?version=1&table=Table 84">Table 84</a> ) <li>Matrix for D2SIG/DPT_THAD/DM_TTBAR between the 4th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 85">Table 85</a> ) <li>Matrix for D2SIG/DPT_THAD/DM_TTBAR between the 4th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 86">Table 86</a> ) <li>Matrix for D2SIG/DPT_THAD/DM_TTBAR between the 4th and 3th bins of M_TTBAR (<a href="95758?version=1&table=Table 87">Table 87</a> ) <li>Matrix for D2SIG/DPT_THAD/DM_TTBAR between the 4th and 4th bins of M_TTBAR (<a href="95758?version=1&table=Table 88">Table 88</a> ) <li>Matrix for D2SIG/DPT_THAD/DM_TTBAR between the 5th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 89">Table 89</a> ) <li>Matrix for D2SIG/DPT_THAD/DM_TTBAR between the 5th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 90">Table 90</a> ) <li>Matrix for D2SIG/DPT_THAD/DM_TTBAR between the 5th and 3th bins of M_TTBAR (<a href="95758?version=1&table=Table 91">Table 91</a> ) <li>Matrix for D2SIG/DPT_THAD/DM_TTBAR between the 5th and 4th bins of M_TTBAR (<a href="95758?version=1&table=Table 92">Table 92</a> ) <li>Matrix for D2SIG/DPT_THAD/DM_TTBAR between the 5th and 5th bins of M_TTBAR (<a href="95758?version=1&table=Table 93">Table 93</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR between the 1th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 99">Table 99</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR between the 2th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 100">Table 100</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR between the 2th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 101">Table 101</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR between the 3th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 102">Table 102</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR between the 3th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 103">Table 103</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR between the 3th and 3th bins of M_TTBAR (<a href="95758?version=1&table=Table 104">Table 104</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR between the 4th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 105">Table 105</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR between the 4th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 106">Table 106</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR between the 4th and 3th bins of M_TTBAR (<a href="95758?version=1&table=Table 107">Table 107</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR between the 4th and 4th bins of M_TTBAR (<a href="95758?version=1&table=Table 108">Table 108</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR between the 5th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 109">Table 109</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR between the 5th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 110">Table 110</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR between the 5th and 3th bins of M_TTBAR (<a href="95758?version=1&table=Table 111">Table 111</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR between the 5th and 4th bins of M_TTBAR (<a href="95758?version=1&table=Table 112">Table 112</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR between the 5th and 5th bins of M_TTBAR (<a href="95758?version=1&table=Table 113">Table 113</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DM_TTBAR between the 1th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 119">Table 119</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DM_TTBAR between the 2th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 120">Table 120</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DM_TTBAR between the 2th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 121">Table 121</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DM_TTBAR between the 3th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 122">Table 122</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DM_TTBAR between the 3th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 123">Table 123</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DM_TTBAR between the 3th and 3th bins of M_TTBAR (<a href="95758?version=1&table=Table 124">Table 124</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DM_TTBAR between the 4th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 125">Table 125</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DM_TTBAR between the 4th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 126">Table 126</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DM_TTBAR between the 4th and 3th bins of M_TTBAR (<a href="95758?version=1&table=Table 127">Table 127</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DM_TTBAR between the 4th and 4th bins of M_TTBAR (<a href="95758?version=1&table=Table 128">Table 128</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DM_TTBAR between the 5th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 129">Table 129</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DM_TTBAR between the 5th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 130">Table 130</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DM_TTBAR between the 5th and 3th bins of M_TTBAR (<a href="95758?version=1&table=Table 131">Table 131</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DM_TTBAR between the 5th and 4th bins of M_TTBAR (<a href="95758?version=1&table=Table 132">Table 132</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DM_TTBAR between the 5th and 5th bins of M_TTBAR (<a href="95758?version=1&table=Table 133">Table 133</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_POUT_THAD/DPT_THAD between the 1th and 1th bins of PT_THAD (<a href="95758?version=1&table=Table 139">Table 139</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_POUT_THAD/DPT_THAD between the 2th and 1th bins of PT_THAD (<a href="95758?version=1&table=Table 140">Table 140</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_POUT_THAD/DPT_THAD between the 2th and 2th bins of PT_THAD (<a href="95758?version=1&table=Table 141">Table 141</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_POUT_THAD/DPT_THAD between the 3th and 1th bins of PT_THAD (<a href="95758?version=1&table=Table 142">Table 142</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_POUT_THAD/DPT_THAD between the 3th and 2th bins of PT_THAD (<a href="95758?version=1&table=Table 143">Table 143</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_POUT_THAD/DPT_THAD between the 3th and 3th bins of PT_THAD (<a href="95758?version=1&table=Table 144">Table 144</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_POUT_THAD/DPT_THAD between the 4th and 1th bins of PT_THAD (<a href="95758?version=1&table=Table 145">Table 145</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_POUT_THAD/DPT_THAD between the 4th and 2th bins of PT_THAD (<a href="95758?version=1&table=Table 146">Table 146</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_POUT_THAD/DPT_THAD between the 4th and 3th bins of PT_THAD (<a href="95758?version=1&table=Table 147">Table 147</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_POUT_THAD/DPT_THAD between the 4th and 4th bins of PT_THAD (<a href="95758?version=1&table=Table 148">Table 148</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_POUT_THAD/DPT_THAD between the 5th and 1th bins of PT_THAD (<a href="95758?version=1&table=Table 149">Table 149</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_POUT_THAD/DPT_THAD between the 5th and 2th bins of PT_THAD (<a href="95758?version=1&table=Table 150">Table 150</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_POUT_THAD/DPT_THAD between the 5th and 3th bins of PT_THAD (<a href="95758?version=1&table=Table 151">Table 151</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_POUT_THAD/DPT_THAD between the 5th and 4th bins of PT_THAD (<a href="95758?version=1&table=Table 152">Table 152</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_POUT_THAD/DPT_THAD between the 5th and 5th bins of PT_THAD (<a href="95758?version=1&table=Table 153">Table 153</a> ) <li>Matrix for D2SIG/DABS_POUT_THAD/DPT_THAD between the 1th and 1th bins of PT_THAD (<a href="95758?version=1&table=Table 159">Table 159</a> ) <li>Matrix for D2SIG/DABS_POUT_THAD/DPT_THAD between the 2th and 1th bins of PT_THAD (<a href="95758?version=1&table=Table 160">Table 160</a> ) <li>Matrix for D2SIG/DABS_POUT_THAD/DPT_THAD between the 2th and 2th bins of PT_THAD (<a href="95758?version=1&table=Table 161">Table 161</a> ) <li>Matrix for D2SIG/DABS_POUT_THAD/DPT_THAD between the 3th and 1th bins of PT_THAD (<a href="95758?version=1&table=Table 162">Table 162</a> ) <li>Matrix for D2SIG/DABS_POUT_THAD/DPT_THAD between the 3th and 2th bins of PT_THAD (<a href="95758?version=1&table=Table 163">Table 163</a> ) <li>Matrix for D2SIG/DABS_POUT_THAD/DPT_THAD between the 3th and 3th bins of PT_THAD (<a href="95758?version=1&table=Table 164">Table 164</a> ) <li>Matrix for D2SIG/DABS_POUT_THAD/DPT_THAD between the 4th and 1th bins of PT_THAD (<a href="95758?version=1&table=Table 165">Table 165</a> ) <li>Matrix for D2SIG/DABS_POUT_THAD/DPT_THAD between the 4th and 2th bins of PT_THAD (<a href="95758?version=1&table=Table 166">Table 166</a> ) <li>Matrix for D2SIG/DABS_POUT_THAD/DPT_THAD between the 4th and 3th bins of PT_THAD (<a href="95758?version=1&table=Table 167">Table 167</a> ) <li>Matrix for D2SIG/DABS_POUT_THAD/DPT_THAD between the 4th and 4th bins of PT_THAD (<a href="95758?version=1&table=Table 168">Table 168</a> ) <li>Matrix for D2SIG/DABS_POUT_THAD/DPT_THAD between the 5th and 1th bins of PT_THAD (<a href="95758?version=1&table=Table 169">Table 169</a> ) <li>Matrix for D2SIG/DABS_POUT_THAD/DPT_THAD between the 5th and 2th bins of PT_THAD (<a href="95758?version=1&table=Table 170">Table 170</a> ) <li>Matrix for D2SIG/DABS_POUT_THAD/DPT_THAD between the 5th and 3th bins of PT_THAD (<a href="95758?version=1&table=Table 171">Table 171</a> ) <li>Matrix for D2SIG/DABS_POUT_THAD/DPT_THAD between the 5th and 4th bins of PT_THAD (<a href="95758?version=1&table=Table 172">Table 172</a> ) <li>Matrix for D2SIG/DABS_POUT_THAD/DPT_THAD between the 5th and 5th bins of PT_THAD (<a href="95758?version=1&table=Table 173">Table 173</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DN_JETS between the 1th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 178">Table 178</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DN_JETS between the 2th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 179">Table 179</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DN_JETS between the 2th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 180">Table 180</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DN_JETS between the 3th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 181">Table 181</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DN_JETS between the 3th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 182">Table 182</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DN_JETS between the 3th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 183">Table 183</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DN_JETS between the 4th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 184">Table 184</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DN_JETS between the 4th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 185">Table 185</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DN_JETS between the 4th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 186">Table 186</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DN_JETS between the 4th and 4th bins of N_JETS (<a href="95758?version=1&table=Table 187">Table 187</a> ) <li>Matrix for D2SIG/DPT_THAD/DN_JETS between the 1th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 192">Table 192</a> ) <li>Matrix for D2SIG/DPT_THAD/DN_JETS between the 2th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 193">Table 193</a> ) <li>Matrix for D2SIG/DPT_THAD/DN_JETS between the 2th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 194">Table 194</a> ) <li>Matrix for D2SIG/DPT_THAD/DN_JETS between the 3th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 195">Table 195</a> ) <li>Matrix for D2SIG/DPT_THAD/DN_JETS between the 3th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 196">Table 196</a> ) <li>Matrix for D2SIG/DPT_THAD/DN_JETS between the 3th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 197">Table 197</a> ) <li>Matrix for D2SIG/DPT_THAD/DN_JETS between the 4th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 198">Table 198</a> ) <li>Matrix for D2SIG/DPT_THAD/DN_JETS between the 4th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 199">Table 199</a> ) <li>Matrix for D2SIG/DPT_THAD/DN_JETS between the 4th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 200">Table 200</a> ) <li>Matrix for D2SIG/DPT_THAD/DN_JETS between the 4th and 4th bins of N_JETS (<a href="95758?version=1&table=Table 201">Table 201</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DN_JETS between the 1th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 205">Table 205</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DN_JETS between the 2th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 206">Table 206</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DN_JETS between the 2th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 207">Table 207</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DN_JETS between the 3th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 208">Table 208</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DN_JETS between the 3th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 209">Table 209</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DN_JETS between the 3th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 210">Table 210</a> ) <li>Matrix for D2SIG/DM_TTBAR/DN_JETS between the 1th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 214">Table 214</a> ) <li>Matrix for D2SIG/DM_TTBAR/DN_JETS between the 2th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 215">Table 215</a> ) <li>Matrix for D2SIG/DM_TTBAR/DN_JETS between the 2th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 216">Table 216</a> ) <li>Matrix for D2SIG/DM_TTBAR/DN_JETS between the 3th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 217">Table 217</a> ) <li>Matrix for D2SIG/DM_TTBAR/DN_JETS between the 3th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 218">Table 218</a> ) <li>Matrix for D2SIG/DM_TTBAR/DN_JETS between the 3th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 219">Table 219</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DN_JETS between the 1th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 224">Table 224</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DN_JETS between the 2th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 225">Table 225</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DN_JETS between the 2th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 226">Table 226</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DN_JETS between the 3th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 227">Table 227</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DN_JETS between the 3th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 228">Table 228</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DN_JETS between the 3th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 229">Table 229</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DN_JETS between the 4th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 230">Table 230</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DN_JETS between the 4th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 231">Table 231</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DN_JETS between the 4th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 232">Table 232</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DN_JETS between the 4th and 4th bins of N_JETS (<a href="95758?version=1&table=Table 233">Table 233</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DN_JETS between the 1th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 238">Table 238</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DN_JETS between the 2th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 239">Table 239</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DN_JETS between the 2th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 240">Table 240</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DN_JETS between the 3th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 241">Table 241</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DN_JETS between the 3th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 242">Table 242</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DN_JETS between the 3th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 243">Table 243</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DN_JETS between the 4th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 244">Table 244</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DN_JETS between the 4th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 245">Table 245</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DN_JETS between the 4th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 246">Table 246</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DN_JETS between the 4th and 4th bins of N_JETS (<a href="95758?version=1&table=Table 247">Table 247</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_POUT_THAD/DN_JETS between the 1th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 252">Table 252</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_POUT_THAD/DN_JETS between the 2th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 253">Table 253</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_POUT_THAD/DN_JETS between the 2th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 254">Table 254</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_POUT_THAD/DN_JETS between the 3th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 255">Table 255</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_POUT_THAD/DN_JETS between the 3th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 256">Table 256</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_POUT_THAD/DN_JETS between the 3th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 257">Table 257</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_POUT_THAD/DN_JETS between the 4th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 258">Table 258</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_POUT_THAD/DN_JETS between the 4th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 259">Table 259</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_POUT_THAD/DN_JETS between the 4th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 260">Table 260</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_POUT_THAD/DN_JETS between the 4th and 4th bins of N_JETS (<a href="95758?version=1&table=Table 261">Table 261</a> ) <li>Matrix for D2SIG/DABS_POUT_THAD/DN_JETS between the 1th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 266">Table 266</a> ) <li>Matrix for D2SIG/DABS_POUT_THAD/DN_JETS between the 2th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 267">Table 267</a> ) <li>Matrix for D2SIG/DABS_POUT_THAD/DN_JETS between the 2th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 268">Table 268</a> ) <li>Matrix for D2SIG/DABS_POUT_THAD/DN_JETS between the 3th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 269">Table 269</a> ) <li>Matrix for D2SIG/DABS_POUT_THAD/DN_JETS between the 3th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 270">Table 270</a> ) <li>Matrix for D2SIG/DABS_POUT_THAD/DN_JETS between the 3th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 271">Table 271</a> ) <li>Matrix for D2SIG/DABS_POUT_THAD/DN_JETS between the 4th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 272">Table 272</a> ) <li>Matrix for D2SIG/DABS_POUT_THAD/DN_JETS between the 4th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 273">Table 273</a> ) <li>Matrix for D2SIG/DABS_POUT_THAD/DN_JETS between the 4th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 274">Table 274</a> ) <li>Matrix for D2SIG/DABS_POUT_THAD/DN_JETS between the 4th and 4th bins of N_JETS (<a href="95758?version=1&table=Table 275">Table 275</a> ) <li>Matrix for 1/SIG*D2SIG/DDPHI_TTBAR/DN_JETS between the 1th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 280">Table 280</a> ) <li>Matrix for 1/SIG*D2SIG/DDPHI_TTBAR/DN_JETS between the 2th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 281">Table 281</a> ) <li>Matrix for 1/SIG*D2SIG/DDPHI_TTBAR/DN_JETS between the 2th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 282">Table 282</a> ) <li>Matrix for 1/SIG*D2SIG/DDPHI_TTBAR/DN_JETS between the 3th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 283">Table 283</a> ) <li>Matrix for 1/SIG*D2SIG/DDPHI_TTBAR/DN_JETS between the 3th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 284">Table 284</a> ) <li>Matrix for 1/SIG*D2SIG/DDPHI_TTBAR/DN_JETS between the 3th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 285">Table 285</a> ) <li>Matrix for 1/SIG*D2SIG/DDPHI_TTBAR/DN_JETS between the 4th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 286">Table 286</a> ) <li>Matrix for 1/SIG*D2SIG/DDPHI_TTBAR/DN_JETS between the 4th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 287">Table 287</a> ) <li>Matrix for 1/SIG*D2SIG/DDPHI_TTBAR/DN_JETS between the 4th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 288">Table 288</a> ) <li>Matrix for 1/SIG*D2SIG/DDPHI_TTBAR/DN_JETS between the 4th and 4th bins of N_JETS (<a href="95758?version=1&table=Table 289">Table 289</a> ) <li>Matrix for D2SIG/DDPHI_TTBAR/DN_JETS between the 1th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 294">Table 294</a> ) <li>Matrix for D2SIG/DDPHI_TTBAR/DN_JETS between the 2th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 295">Table 295</a> ) <li>Matrix for D2SIG/DDPHI_TTBAR/DN_JETS between the 2th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 296">Table 296</a> ) <li>Matrix for D2SIG/DDPHI_TTBAR/DN_JETS between the 3th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 297">Table 297</a> ) <li>Matrix for D2SIG/DDPHI_TTBAR/DN_JETS between the 3th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 298">Table 298</a> ) <li>Matrix for D2SIG/DDPHI_TTBAR/DN_JETS between the 3th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 299">Table 299</a> ) <li>Matrix for D2SIG/DDPHI_TTBAR/DN_JETS between the 4th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 300">Table 300</a> ) <li>Matrix for D2SIG/DDPHI_TTBAR/DN_JETS between the 4th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 301">Table 301</a> ) <li>Matrix for D2SIG/DDPHI_TTBAR/DN_JETS between the 4th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 302">Table 302</a> ) <li>Matrix for D2SIG/DDPHI_TTBAR/DN_JETS between the 4th and 4th bins of N_JETS (<a href="95758?version=1&table=Table 303">Table 303</a> ) <li>Matrix for 1/SIG*D2SIG/DHT_TTBAR/DN_JETS between the 1th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 308">Table 308</a> ) <li>Matrix for 1/SIG*D2SIG/DHT_TTBAR/DN_JETS between the 2th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 309">Table 309</a> ) <li>Matrix for 1/SIG*D2SIG/DHT_TTBAR/DN_JETS between the 2th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 310">Table 310</a> ) <li>Matrix for 1/SIG*D2SIG/DHT_TTBAR/DN_JETS between the 3th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 311">Table 311</a> ) <li>Matrix for 1/SIG*D2SIG/DHT_TTBAR/DN_JETS between the 3th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 312">Table 312</a> ) <li>Matrix for 1/SIG*D2SIG/DHT_TTBAR/DN_JETS between the 3th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 313">Table 313</a> ) <li>Matrix for 1/SIG*D2SIG/DHT_TTBAR/DN_JETS between the 4th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 314">Table 314</a> ) <li>Matrix for 1/SIG*D2SIG/DHT_TTBAR/DN_JETS between the 4th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 315">Table 315</a> ) <li>Matrix for 1/SIG*D2SIG/DHT_TTBAR/DN_JETS between the 4th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 316">Table 316</a> ) <li>Matrix for 1/SIG*D2SIG/DHT_TTBAR/DN_JETS between the 4th and 4th bins of N_JETS (<a href="95758?version=1&table=Table 317">Table 317</a> ) <li>Matrix for D2SIG/DHT_TTBAR/DN_JETS between the 1th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 322">Table 322</a> ) <li>Matrix for D2SIG/DHT_TTBAR/DN_JETS between the 2th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 323">Table 323</a> ) <li>Matrix for D2SIG/DHT_TTBAR/DN_JETS between the 2th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 324">Table 324</a> ) <li>Matrix for D2SIG/DHT_TTBAR/DN_JETS between the 3th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 325">Table 325</a> ) <li>Matrix for D2SIG/DHT_TTBAR/DN_JETS between the 3th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 326">Table 326</a> ) <li>Matrix for D2SIG/DHT_TTBAR/DN_JETS between the 3th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 327">Table 327</a> ) <li>Matrix for D2SIG/DHT_TTBAR/DN_JETS between the 4th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 328">Table 328</a> ) <li>Matrix for D2SIG/DHT_TTBAR/DN_JETS between the 4th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 329">Table 329</a> ) <li>Matrix for D2SIG/DHT_TTBAR/DN_JETS between the 4th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 330">Table 330</a> ) <li>Matrix for D2SIG/DHT_TTBAR/DN_JETS between the 4th and 4th bins of N_JETS (<a href="95758?version=1&table=Table 331">Table 331</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_Y_THAD/DN_JETS between the 1th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 336">Table 336</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_Y_THAD/DN_JETS between the 2th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 337">Table 337</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_Y_THAD/DN_JETS between the 2th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 338">Table 338</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_Y_THAD/DN_JETS between the 3th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 339">Table 339</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_Y_THAD/DN_JETS between the 3th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 340">Table 340</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_Y_THAD/DN_JETS between the 3th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 341">Table 341</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_Y_THAD/DN_JETS between the 4th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 342">Table 342</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_Y_THAD/DN_JETS between the 4th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 343">Table 343</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_Y_THAD/DN_JETS between the 4th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 344">Table 344</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_Y_THAD/DN_JETS between the 4th and 4th bins of N_JETS (<a href="95758?version=1&table=Table 345">Table 345</a> ) <li>Matrix for D2SIG/DABS_Y_THAD/DN_JETS between the 1th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 350">Table 350</a> ) <li>Matrix for D2SIG/DABS_Y_THAD/DN_JETS between the 2th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 351">Table 351</a> ) <li>Matrix for D2SIG/DABS_Y_THAD/DN_JETS between the 2th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 352">Table 352</a> ) <li>Matrix for D2SIG/DABS_Y_THAD/DN_JETS between the 3th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 353">Table 353</a> ) <li>Matrix for D2SIG/DABS_Y_THAD/DN_JETS between the 3th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 354">Table 354</a> ) <li>Matrix for D2SIG/DABS_Y_THAD/DN_JETS between the 3th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 355">Table 355</a> ) <li>Matrix for D2SIG/DABS_Y_THAD/DN_JETS between the 4th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 356">Table 356</a> ) <li>Matrix for D2SIG/DABS_Y_THAD/DN_JETS between the 4th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 357">Table 357</a> ) <li>Matrix for D2SIG/DABS_Y_THAD/DN_JETS between the 4th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 358">Table 358</a> ) <li>Matrix for D2SIG/DABS_Y_THAD/DN_JETS between the 4th and 4th bins of N_JETS (<a href="95758?version=1&table=Table 359">Table 359</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_Y_TTBAR/DN_JETS between the 1th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 364">Table 364</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_Y_TTBAR/DN_JETS between the 2th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 365">Table 365</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_Y_TTBAR/DN_JETS between the 2th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 366">Table 366</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_Y_TTBAR/DN_JETS between the 3th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 367">Table 367</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_Y_TTBAR/DN_JETS between the 3th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 368">Table 368</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_Y_TTBAR/DN_JETS between the 3th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 369">Table 369</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_Y_TTBAR/DN_JETS between the 4th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 370">Table 370</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_Y_TTBAR/DN_JETS between the 4th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 371">Table 371</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_Y_TTBAR/DN_JETS between the 4th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 372">Table 372</a> ) <li>Matrix for 1/SIG*D2SIG/DABS_Y_TTBAR/DN_JETS between the 4th and 4th bins of N_JETS (<a href="95758?version=1&table=Table 373">Table 373</a> ) <li>Matrix for D2SIG/DABS_Y_TTBAR/DN_JETS between the 1th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 378">Table 378</a> ) <li>Matrix for D2SIG/DABS_Y_TTBAR/DN_JETS between the 2th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 379">Table 379</a> ) <li>Matrix for D2SIG/DABS_Y_TTBAR/DN_JETS between the 2th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 380">Table 380</a> ) <li>Matrix for D2SIG/DABS_Y_TTBAR/DN_JETS between the 3th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 381">Table 381</a> ) <li>Matrix for D2SIG/DABS_Y_TTBAR/DN_JETS between the 3th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 382">Table 382</a> ) <li>Matrix for D2SIG/DABS_Y_TTBAR/DN_JETS between the 3th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 383">Table 383</a> ) <li>Matrix for D2SIG/DABS_Y_TTBAR/DN_JETS between the 4th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 384">Table 384</a> ) <li>Matrix for D2SIG/DABS_Y_TTBAR/DN_JETS between the 4th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 385">Table 385</a> ) <li>Matrix for D2SIG/DABS_Y_TTBAR/DN_JETS between the 4th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 386">Table 386</a> ) <li>Matrix for D2SIG/DABS_Y_TTBAR/DN_JETS between the 4th and 4th bins of N_JETS (<a href="95758?version=1&table=Table 387">Table 387</a> ) <li>Matrix for 1/SIG*D2SIG/DCHI_TT/DN_JETS between the 1th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 392">Table 392</a> ) <li>Matrix for 1/SIG*D2SIG/DCHI_TT/DN_JETS between the 2th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 393">Table 393</a> ) <li>Matrix for 1/SIG*D2SIG/DCHI_TT/DN_JETS between the 2th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 394">Table 394</a> ) <li>Matrix for 1/SIG*D2SIG/DCHI_TT/DN_JETS between the 3th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 395">Table 395</a> ) <li>Matrix for 1/SIG*D2SIG/DCHI_TT/DN_JETS between the 3th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 396">Table 396</a> ) <li>Matrix for 1/SIG*D2SIG/DCHI_TT/DN_JETS between the 3th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 397">Table 397</a> ) <li>Matrix for 1/SIG*D2SIG/DCHI_TT/DN_JETS between the 4th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 398">Table 398</a> ) <li>Matrix for 1/SIG*D2SIG/DCHI_TT/DN_JETS between the 4th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 399">Table 399</a> ) <li>Matrix for 1/SIG*D2SIG/DCHI_TT/DN_JETS between the 4th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 400">Table 400</a> ) <li>Matrix for 1/SIG*D2SIG/DCHI_TT/DN_JETS between the 4th and 4th bins of N_JETS (<a href="95758?version=1&table=Table 401">Table 401</a> ) <li>Matrix for D2SIG/DCHI_TT/DN_JETS between the 1th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 406">Table 406</a> ) <li>Matrix for D2SIG/DCHI_TT/DN_JETS between the 2th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 407">Table 407</a> ) <li>Matrix for D2SIG/DCHI_TT/DN_JETS between the 2th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 408">Table 408</a> ) <li>Matrix for D2SIG/DCHI_TT/DN_JETS between the 3th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 409">Table 409</a> ) <li>Matrix for D2SIG/DCHI_TT/DN_JETS between the 3th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 410">Table 410</a> ) <li>Matrix for D2SIG/DCHI_TT/DN_JETS between the 3th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 411">Table 411</a> ) <li>Matrix for D2SIG/DCHI_TT/DN_JETS between the 4th and 1th bins of N_JETS (<a href="95758?version=1&table=Table 412">Table 412</a> ) <li>Matrix for D2SIG/DCHI_TT/DN_JETS between the 4th and 2th bins of N_JETS (<a href="95758?version=1&table=Table 413">Table 413</a> ) <li>Matrix for D2SIG/DCHI_TT/DN_JETS between the 4th and 3th bins of N_JETS (<a href="95758?version=1&table=Table 414">Table 414</a> ) <li>Matrix for D2SIG/DCHI_TT/DN_JETS between the 4th and 4th bins of N_JETS (<a href="95758?version=1&table=Table 415">Table 415</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DABS_Y_THAD between the 1th and 1th bins of ABS_Y_THAD (<a href="95758?version=1&table=Table 419">Table 419</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DABS_Y_THAD between the 2th and 1th bins of ABS_Y_THAD (<a href="95758?version=1&table=Table 420">Table 420</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DABS_Y_THAD between the 2th and 2th bins of ABS_Y_THAD (<a href="95758?version=1&table=Table 421">Table 421</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DABS_Y_THAD between the 3th and 1th bins of ABS_Y_THAD (<a href="95758?version=1&table=Table 422">Table 422</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DABS_Y_THAD between the 3th and 2th bins of ABS_Y_THAD (<a href="95758?version=1&table=Table 423">Table 423</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DABS_Y_THAD between the 3th and 3th bins of ABS_Y_THAD (<a href="95758?version=1&table=Table 424">Table 424</a> ) <li>Matrix for D2SIG/DPT_THAD/DABS_Y_THAD between the 1th and 1th bins of ABS_Y_THAD (<a href="95758?version=1&table=Table 428">Table 428</a> ) <li>Matrix for D2SIG/DPT_THAD/DABS_Y_THAD between the 2th and 1th bins of ABS_Y_THAD (<a href="95758?version=1&table=Table 429">Table 429</a> ) <li>Matrix for D2SIG/DPT_THAD/DABS_Y_THAD between the 2th and 2th bins of ABS_Y_THAD (<a href="95758?version=1&table=Table 430">Table 430</a> ) <li>Matrix for D2SIG/DPT_THAD/DABS_Y_THAD between the 3th and 1th bins of ABS_Y_THAD (<a href="95758?version=1&table=Table 431">Table 431</a> ) <li>Matrix for D2SIG/DPT_THAD/DABS_Y_THAD between the 3th and 2th bins of ABS_Y_THAD (<a href="95758?version=1&table=Table 432">Table 432</a> ) <li>Matrix for D2SIG/DPT_THAD/DABS_Y_THAD between the 3th and 3th bins of ABS_Y_THAD (<a href="95758?version=1&table=Table 433">Table 433</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 1th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 438">Table 438</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 2th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 439">Table 439</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 2th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 440">Table 440</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 3th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 441">Table 441</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 3th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 442">Table 442</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 3th and 3th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 443">Table 443</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 4th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 444">Table 444</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 4th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 445">Table 445</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 4th and 3th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 446">Table 446</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 447">Table 447</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 1th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 452">Table 452</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 2th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 453">Table 453</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 2th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 454">Table 454</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 3th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 455">Table 455</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 3th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 456">Table 456</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 3th and 3th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 457">Table 457</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 4th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 458">Table 458</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 4th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 459">Table 459</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 4th and 3th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 460">Table 460</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 461">Table 461</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 466">Table 466</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 467">Table 467</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 468">Table 468</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 469">Table 469</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 470">Table 470</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3th and 3th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 471">Table 471</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 4th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 472">Table 472</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 4th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 473">Table 473</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 4th and 3th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 474">Table 474</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 475">Table 475</a> ) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 480">Table 480</a> ) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 481">Table 481</a> ) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 482">Table 482</a> ) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 483">Table 483</a> ) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 484">Table 484</a> ) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3th and 3th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 485">Table 485</a> ) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 4th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 486">Table 486</a> ) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 4th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 487">Table 487</a> ) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 4th and 3th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 488">Table 488</a> ) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 489">Table 489</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DPT_TTBAR between the 1th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 494">Table 494</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DPT_TTBAR between the 2th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 495">Table 495</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DPT_TTBAR between the 2th and 2th bins of PT_TTBAR (<a href="95758?version=1&table=Table 496">Table 496</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DPT_TTBAR between the 3th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 497">Table 497</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DPT_TTBAR between the 3th and 2th bins of PT_TTBAR (<a href="95758?version=1&table=Table 498">Table 498</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DPT_TTBAR between the 3th and 3th bins of PT_TTBAR (<a href="95758?version=1&table=Table 499">Table 499</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DPT_TTBAR between the 4th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 500">Table 500</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DPT_TTBAR between the 4th and 2th bins of PT_TTBAR (<a href="95758?version=1&table=Table 501">Table 501</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DPT_TTBAR between the 4th and 3th bins of PT_TTBAR (<a href="95758?version=1&table=Table 502">Table 502</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DPT_TTBAR between the 4th and 4th bins of PT_TTBAR (<a href="95758?version=1&table=Table 503">Table 503</a> ) <li>Matrix for D2SIG/DPT_THAD/DPT_TTBAR between the 1th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 508">Table 508</a> ) <li>Matrix for D2SIG/DPT_THAD/DPT_TTBAR between the 2th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 509">Table 509</a> ) <li>Matrix for D2SIG/DPT_THAD/DPT_TTBAR between the 2th and 2th bins of PT_TTBAR (<a href="95758?version=1&table=Table 510">Table 510</a> ) <li>Matrix for D2SIG/DPT_THAD/DPT_TTBAR between the 3th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 511">Table 511</a> ) <li>Matrix for D2SIG/DPT_THAD/DPT_TTBAR between the 3th and 2th bins of PT_TTBAR (<a href="95758?version=1&table=Table 512">Table 512</a> ) <li>Matrix for D2SIG/DPT_THAD/DPT_TTBAR between the 3th and 3th bins of PT_TTBAR (<a href="95758?version=1&table=Table 513">Table 513</a> ) <li>Matrix for D2SIG/DPT_THAD/DPT_TTBAR between the 4th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 514">Table 514</a> ) <li>Matrix for D2SIG/DPT_THAD/DPT_TTBAR between the 4th and 2th bins of PT_TTBAR (<a href="95758?version=1&table=Table 515">Table 515</a> ) <li>Matrix for D2SIG/DPT_THAD/DPT_TTBAR between the 4th and 3th bins of PT_TTBAR (<a href="95758?version=1&table=Table 516">Table 516</a> ) <li>Matrix for D2SIG/DPT_THAD/DPT_TTBAR between the 4th and 4th bins of PT_TTBAR (<a href="95758?version=1&table=Table 517">Table 517</a> ) </ul><br/> <i>Boosted:</i><br/> <u>1D:</u><br/> Spectra:<br/> <ul><br/> <li>1/SIG*DSIG/DPT_THAD (<a href="95758?version=1&table=Table 840">Table 840</a> ) <li>DSIG/DPT_THAD (<a href="95758?version=1&table=Table 842">Table 842</a> ) <li>1/SIG*DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 844">Table 844</a> ) <li>DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 846">Table 846</a> ) <li>1/SIG*DSIG/DPT_T1 (<a href="95758?version=1&table=Table 848">Table 848</a> ) <li>DSIG/DPT_T1 (<a href="95758?version=1&table=Table 850">Table 850</a> ) <li>1/SIG*DSIG/DPT_T2 (<a href="95758?version=1&table=Table 852">Table 852</a> ) <li>DSIG/DPT_T2 (<a href="95758?version=1&table=Table 854">Table 854</a> ) <li>1/SIG*DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 856">Table 856</a> ) <li>DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 858">Table 858</a> ) <li>1/SIG*DSIG/DABS_Y_TTBAR (<a href="95758?version=1&table=Table 860">Table 860</a> ) <li>DSIG/DABS_Y_TTBAR (<a href="95758?version=1&table=Table 862">Table 862</a> ) <li>1/SIG*DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 864">Table 864</a> ) <li>DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 866">Table 866</a> ) <li>1/SIG*DSIG/DCHI_TT (<a href="95758?version=1&table=Table 868">Table 868</a> ) <li>DSIG/DCHI_TT (<a href="95758?version=1&table=Table 870">Table 870</a> ) <li>1/SIG*DSIG/DABS_POUT_TLEP (<a href="95758?version=1&table=Table 872">Table 872</a> ) <li>DSIG/DABS_POUT_TLEP (<a href="95758?version=1&table=Table 874">Table 874</a> ) <li>1/SIG*DSIG/DHT_TTBAR (<a href="95758?version=1&table=Table 876">Table 876</a> ) <li>DSIG/DHT_TTBAR (<a href="95758?version=1&table=Table 878">Table 878</a> ) <li>1/SIG*DSIG/DN_EXTRAJETS (<a href="95758?version=1&table=Table 880">Table 880</a> ) <li>DSIG/DN_EXTRAJETS (<a href="95758?version=1&table=Table 882">Table 882</a> ) <li>1/SIG*DSIG/DN_SUBJETS (<a href="95758?version=1&table=Table 884">Table 884</a> ) <li>DSIG/DN_SUBJETS (<a href="95758?version=1&table=Table 886">Table 886</a> ) <li>SIG (<a href="95758?version=1&table=Table 888">Table 888</a> ) </ul><br/> Covariances:<br/> <ul><br/> <li>1/SIG*DSIG/DPT_THAD (<a href="95758?version=1&table=Table 841">Table 841</a> ) <li>DSIG/DPT_THAD (<a href="95758?version=1&table=Table 843">Table 843</a> ) <li>1/SIG*DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 845">Table 845</a> ) <li>DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 847">Table 847</a> ) <li>1/SIG*DSIG/DPT_T1 (<a href="95758?version=1&table=Table 849">Table 849</a> ) <li>DSIG/DPT_T1 (<a href="95758?version=1&table=Table 851">Table 851</a> ) <li>1/SIG*DSIG/DPT_T2 (<a href="95758?version=1&table=Table 853">Table 853</a> ) <li>DSIG/DPT_T2 (<a href="95758?version=1&table=Table 855">Table 855</a> ) <li>1/SIG*DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 857">Table 857</a> ) <li>DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 859">Table 859</a> ) <li>1/SIG*DSIG/DABS_Y_TTBAR (<a href="95758?version=1&table=Table 861">Table 861</a> ) <li>DSIG/DABS_Y_TTBAR (<a href="95758?version=1&table=Table 863">Table 863</a> ) <li>1/SIG*DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 865">Table 865</a> ) <li>DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 867">Table 867</a> ) <li>1/SIG*DSIG/DCHI_TT (<a href="95758?version=1&table=Table 869">Table 869</a> ) <li>DSIG/DCHI_TT (<a href="95758?version=1&table=Table 871">Table 871</a> ) <li>1/SIG*DSIG/DABS_POUT_TLEP (<a href="95758?version=1&table=Table 873">Table 873</a> ) <li>DSIG/DABS_POUT_TLEP (<a href="95758?version=1&table=Table 875">Table 875</a> ) <li>1/SIG*DSIG/DHT_TTBAR (<a href="95758?version=1&table=Table 877">Table 877</a> ) <li>DSIG/DHT_TTBAR (<a href="95758?version=1&table=Table 879">Table 879</a> ) <li>1/SIG*DSIG/DN_EXTRAJETS (<a href="95758?version=1&table=Table 881">Table 881</a> ) <li>DSIG/DN_EXTRAJETS (<a href="95758?version=1&table=Table 883">Table 883</a> ) <li>1/SIG*DSIG/DN_SUBJETS (<a href="95758?version=1&table=Table 885">Table 885</a> ) <li>DSIG/DN_SUBJETS (<a href="95758?version=1&table=Table 887">Table 887</a> ) </ul><br/> Inter-spectra correlations:<br/> <ul><br/> <li>Statistical correlation between DSIG/DPT_THAD and DSIG/DPT_THAD (<a href="95758?version=1&table=Table 1029">Table 1029</a> ) <li>Statistical correlation between DSIG/DABS_Y_THAD and DSIG/DPT_THAD (<a href="95758?version=1&table=Table 1030">Table 1030</a> ) <li>Statistical correlation between DSIG/DABS_Y_THAD and DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 1031">Table 1031</a> ) <li>Statistical correlation between DSIG/DPT_T1 and DSIG/DPT_THAD (<a href="95758?version=1&table=Table 1032">Table 1032</a> ) <li>Statistical correlation between DSIG/DPT_T1 and DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 1033">Table 1033</a> ) <li>Statistical correlation between DSIG/DPT_T1 and DSIG/DPT_T1 (<a href="95758?version=1&table=Table 1034">Table 1034</a> ) <li>Statistical correlation between DSIG/DPT_T2 and DSIG/DPT_THAD (<a href="95758?version=1&table=Table 1035">Table 1035</a> ) <li>Statistical correlation between DSIG/DPT_T2 and DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 1036">Table 1036</a> ) <li>Statistical correlation between DSIG/DPT_T2 and DSIG/DPT_T1 (<a href="95758?version=1&table=Table 1037">Table 1037</a> ) <li>Statistical correlation between DSIG/DPT_T2 and DSIG/DPT_T2 (<a href="95758?version=1&table=Table 1038">Table 1038</a> ) <li>Statistical correlation between DSIG/DPT_TTBAR and DSIG/DPT_THAD (<a href="95758?version=1&table=Table 1039">Table 1039</a> ) <li>Statistical correlation between DSIG/DPT_TTBAR and DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 1040">Table 1040</a> ) <li>Statistical correlation between DSIG/DPT_TTBAR and DSIG/DPT_T1 (<a href="95758?version=1&table=Table 1041">Table 1041</a> ) <li>Statistical correlation between DSIG/DPT_TTBAR and DSIG/DPT_T2 (<a href="95758?version=1&table=Table 1042">Table 1042</a> ) <li>Statistical correlation between DSIG/DPT_TTBAR and DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 1043">Table 1043</a> ) <li>Statistical correlation between DSIG/DABS_Y_TTBAR and DSIG/DPT_THAD (<a href="95758?version=1&table=Table 1044">Table 1044</a> ) <li>Statistical correlation between DSIG/DABS_Y_TTBAR and DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 1045">Table 1045</a> ) <li>Statistical correlation between DSIG/DABS_Y_TTBAR and DSIG/DPT_T1 (<a href="95758?version=1&table=Table 1046">Table 1046</a> ) <li>Statistical correlation between DSIG/DABS_Y_TTBAR and DSIG/DPT_T2 (<a href="95758?version=1&table=Table 1047">Table 1047</a> ) <li>Statistical correlation between DSIG/DABS_Y_TTBAR and DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 1048">Table 1048</a> ) <li>Statistical correlation between DSIG/DABS_Y_TTBAR and DSIG/DABS_Y_TTBAR (<a href="95758?version=1&table=Table 1049">Table 1049</a> ) <li>Statistical correlation between DSIG/DM_TTBAR and DSIG/DPT_THAD (<a href="95758?version=1&table=Table 1050">Table 1050</a> ) <li>Statistical correlation between DSIG/DM_TTBAR and DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 1051">Table 1051</a> ) <li>Statistical correlation between DSIG/DM_TTBAR and DSIG/DPT_T1 (<a href="95758?version=1&table=Table 1052">Table 1052</a> ) <li>Statistical correlation between DSIG/DM_TTBAR and DSIG/DPT_T2 (<a href="95758?version=1&table=Table 1053">Table 1053</a> ) <li>Statistical correlation between DSIG/DM_TTBAR and DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 1054">Table 1054</a> ) <li>Statistical correlation between DSIG/DM_TTBAR and DSIG/DABS_Y_TTBAR (<a href="95758?version=1&table=Table 1055">Table 1055</a> ) <li>Statistical correlation between DSIG/DM_TTBAR and DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 1056">Table 1056</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DPT_THAD (<a href="95758?version=1&table=Table 1057">Table 1057</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 1058">Table 1058</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DPT_T1 (<a href="95758?version=1&table=Table 1059">Table 1059</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DPT_T2 (<a href="95758?version=1&table=Table 1060">Table 1060</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 1061">Table 1061</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DABS_Y_TTBAR (<a href="95758?version=1&table=Table 1062">Table 1062</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 1063">Table 1063</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DCHI_TT (<a href="95758?version=1&table=Table 1064">Table 1064</a> ) <li>Statistical correlation between DSIG/DABS_POUT_TLEP and DSIG/DPT_THAD (<a href="95758?version=1&table=Table 1065">Table 1065</a> ) <li>Statistical correlation between DSIG/DABS_POUT_TLEP and DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 1066">Table 1066</a> ) <li>Statistical correlation between DSIG/DABS_POUT_TLEP and DSIG/DPT_T1 (<a href="95758?version=1&table=Table 1067">Table 1067</a> ) <li>Statistical correlation between DSIG/DABS_POUT_TLEP and DSIG/DPT_T2 (<a href="95758?version=1&table=Table 1068">Table 1068</a> ) <li>Statistical correlation between DSIG/DABS_POUT_TLEP and DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 1069">Table 1069</a> ) <li>Statistical correlation between DSIG/DABS_POUT_TLEP and DSIG/DABS_Y_TTBAR (<a href="95758?version=1&table=Table 1070">Table 1070</a> ) <li>Statistical correlation between DSIG/DABS_POUT_TLEP and DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 1071">Table 1071</a> ) <li>Statistical correlation between DSIG/DABS_POUT_TLEP and DSIG/DCHI_TT (<a href="95758?version=1&table=Table 1072">Table 1072</a> ) <li>Statistical correlation between DSIG/DABS_POUT_TLEP and DSIG/DABS_POUT_TLEP (<a href="95758?version=1&table=Table 1073">Table 1073</a> ) <li>Statistical correlation between DSIG/DHT_TTBAR and DSIG/DPT_THAD (<a href="95758?version=1&table=Table 1074">Table 1074</a> ) <li>Statistical correlation between DSIG/DHT_TTBAR and DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 1075">Table 1075</a> ) <li>Statistical correlation between DSIG/DHT_TTBAR and DSIG/DPT_T1 (<a href="95758?version=1&table=Table 1076">Table 1076</a> ) <li>Statistical correlation between DSIG/DHT_TTBAR and DSIG/DPT_T2 (<a href="95758?version=1&table=Table 1077">Table 1077</a> ) <li>Statistical correlation between DSIG/DHT_TTBAR and DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 1078">Table 1078</a> ) <li>Statistical correlation between DSIG/DHT_TTBAR and DSIG/DABS_Y_TTBAR (<a href="95758?version=1&table=Table 1079">Table 1079</a> ) <li>Statistical correlation between DSIG/DHT_TTBAR and DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 1080">Table 1080</a> ) <li>Statistical correlation between DSIG/DHT_TTBAR and DSIG/DCHI_TT (<a href="95758?version=1&table=Table 1081">Table 1081</a> ) <li>Statistical correlation between DSIG/DHT_TTBAR and DSIG/DABS_POUT_TLEP (<a href="95758?version=1&table=Table 1082">Table 1082</a> ) <li>Statistical correlation between DSIG/DHT_TTBAR and DSIG/DHT_TTBAR (<a href="95758?version=1&table=Table 1083">Table 1083</a> ) <li>Statistical correlation between DSIG/DN_EXTRAJETS and DSIG/DPT_THAD (<a href="95758?version=1&table=Table 1084">Table 1084</a> ) <li>Statistical correlation between DSIG/DN_EXTRAJETS and DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 1085">Table 1085</a> ) <li>Statistical correlation between DSIG/DN_EXTRAJETS and DSIG/DPT_T1 (<a href="95758?version=1&table=Table 1086">Table 1086</a> ) <li>Statistical correlation between DSIG/DN_EXTRAJETS and DSIG/DPT_T2 (<a href="95758?version=1&table=Table 1087">Table 1087</a> ) <li>Statistical correlation between DSIG/DN_EXTRAJETS and DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 1088">Table 1088</a> ) <li>Statistical correlation between DSIG/DN_EXTRAJETS and DSIG/DABS_Y_TTBAR (<a href="95758?version=1&table=Table 1089">Table 1089</a> ) <li>Statistical correlation between DSIG/DN_EXTRAJETS and DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 1090">Table 1090</a> ) <li>Statistical correlation between DSIG/DN_EXTRAJETS and DSIG/DCHI_TT (<a href="95758?version=1&table=Table 1091">Table 1091</a> ) <li>Statistical correlation between DSIG/DN_EXTRAJETS and DSIG/DABS_POUT_TLEP (<a href="95758?version=1&table=Table 1092">Table 1092</a> ) <li>Statistical correlation between DSIG/DN_EXTRAJETS and DSIG/DHT_TTBAR (<a href="95758?version=1&table=Table 1093">Table 1093</a> ) <li>Statistical correlation between DSIG/DN_EXTRAJETS and DSIG/DN_EXTRAJETS (<a href="95758?version=1&table=Table 1094">Table 1094</a> ) <li>Statistical correlation between DSIG/DN_SUBJETS and DSIG/DPT_THAD (<a href="95758?version=1&table=Table 1095">Table 1095</a> ) <li>Statistical correlation between DSIG/DN_SUBJETS and DSIG/DABS_Y_THAD (<a href="95758?version=1&table=Table 1096">Table 1096</a> ) <li>Statistical correlation between DSIG/DN_SUBJETS and DSIG/DPT_T1 (<a href="95758?version=1&table=Table 1097">Table 1097</a> ) <li>Statistical correlation between DSIG/DN_SUBJETS and DSIG/DPT_T2 (<a href="95758?version=1&table=Table 1098">Table 1098</a> ) <li>Statistical correlation between DSIG/DN_SUBJETS and DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 1099">Table 1099</a> ) <li>Statistical correlation between DSIG/DN_SUBJETS and DSIG/DABS_Y_TTBAR (<a href="95758?version=1&table=Table 1100">Table 1100</a> ) <li>Statistical correlation between DSIG/DN_SUBJETS and DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 1101">Table 1101</a> ) <li>Statistical correlation between DSIG/DN_SUBJETS and DSIG/DCHI_TT (<a href="95758?version=1&table=Table 1102">Table 1102</a> ) <li>Statistical correlation between DSIG/DN_SUBJETS and DSIG/DABS_POUT_TLEP (<a href="95758?version=1&table=Table 1103">Table 1103</a> ) <li>Statistical correlation between DSIG/DN_SUBJETS and DSIG/DHT_TTBAR (<a href="95758?version=1&table=Table 1104">Table 1104</a> ) <li>Statistical correlation between DSIG/DN_SUBJETS and DSIG/DN_EXTRAJETS (<a href="95758?version=1&table=Table 1105">Table 1105</a> ) <li>Statistical correlation between DSIG/DN_SUBJETS and DSIG/DN_SUBJETS (<a href="95758?version=1&table=Table 1106">Table 1106</a> ) </ul><br/> <u>2D:</u><br/> Spectra:<br/> <ul><br/> <li>1/SIG*D2SIG/DPT_THAD/DPT_TTBAR ( 0.0 GeV < PT_TTBAR < 40.0 GeV) (<a href="95758?version=1&table=Table 889">Table 889</a> ) <li>1/SIG*D2SIG/DPT_THAD/DPT_TTBAR ( 40.0 GeV < PT_TTBAR < 150.0 GeV) (<a href="95758?version=1&table=Table 890">Table 890</a> ) <li>1/SIG*D2SIG/DPT_THAD/DPT_TTBAR ( 150.0 GeV < PT_TTBAR < 1000.0 GeV) (<a href="95758?version=1&table=Table 891">Table 891</a> ) <li>D2SIG/DPT_THAD/DPT_TTBAR ( 0.0 GeV < PT_TTBAR < 40.0 GeV) (<a href="95758?version=1&table=Table 898">Table 898</a> ) <li>D2SIG/DPT_THAD/DPT_TTBAR ( 40.0 GeV < PT_TTBAR < 150.0 GeV) (<a href="95758?version=1&table=Table 899">Table 899</a> ) <li>D2SIG/DPT_THAD/DPT_TTBAR ( 150.0 GeV < PT_TTBAR < 1000.0 GeV) (<a href="95758?version=1&table=Table 900">Table 900</a> ) <li>1/SIG*D2SIG/DPT_THAD/DABS_Y_TTBAR ( 0.0 < ABS_Y_TTBAR < 1.0 ) (<a href="95758?version=1&table=Table 907">Table 907</a> ) <li>1/SIG*D2SIG/DPT_THAD/DABS_Y_TTBAR ( 1.0 < ABS_Y_TTBAR < 2.0 ) (<a href="95758?version=1&table=Table 908">Table 908</a> ) <li>D2SIG/DPT_THAD/DABS_Y_TTBAR ( 0.0 < ABS_Y_TTBAR < 1.0 ) (<a href="95758?version=1&table=Table 912">Table 912</a> ) <li>D2SIG/DPT_THAD/DABS_Y_TTBAR ( 1.0 < ABS_Y_TTBAR < 2.0 ) (<a href="95758?version=1&table=Table 913">Table 913</a> ) <li>1/SIG*D2SIG/DPT_THAD/DABS_Y_THAD ( 0.0 < ABS_Y_THAD < 1.0 ) (<a href="95758?version=1&table=Table 917">Table 917</a> ) <li>1/SIG*D2SIG/DPT_THAD/DABS_Y_THAD ( 1.0 < ABS_Y_THAD < 2.0 ) (<a href="95758?version=1&table=Table 918">Table 918</a> ) <li>D2SIG/DPT_THAD/DABS_Y_THAD ( 0.0 < ABS_Y_THAD < 1.0 ) (<a href="95758?version=1&table=Table 922">Table 922</a> ) <li>D2SIG/DPT_THAD/DABS_Y_THAD ( 1.0 < ABS_Y_THAD < 2.0 ) (<a href="95758?version=1&table=Table 923">Table 923</a> ) <li>1/SIG*D2SIG/DPT_THAD/DM_TTBAR ( 490.0 GeV < M_TTBAR < 1160.0 GeV) (<a href="95758?version=1&table=Table 927">Table 927</a> ) <li>1/SIG*D2SIG/DPT_THAD/DM_TTBAR ( 1160.0 GeV < M_TTBAR < 3000.0 GeV) (<a href="95758?version=1&table=Table 928">Table 928</a> ) <li>D2SIG/DPT_THAD/DM_TTBAR ( 490.0 GeV < M_TTBAR < 1160.0 GeV) (<a href="95758?version=1&table=Table 932">Table 932</a> ) <li>D2SIG/DPT_THAD/DM_TTBAR ( 1160.0 GeV < M_TTBAR < 3000.0 GeV) (<a href="95758?version=1&table=Table 933">Table 933</a> ) <li>1/SIG*D2SIG/DM_TTBAR/DHT_TTBAR ( 350.0 GeV < HT_TTBAR < 780.0 GeV) (<a href="95758?version=1&table=Table 937">Table 937</a> ) <li>1/SIG*D2SIG/DM_TTBAR/DHT_TTBAR ( 780.0 GeV < HT_TTBAR < 2500.0 GeV) (<a href="95758?version=1&table=Table 938">Table 938</a> ) <li>D2SIG/DM_TTBAR/DHT_TTBAR ( 350.0 GeV < HT_TTBAR < 780.0 GeV) (<a href="95758?version=1&table=Table 942">Table 942</a> ) <li>D2SIG/DM_TTBAR/DHT_TTBAR ( 780.0 GeV < HT_TTBAR < 2500.0 GeV) (<a href="95758?version=1&table=Table 943">Table 943</a> ) <li>1/SIG*D2SIG/DM_TTBAR/DPT_TTBAR ( 0.0 GeV < PT_TTBAR < 40.0 GeV) (<a href="95758?version=1&table=Table 947">Table 947</a> ) <li>1/SIG*D2SIG/DM_TTBAR/DPT_TTBAR ( 40.0 GeV < PT_TTBAR < 150.0 GeV) (<a href="95758?version=1&table=Table 948">Table 948</a> ) <li>1/SIG*D2SIG/DM_TTBAR/DPT_TTBAR ( 150.0 GeV < PT_TTBAR < 1000.0 GeV) (<a href="95758?version=1&table=Table 949">Table 949</a> ) <li>D2SIG/DM_TTBAR/DPT_TTBAR ( 0.0 GeV < PT_TTBAR < 40.0 GeV) (<a href="95758?version=1&table=Table 956">Table 956</a> ) <li>D2SIG/DM_TTBAR/DPT_TTBAR ( 40.0 GeV < PT_TTBAR < 150.0 GeV) (<a href="95758?version=1&table=Table 957">Table 957</a> ) <li>D2SIG/DM_TTBAR/DPT_TTBAR ( 150.0 GeV < PT_TTBAR < 1000.0 GeV) (<a href="95758?version=1&table=Table 958">Table 958</a> ) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR ( 0.0 < ABS_Y_TTBAR < 0.65 ) (<a href="95758?version=1&table=Table 965">Table 965</a> ) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR ( 0.65 < ABS_Y_TTBAR < 1.3 ) (<a href="95758?version=1&table=Table 966">Table 966</a> ) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR ( 1.3 < ABS_Y_TTBAR < 2.0 ) (<a href="95758?version=1&table=Table 967">Table 967</a> ) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR ( 0.0 < ABS_Y_TTBAR < 0.65 ) (<a href="95758?version=1&table=Table 974">Table 974</a> ) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR ( 0.65 < ABS_Y_TTBAR < 1.3 ) (<a href="95758?version=1&table=Table 975">Table 975</a> ) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR ( 1.3 < ABS_Y_TTBAR < 2.0 ) (<a href="95758?version=1&table=Table 976">Table 976</a> ) <li>1/SIG*D2SIG/DPT_THAD/DN_EXTRAJETS (N_EXTRAJETS = 0.5) (<a href="95758?version=1&table=Table 983">Table 983</a> ) <li>1/SIG*D2SIG/DPT_THAD/DN_EXTRAJETS (N_EXTRAJETS = 2.0) (<a href="95758?version=1&table=Table 984">Table 984</a> ) <li>1/SIG*D2SIG/DPT_THAD/DN_EXTRAJETS (N_EXTRAJETS $\geq$ 3.0) (<a href="95758?version=1&table=Table 985">Table 985</a> ) <li>D2SIG/DPT_THAD/DN_EXTRAJETS (N_EXTRAJETS = 0.5) (<a href="95758?version=1&table=Table 992">Table 992</a> ) <li>D2SIG/DPT_THAD/DN_EXTRAJETS (N_EXTRAJETS = 2.0) (<a href="95758?version=1&table=Table 993">Table 993</a> ) <li>D2SIG/DPT_THAD/DN_EXTRAJETS (N_EXTRAJETS $\geq$ 3.0) (<a href="95758?version=1&table=Table 994">Table 994</a> ) <li>1/SIG*D2SIG/DPT_TTBAR/DN_EXTRAJETS (N_EXTRAJETS = 0.5) (<a href="95758?version=1&table=Table 1001">Table 1001</a> ) <li>1/SIG*D2SIG/DPT_TTBAR/DN_EXTRAJETS (N_EXTRAJETS $\geq$ 2.5) (<a href="95758?version=1&table=Table 1002">Table 1002</a> ) <li>D2SIG/DPT_TTBAR/DN_EXTRAJETS (N_EXTRAJETS = 0.5) (<a href="95758?version=1&table=Table 1006">Table 1006</a> ) <li>D2SIG/DPT_TTBAR/DN_EXTRAJETS (N_EXTRAJETS $\geq$ 2.5) (<a href="95758?version=1&table=Table 1007">Table 1007</a> ) <li>1/SIG*D2SIG/DM_TTBAR/DN_EXTRAJETS (N_EXTRAJETS = 0.0) (<a href="95758?version=1&table=Table 1011">Table 1011</a> ) <li>1/SIG*D2SIG/DM_TTBAR/DN_EXTRAJETS (N_EXTRAJETS = 1.0) (<a href="95758?version=1&table=Table 1012">Table 1012</a> ) <li>1/SIG*D2SIG/DM_TTBAR/DN_EXTRAJETS (N_EXTRAJETS $\geq$ 2.0) (<a href="95758?version=1&table=Table 1013">Table 1013</a> ) <li>D2SIG/DM_TTBAR/DN_EXTRAJETS (N_EXTRAJETS = 0.0) (<a href="95758?version=1&table=Table 1020">Table 1020</a> ) <li>D2SIG/DM_TTBAR/DN_EXTRAJETS (N_EXTRAJETS = 1.0) (<a href="95758?version=1&table=Table 1021">Table 1021</a> ) <li>D2SIG/DM_TTBAR/DN_EXTRAJETS (N_EXTRAJETS $\geq$ 2.0) (<a href="95758?version=1&table=Table 1022">Table 1022</a> ) </ul><br/> Covariances:<br/> <ul><br/> <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DPT_TTBAR between the 1th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 892">Table 892</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DPT_TTBAR between the 2th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 893">Table 893</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DPT_TTBAR between the 2th and 2th bins of PT_TTBAR (<a href="95758?version=1&table=Table 894">Table 894</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DPT_TTBAR between the 3th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 895">Table 895</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DPT_TTBAR between the 3th and 2th bins of PT_TTBAR (<a href="95758?version=1&table=Table 896">Table 896</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DPT_TTBAR between the 3th and 3th bins of PT_TTBAR (<a href="95758?version=1&table=Table 897">Table 897</a> ) <li>Matrix for D2SIG/DPT_THAD/DPT_TTBAR between the 1th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 901">Table 901</a> ) <li>Matrix for D2SIG/DPT_THAD/DPT_TTBAR between the 2th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 902">Table 902</a> ) <li>Matrix for D2SIG/DPT_THAD/DPT_TTBAR between the 2th and 2th bins of PT_TTBAR (<a href="95758?version=1&table=Table 903">Table 903</a> ) <li>Matrix for D2SIG/DPT_THAD/DPT_TTBAR between the 3th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 904">Table 904</a> ) <li>Matrix for D2SIG/DPT_THAD/DPT_TTBAR between the 3th and 2th bins of PT_TTBAR (<a href="95758?version=1&table=Table 905">Table 905</a> ) <li>Matrix for D2SIG/DPT_THAD/DPT_TTBAR between the 3th and 3th bins of PT_TTBAR (<a href="95758?version=1&table=Table 906">Table 906</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DABS_Y_TTBAR between the 1th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 909">Table 909</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DABS_Y_TTBAR between the 2th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 910">Table 910</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DABS_Y_TTBAR between the 2th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 911">Table 911</a> ) <li>Matrix for D2SIG/DPT_THAD/DABS_Y_TTBAR between the 1th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 914">Table 914</a> ) <li>Matrix for D2SIG/DPT_THAD/DABS_Y_TTBAR between the 2th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 915">Table 915</a> ) <li>Matrix for D2SIG/DPT_THAD/DABS_Y_TTBAR between the 2th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 916">Table 916</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DABS_Y_THAD between the 1th and 1th bins of ABS_Y_THAD (<a href="95758?version=1&table=Table 919">Table 919</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DABS_Y_THAD between the 2th and 1th bins of ABS_Y_THAD (<a href="95758?version=1&table=Table 920">Table 920</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DABS_Y_THAD between the 2th and 2th bins of ABS_Y_THAD (<a href="95758?version=1&table=Table 921">Table 921</a> ) <li>Matrix for D2SIG/DPT_THAD/DABS_Y_THAD between the 1th and 1th bins of ABS_Y_THAD (<a href="95758?version=1&table=Table 924">Table 924</a> ) <li>Matrix for D2SIG/DPT_THAD/DABS_Y_THAD between the 2th and 1th bins of ABS_Y_THAD (<a href="95758?version=1&table=Table 925">Table 925</a> ) <li>Matrix for D2SIG/DPT_THAD/DABS_Y_THAD between the 2th and 2th bins of ABS_Y_THAD (<a href="95758?version=1&table=Table 926">Table 926</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DM_TTBAR between the 1th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 929">Table 929</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DM_TTBAR between the 2th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 930">Table 930</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DM_TTBAR between the 2th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 931">Table 931</a> ) <li>Matrix for D2SIG/DPT_THAD/DM_TTBAR between the 1th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 934">Table 934</a> ) <li>Matrix for D2SIG/DPT_THAD/DM_TTBAR between the 2th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 935">Table 935</a> ) <li>Matrix for D2SIG/DPT_THAD/DM_TTBAR between the 2th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 936">Table 936</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DHT_TTBAR between the 1th and 1th bins of HT_TTBAR (<a href="95758?version=1&table=Table 939">Table 939</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DHT_TTBAR between the 2th and 1th bins of HT_TTBAR (<a href="95758?version=1&table=Table 940">Table 940</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DHT_TTBAR between the 2th and 2th bins of HT_TTBAR (<a href="95758?version=1&table=Table 941">Table 941</a> ) <li>Matrix for D2SIG/DM_TTBAR/DHT_TTBAR between the 1th and 1th bins of HT_TTBAR (<a href="95758?version=1&table=Table 944">Table 944</a> ) <li>Matrix for D2SIG/DM_TTBAR/DHT_TTBAR between the 2th and 1th bins of HT_TTBAR (<a href="95758?version=1&table=Table 945">Table 945</a> ) <li>Matrix for D2SIG/DM_TTBAR/DHT_TTBAR between the 2th and 2th bins of HT_TTBAR (<a href="95758?version=1&table=Table 946">Table 946</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_TTBAR between the 1th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 950">Table 950</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_TTBAR between the 2th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 951">Table 951</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_TTBAR between the 2th and 2th bins of PT_TTBAR (<a href="95758?version=1&table=Table 952">Table 952</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_TTBAR between the 3th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 953">Table 953</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_TTBAR between the 3th and 2th bins of PT_TTBAR (<a href="95758?version=1&table=Table 954">Table 954</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_TTBAR between the 3th and 3th bins of PT_TTBAR (<a href="95758?version=1&table=Table 955">Table 955</a> ) <li>Matrix for D2SIG/DM_TTBAR/DPT_TTBAR between the 1th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 959">Table 959</a> ) <li>Matrix for D2SIG/DM_TTBAR/DPT_TTBAR between the 2th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 960">Table 960</a> ) <li>Matrix for D2SIG/DM_TTBAR/DPT_TTBAR between the 2th and 2th bins of PT_TTBAR (<a href="95758?version=1&table=Table 961">Table 961</a> ) <li>Matrix for D2SIG/DM_TTBAR/DPT_TTBAR between the 3th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 962">Table 962</a> ) <li>Matrix for D2SIG/DM_TTBAR/DPT_TTBAR between the 3th and 2th bins of PT_TTBAR (<a href="95758?version=1&table=Table 963">Table 963</a> ) <li>Matrix for D2SIG/DM_TTBAR/DPT_TTBAR between the 3th and 3th bins of PT_TTBAR (<a href="95758?version=1&table=Table 964">Table 964</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 968">Table 968</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 969">Table 969</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 970">Table 970</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 971">Table 971</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 972">Table 972</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3th and 3th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 973">Table 973</a> ) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 977">Table 977</a> ) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 978">Table 978</a> ) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 979">Table 979</a> ) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 980">Table 980</a> ) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 981">Table 981</a> ) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3th and 3th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 982">Table 982</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DN_EXTRAJETS between the 1th and 1th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 986">Table 986</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DN_EXTRAJETS between the 2th and 1th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 987">Table 987</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DN_EXTRAJETS between the 2th and 2th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 988">Table 988</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DN_EXTRAJETS between the 3th and 1th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 989">Table 989</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DN_EXTRAJETS between the 3th and 2th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 990">Table 990</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_THAD/DN_EXTRAJETS between the 3th and 3th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 991">Table 991</a> ) <li>Matrix for D2SIG/DPT_THAD/DN_EXTRAJETS between the 1th and 1th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 995">Table 995</a> ) <li>Matrix for D2SIG/DPT_THAD/DN_EXTRAJETS between the 2th and 1th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 996">Table 996</a> ) <li>Matrix for D2SIG/DPT_THAD/DN_EXTRAJETS between the 2th and 2th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 997">Table 997</a> ) <li>Matrix for D2SIG/DPT_THAD/DN_EXTRAJETS between the 3th and 1th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 998">Table 998</a> ) <li>Matrix for D2SIG/DPT_THAD/DN_EXTRAJETS between the 3th and 2th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 999">Table 999</a> ) <li>Matrix for D2SIG/DPT_THAD/DN_EXTRAJETS between the 3th and 3th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 1000">Table 1000</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DN_EXTRAJETS between the 1th and 1th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 1003">Table 1003</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DN_EXTRAJETS between the 2th and 1th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 1004">Table 1004</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DN_EXTRAJETS between the 2th and 2th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 1005">Table 1005</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DN_EXTRAJETS between the 1th and 1th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 1008">Table 1008</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DN_EXTRAJETS between the 2th and 1th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 1009">Table 1009</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DN_EXTRAJETS between the 2th and 2th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 1010">Table 1010</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DN_EXTRAJETS between the 1th and 1th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 1014">Table 1014</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DN_EXTRAJETS between the 2th and 1th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 1015">Table 1015</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DN_EXTRAJETS between the 2th and 2th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 1016">Table 1016</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DN_EXTRAJETS between the 3th and 1th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 1017">Table 1017</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DN_EXTRAJETS between the 3th and 2th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 1018">Table 1018</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DN_EXTRAJETS between the 3th and 3th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 1019">Table 1019</a> ) <li>Matrix for D2SIG/DM_TTBAR/DN_EXTRAJETS between the 1th and 1th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 1023">Table 1023</a> ) <li>Matrix for D2SIG/DM_TTBAR/DN_EXTRAJETS between the 2th and 1th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 1024">Table 1024</a> ) <li>Matrix for D2SIG/DM_TTBAR/DN_EXTRAJETS between the 2th and 2th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 1025">Table 1025</a> ) <li>Matrix for D2SIG/DM_TTBAR/DN_EXTRAJETS between the 3th and 1th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 1026">Table 1026</a> ) <li>Matrix for D2SIG/DM_TTBAR/DN_EXTRAJETS between the 3th and 2th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 1027">Table 1027</a> ) <li>Matrix for D2SIG/DM_TTBAR/DN_EXTRAJETS between the 3th and 3th bins of N_EXTRAJETS (<a href="95758?version=1&table=Table 1028">Table 1028</a> ) </ul><br/> <b>Parton level:</b><br/> <i>Resolved:</i><br/> <u>1D:</u><br/> Spectra:<br/> <ul><br/> <li>1/SIG*DSIG/DPT_T (<a href="95758?version=1&table=Table 609">Table 609</a> ) <li>DSIG/DPT_T (<a href="95758?version=1&table=Table 611">Table 611</a> ) <li>1/SIG*DSIG/DABS_Y_T (<a href="95758?version=1&table=Table 613">Table 613</a> ) <li>DSIG/DABS_Y_T (<a href="95758?version=1&table=Table 615">Table 615</a> ) <li>1/SIG*DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 617">Table 617</a> ) <li>DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 619">Table 619</a> ) <li>1/SIG*DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 621">Table 621</a> ) <li>DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 623">Table 623</a> ) <li>1/SIG*DSIG/DABS_Y_TTBAR (<a href="95758?version=1&table=Table 625">Table 625</a> ) <li>DSIG/DABS_Y_TTBAR (<a href="95758?version=1&table=Table 627">Table 627</a> ) <li>1/SIG*DSIG/DABS_Y_BOOST (<a href="95758?version=1&table=Table 629">Table 629</a> ) <li>DSIG/DABS_Y_BOOST (<a href="95758?version=1&table=Table 631">Table 631</a> ) <li>1/SIG*DSIG/DHT_TTBAR (<a href="95758?version=1&table=Table 633">Table 633</a> ) <li>DSIG/DHT_TTBAR (<a href="95758?version=1&table=Table 635">Table 635</a> ) <li>1/SIG*DSIG/DCHI_TT (<a href="95758?version=1&table=Table 637">Table 637</a> ) <li>DSIG/DCHI_TT (<a href="95758?version=1&table=Table 639">Table 639</a> ) </ul><br/> Covariances:<br/> <ul><br/> <li>1/SIG*DSIG/DPT_T (<a href="95758?version=1&table=Table 610">Table 610</a> ) <li>DSIG/DPT_T (<a href="95758?version=1&table=Table 612">Table 612</a> ) <li>1/SIG*DSIG/DABS_Y_T (<a href="95758?version=1&table=Table 614">Table 614</a> ) <li>DSIG/DABS_Y_T (<a href="95758?version=1&table=Table 616">Table 616</a> ) <li>1/SIG*DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 618">Table 618</a> ) <li>DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 620">Table 620</a> ) <li>1/SIG*DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 622">Table 622</a> ) <li>DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 624">Table 624</a> ) <li>1/SIG*DSIG/DABS_Y_TTBAR (<a href="95758?version=1&table=Table 626">Table 626</a> ) <li>DSIG/DABS_Y_TTBAR (<a href="95758?version=1&table=Table 628">Table 628</a> ) <li>1/SIG*DSIG/DABS_Y_BOOST (<a href="95758?version=1&table=Table 630">Table 630</a> ) <li>DSIG/DABS_Y_BOOST (<a href="95758?version=1&table=Table 632">Table 632</a> ) <li>1/SIG*DSIG/DHT_TTBAR (<a href="95758?version=1&table=Table 634">Table 634</a> ) <li>DSIG/DHT_TTBAR (<a href="95758?version=1&table=Table 636">Table 636</a> ) <li>1/SIG*DSIG/DCHI_TT (<a href="95758?version=1&table=Table 638">Table 638</a> ) <li>DSIG/DCHI_TT (<a href="95758?version=1&table=Table 640">Table 640</a> ) </ul><br/> Inter-spectra correlations:<br/> <ul><br/> <li>Statistical correlation between DSIG/DPT_T and DSIG/DPT_T (<a href="95758?version=1&table=Table 799">Table 799</a> ) <li>Statistical correlation between DSIG/DABS_Y_T and DSIG/DPT_T (<a href="95758?version=1&table=Table 800">Table 800</a> ) <li>Statistical correlation between DSIG/DABS_Y_T and DSIG/DABS_Y_T (<a href="95758?version=1&table=Table 801">Table 801</a> ) <li>Statistical correlation between DSIG/DM_TTBAR and DSIG/DPT_T (<a href="95758?version=1&table=Table 802">Table 802</a> ) <li>Statistical correlation between DSIG/DM_TTBAR and DSIG/DABS_Y_T (<a href="95758?version=1&table=Table 803">Table 803</a> ) <li>Statistical correlation between DSIG/DM_TTBAR and DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 804">Table 804</a> ) <li>Statistical correlation between DSIG/DPT_TTBAR and DSIG/DPT_T (<a href="95758?version=1&table=Table 805">Table 805</a> ) <li>Statistical correlation between DSIG/DPT_TTBAR and DSIG/DABS_Y_T (<a href="95758?version=1&table=Table 806">Table 806</a> ) <li>Statistical correlation between DSIG/DPT_TTBAR and DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 807">Table 807</a> ) <li>Statistical correlation between DSIG/DPT_TTBAR and DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 808">Table 808</a> ) <li>Statistical correlation between DSIG/DABS_Y_TTBAR and DSIG/DPT_T (<a href="95758?version=1&table=Table 809">Table 809</a> ) <li>Statistical correlation between DSIG/DABS_Y_TTBAR and DSIG/DABS_Y_T (<a href="95758?version=1&table=Table 810">Table 810</a> ) <li>Statistical correlation between DSIG/DABS_Y_TTBAR and DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 811">Table 811</a> ) <li>Statistical correlation between DSIG/DABS_Y_TTBAR and DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 812">Table 812</a> ) <li>Statistical correlation between DSIG/DABS_Y_TTBAR and DSIG/DABS_Y_TTBAR (<a href="95758?version=1&table=Table 813">Table 813</a> ) <li>Statistical correlation between DSIG/DABS_Y_BOOST and DSIG/DPT_T (<a href="95758?version=1&table=Table 814">Table 814</a> ) <li>Statistical correlation between DSIG/DABS_Y_BOOST and DSIG/DABS_Y_T (<a href="95758?version=1&table=Table 815">Table 815</a> ) <li>Statistical correlation between DSIG/DABS_Y_BOOST and DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 816">Table 816</a> ) <li>Statistical correlation between DSIG/DABS_Y_BOOST and DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 817">Table 817</a> ) <li>Statistical correlation between DSIG/DABS_Y_BOOST and DSIG/DABS_Y_TTBAR (<a href="95758?version=1&table=Table 818">Table 818</a> ) <li>Statistical correlation between DSIG/DABS_Y_BOOST and DSIG/DABS_Y_BOOST (<a href="95758?version=1&table=Table 819">Table 819</a> ) <li>Statistical correlation between DSIG/DHT_TTBAR and DSIG/DPT_T (<a href="95758?version=1&table=Table 820">Table 820</a> ) <li>Statistical correlation between DSIG/DHT_TTBAR and DSIG/DABS_Y_T (<a href="95758?version=1&table=Table 821">Table 821</a> ) <li>Statistical correlation between DSIG/DHT_TTBAR and DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 822">Table 822</a> ) <li>Statistical correlation between DSIG/DHT_TTBAR and DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 823">Table 823</a> ) <li>Statistical correlation between DSIG/DHT_TTBAR and DSIG/DABS_Y_TTBAR (<a href="95758?version=1&table=Table 824">Table 824</a> ) <li>Statistical correlation between DSIG/DHT_TTBAR and DSIG/DABS_Y_BOOST (<a href="95758?version=1&table=Table 825">Table 825</a> ) <li>Statistical correlation between DSIG/DHT_TTBAR and DSIG/DHT_TTBAR (<a href="95758?version=1&table=Table 826">Table 826</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DPT_T (<a href="95758?version=1&table=Table 827">Table 827</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DABS_Y_T (<a href="95758?version=1&table=Table 828">Table 828</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 829">Table 829</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 830">Table 830</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DABS_Y_TTBAR (<a href="95758?version=1&table=Table 831">Table 831</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DABS_Y_BOOST (<a href="95758?version=1&table=Table 832">Table 832</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DHT_TTBAR (<a href="95758?version=1&table=Table 833">Table 833</a> ) <li>Statistical correlation between DSIG/DCHI_TT and DSIG/DCHI_TT (<a href="95758?version=1&table=Table 834">Table 834</a> ) </ul><br/> <u>2D:</u><br/> Spectra:<br/> <ul><br/> <li>1/SIG*D2SIG/DPT_T/DABS_Y_T ( 0.0 < ABS_Y_T < 0.75 ) (<a href="95758?version=1&table=Table 641">Table 641</a> ) <li>1/SIG*D2SIG/DPT_T/DABS_Y_T ( 0.75 < ABS_Y_T < 1.5 ) (<a href="95758?version=1&table=Table 642">Table 642</a> ) <li>1/SIG*D2SIG/DPT_T/DABS_Y_T ( 1.5 < ABS_Y_T < 2.5 ) (<a href="95758?version=1&table=Table 643">Table 643</a> ) <li>D2SIG/DPT_T/DABS_Y_T ( 0.0 < ABS_Y_T < 0.75 ) (<a href="95758?version=1&table=Table 650">Table 650</a> ) <li>D2SIG/DPT_T/DABS_Y_T ( 0.75 < ABS_Y_T < 1.5 ) (<a href="95758?version=1&table=Table 651">Table 651</a> ) <li>D2SIG/DPT_T/DABS_Y_T ( 1.5 < ABS_Y_T < 2.5 ) (<a href="95758?version=1&table=Table 652">Table 652</a> ) <li>1/SIG*D2SIG/DPT_T/DPT_TTBAR ( 0.0 GeV < PT_TTBAR < 80.0 GeV) (<a href="95758?version=1&table=Table 659">Table 659</a> ) <li>1/SIG*D2SIG/DPT_T/DPT_TTBAR ( 80.0 GeV < PT_TTBAR < 180.0 GeV) (<a href="95758?version=1&table=Table 660">Table 660</a> ) <li>1/SIG*D2SIG/DPT_T/DPT_TTBAR ( 180.0 GeV < PT_TTBAR < 330.0 GeV) (<a href="95758?version=1&table=Table 661">Table 661</a> ) <li>1/SIG*D2SIG/DPT_T/DPT_TTBAR ( 330.0 GeV < PT_TTBAR < 800.0 GeV) (<a href="95758?version=1&table=Table 662">Table 662</a> ) <li>D2SIG/DPT_T/DPT_TTBAR ( 0.0 GeV < PT_TTBAR < 80.0 GeV) (<a href="95758?version=1&table=Table 673">Table 673</a> ) <li>D2SIG/DPT_T/DPT_TTBAR ( 80.0 GeV < PT_TTBAR < 180.0 GeV) (<a href="95758?version=1&table=Table 674">Table 674</a> ) <li>D2SIG/DPT_T/DPT_TTBAR ( 180.0 GeV < PT_TTBAR < 330.0 GeV) (<a href="95758?version=1&table=Table 675">Table 675</a> ) <li>D2SIG/DPT_T/DPT_TTBAR ( 330.0 GeV < PT_TTBAR < 800.0 GeV) (<a href="95758?version=1&table=Table 676">Table 676</a> ) <li>1/SIG*D2SIG/DPT_T/DM_TTBAR ( 325.0 GeV < M_TTBAR < 500.0 GeV) (<a href="95758?version=1&table=Table 687">Table 687</a> ) <li>1/SIG*D2SIG/DPT_T/DM_TTBAR ( 500.0 GeV < M_TTBAR < 700.0 GeV) (<a href="95758?version=1&table=Table 688">Table 688</a> ) <li>1/SIG*D2SIG/DPT_T/DM_TTBAR ( 700.0 GeV < M_TTBAR < 1000.0 GeV) (<a href="95758?version=1&table=Table 689">Table 689</a> ) <li>1/SIG*D2SIG/DPT_T/DM_TTBAR ( 1000.0 GeV < M_TTBAR < 2000.0 GeV) (<a href="95758?version=1&table=Table 690">Table 690</a> ) <li>D2SIG/DPT_T/DM_TTBAR ( 325.0 GeV < M_TTBAR < 500.0 GeV) (<a href="95758?version=1&table=Table 701">Table 701</a> ) <li>D2SIG/DPT_T/DM_TTBAR ( 500.0 GeV < M_TTBAR < 700.0 GeV) (<a href="95758?version=1&table=Table 702">Table 702</a> ) <li>D2SIG/DPT_T/DM_TTBAR ( 700.0 GeV < M_TTBAR < 1000.0 GeV) (<a href="95758?version=1&table=Table 703">Table 703</a> ) <li>D2SIG/DPT_T/DM_TTBAR ( 1000.0 GeV < M_TTBAR < 2000.0 GeV) (<a href="95758?version=1&table=Table 704">Table 704</a> ) <li>1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR ( 0.0 GeV < ABS_Y_TTBAR < 0.5 GeV) (<a href="95758?version=1&table=Table 715">Table 715</a> ) <li>1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR ( 0.5 GeV < ABS_Y_TTBAR < 1.1 GeV) (<a href="95758?version=1&table=Table 716">Table 716</a> ) <li>1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR ( 1.1 GeV < ABS_Y_TTBAR < 1.7 GeV) (<a href="95758?version=1&table=Table 717">Table 717</a> ) <li>1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR ( 1.7 GeV < ABS_Y_TTBAR < 2.5 GeV) (<a href="95758?version=1&table=Table 718">Table 718</a> ) <li>D2SIG/DPT_TTBAR/DABS_Y_TTBAR ( 0.0 GeV < ABS_Y_TTBAR < 0.5 GeV) (<a href="95758?version=1&table=Table 729">Table 729</a> ) <li>D2SIG/DPT_TTBAR/DABS_Y_TTBAR ( 0.5 GeV < ABS_Y_TTBAR < 1.1 GeV) (<a href="95758?version=1&table=Table 730">Table 730</a> ) <li>D2SIG/DPT_TTBAR/DABS_Y_TTBAR ( 1.1 GeV < ABS_Y_TTBAR < 1.7 GeV) (<a href="95758?version=1&table=Table 731">Table 731</a> ) <li>D2SIG/DPT_TTBAR/DABS_Y_TTBAR ( 1.7 GeV < ABS_Y_TTBAR < 2.5 GeV) (<a href="95758?version=1&table=Table 732">Table 732</a> ) <li>1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR ( 325.0 GeV < M_TTBAR < 500.0 GeV) (<a href="95758?version=1&table=Table 743">Table 743</a> ) <li>1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR ( 500.0 GeV < M_TTBAR < 700.0 GeV) (<a href="95758?version=1&table=Table 744">Table 744</a> ) <li>1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR ( 700.0 GeV < M_TTBAR < 1000.0 GeV) (<a href="95758?version=1&table=Table 745">Table 745</a> ) <li>1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR ( 1000.0 GeV < M_TTBAR < 2000.0 GeV) (<a href="95758?version=1&table=Table 746">Table 746</a> ) <li>D2SIG/DPT_TTBAR/DM_TTBAR ( 325.0 GeV < M_TTBAR < 500.0 GeV) (<a href="95758?version=1&table=Table 757">Table 757</a> ) <li>D2SIG/DPT_TTBAR/DM_TTBAR ( 500.0 GeV < M_TTBAR < 700.0 GeV) (<a href="95758?version=1&table=Table 758">Table 758</a> ) <li>D2SIG/DPT_TTBAR/DM_TTBAR ( 700.0 GeV < M_TTBAR < 1000.0 GeV) (<a href="95758?version=1&table=Table 759">Table 759</a> ) <li>D2SIG/DPT_TTBAR/DM_TTBAR ( 1000.0 GeV < M_TTBAR < 2000.0 GeV) (<a href="95758?version=1&table=Table 760">Table 760</a> ) <li>1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR ( 0.0 < ABS_Y_TTBAR < 0.5 ) (<a href="95758?version=1&table=Table 771">Table 771</a> ) <li>1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR ( 0.5 < ABS_Y_TTBAR < 1.1 ) (<a href="95758?version=1&table=Table 772">Table 772</a> ) <li>1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR ( 1.1 < ABS_Y_TTBAR < 1.7 ) (<a href="95758?version=1&table=Table 773">Table 773</a> ) <li>1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR ( 1.7 < ABS_Y_TTBAR < 2.5 ) (<a href="95758?version=1&table=Table 774">Table 774</a> ) <li>D2SIG/DPT_TTBAR/DABS_Y_TTBAR ( 0.0 < ABS_Y_TTBAR < 0.5 ) (<a href="95758?version=1&table=Table 785">Table 785</a> ) <li>D2SIG/DPT_TTBAR/DABS_Y_TTBAR ( 0.5 < ABS_Y_TTBAR < 1.1 ) (<a href="95758?version=1&table=Table 786">Table 786</a> ) <li>D2SIG/DPT_TTBAR/DABS_Y_TTBAR ( 1.1 < ABS_Y_TTBAR < 1.7 ) (<a href="95758?version=1&table=Table 787">Table 787</a> ) <li>D2SIG/DPT_TTBAR/DABS_Y_TTBAR ( 1.7 < ABS_Y_TTBAR < 2.5 ) (<a href="95758?version=1&table=Table 788">Table 788</a> ) </ul><br/> Covariances:<br/> <ul><br/> <li>Matrix for 1/SIG*D2SIG/DPT_T/DABS_Y_T between the 1th and 1th bins of ABS_Y_T (<a href="95758?version=1&table=Table 644">Table 644</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_T/DABS_Y_T between the 2th and 1th bins of ABS_Y_T (<a href="95758?version=1&table=Table 645">Table 645</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_T/DABS_Y_T between the 2th and 2th bins of ABS_Y_T (<a href="95758?version=1&table=Table 646">Table 646</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_T/DABS_Y_T between the 3th and 1th bins of ABS_Y_T (<a href="95758?version=1&table=Table 647">Table 647</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_T/DABS_Y_T between the 3th and 2th bins of ABS_Y_T (<a href="95758?version=1&table=Table 648">Table 648</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_T/DABS_Y_T between the 3th and 3th bins of ABS_Y_T (<a href="95758?version=1&table=Table 649">Table 649</a> ) <li>Matrix for D2SIG/DPT_T/DABS_Y_T between the 1th and 1th bins of ABS_Y_T (<a href="95758?version=1&table=Table 653">Table 653</a> ) <li>Matrix for D2SIG/DPT_T/DABS_Y_T between the 2th and 1th bins of ABS_Y_T (<a href="95758?version=1&table=Table 654">Table 654</a> ) <li>Matrix for D2SIG/DPT_T/DABS_Y_T between the 2th and 2th bins of ABS_Y_T (<a href="95758?version=1&table=Table 655">Table 655</a> ) <li>Matrix for D2SIG/DPT_T/DABS_Y_T between the 3th and 1th bins of ABS_Y_T (<a href="95758?version=1&table=Table 656">Table 656</a> ) <li>Matrix for D2SIG/DPT_T/DABS_Y_T between the 3th and 2th bins of ABS_Y_T (<a href="95758?version=1&table=Table 657">Table 657</a> ) <li>Matrix for D2SIG/DPT_T/DABS_Y_T between the 3th and 3th bins of ABS_Y_T (<a href="95758?version=1&table=Table 658">Table 658</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_T/DPT_TTBAR between the 1th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 663">Table 663</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_T/DPT_TTBAR between the 2th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 664">Table 664</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_T/DPT_TTBAR between the 2th and 2th bins of PT_TTBAR (<a href="95758?version=1&table=Table 665">Table 665</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_T/DPT_TTBAR between the 3th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 666">Table 666</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_T/DPT_TTBAR between the 3th and 2th bins of PT_TTBAR (<a href="95758?version=1&table=Table 667">Table 667</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_T/DPT_TTBAR between the 3th and 3th bins of PT_TTBAR (<a href="95758?version=1&table=Table 668">Table 668</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_T/DPT_TTBAR between the 4th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 669">Table 669</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_T/DPT_TTBAR between the 4th and 2th bins of PT_TTBAR (<a href="95758?version=1&table=Table 670">Table 670</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_T/DPT_TTBAR between the 4th and 3th bins of PT_TTBAR (<a href="95758?version=1&table=Table 671">Table 671</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_T/DPT_TTBAR between the 4th and 4th bins of PT_TTBAR (<a href="95758?version=1&table=Table 672">Table 672</a> ) <li>Matrix for D2SIG/DPT_T/DPT_TTBAR between the 1th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 677">Table 677</a> ) <li>Matrix for D2SIG/DPT_T/DPT_TTBAR between the 2th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 678">Table 678</a> ) <li>Matrix for D2SIG/DPT_T/DPT_TTBAR between the 2th and 2th bins of PT_TTBAR (<a href="95758?version=1&table=Table 679">Table 679</a> ) <li>Matrix for D2SIG/DPT_T/DPT_TTBAR between the 3th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 680">Table 680</a> ) <li>Matrix for D2SIG/DPT_T/DPT_TTBAR between the 3th and 2th bins of PT_TTBAR (<a href="95758?version=1&table=Table 681">Table 681</a> ) <li>Matrix for D2SIG/DPT_T/DPT_TTBAR between the 3th and 3th bins of PT_TTBAR (<a href="95758?version=1&table=Table 682">Table 682</a> ) <li>Matrix for D2SIG/DPT_T/DPT_TTBAR between the 4th and 1th bins of PT_TTBAR (<a href="95758?version=1&table=Table 683">Table 683</a> ) <li>Matrix for D2SIG/DPT_T/DPT_TTBAR between the 4th and 2th bins of PT_TTBAR (<a href="95758?version=1&table=Table 684">Table 684</a> ) <li>Matrix for D2SIG/DPT_T/DPT_TTBAR between the 4th and 3th bins of PT_TTBAR (<a href="95758?version=1&table=Table 685">Table 685</a> ) <li>Matrix for D2SIG/DPT_T/DPT_TTBAR between the 4th and 4th bins of PT_TTBAR (<a href="95758?version=1&table=Table 686">Table 686</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_T/DM_TTBAR between the 1th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 691">Table 691</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_T/DM_TTBAR between the 2th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 692">Table 692</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_T/DM_TTBAR between the 2th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 693">Table 693</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_T/DM_TTBAR between the 3th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 694">Table 694</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_T/DM_TTBAR between the 3th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 695">Table 695</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_T/DM_TTBAR between the 3th and 3th bins of M_TTBAR (<a href="95758?version=1&table=Table 696">Table 696</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_T/DM_TTBAR between the 4th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 697">Table 697</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_T/DM_TTBAR between the 4th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 698">Table 698</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_T/DM_TTBAR between the 4th and 3th bins of M_TTBAR (<a href="95758?version=1&table=Table 699">Table 699</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_T/DM_TTBAR between the 4th and 4th bins of M_TTBAR (<a href="95758?version=1&table=Table 700">Table 700</a> ) <li>Matrix for D2SIG/DPT_T/DM_TTBAR between the 1th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 705">Table 705</a> ) <li>Matrix for D2SIG/DPT_T/DM_TTBAR between the 2th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 706">Table 706</a> ) <li>Matrix for D2SIG/DPT_T/DM_TTBAR between the 2th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 707">Table 707</a> ) <li>Matrix for D2SIG/DPT_T/DM_TTBAR between the 3th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 708">Table 708</a> ) <li>Matrix for D2SIG/DPT_T/DM_TTBAR between the 3th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 709">Table 709</a> ) <li>Matrix for D2SIG/DPT_T/DM_TTBAR between the 3th and 3th bins of M_TTBAR (<a href="95758?version=1&table=Table 710">Table 710</a> ) <li>Matrix for D2SIG/DPT_T/DM_TTBAR between the 4th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 711">Table 711</a> ) <li>Matrix for D2SIG/DPT_T/DM_TTBAR between the 4th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 712">Table 712</a> ) <li>Matrix for D2SIG/DPT_T/DM_TTBAR between the 4th and 3th bins of M_TTBAR (<a href="95758?version=1&table=Table 713">Table 713</a> ) <li>Matrix for D2SIG/DPT_T/DM_TTBAR between the 4th and 4th bins of M_TTBAR (<a href="95758?version=1&table=Table 714">Table 714</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 1th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 719">Table 719</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 2th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 720">Table 720</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 2th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 721">Table 721</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 3th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 722">Table 722</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 3th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 723">Table 723</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 3th and 3th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 724">Table 724</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 4th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 725">Table 725</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 4th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 726">Table 726</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 4th and 3th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 727">Table 727</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 728">Table 728</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 1th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 733">Table 733</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 2th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 734">Table 734</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 2th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 735">Table 735</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 3th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 736">Table 736</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 3th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 737">Table 737</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 3th and 3th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 738">Table 738</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 4th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 739">Table 739</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 4th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 740">Table 740</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 4th and 3th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 741">Table 741</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 742">Table 742</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR between the 1th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 747">Table 747</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR between the 2th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 748">Table 748</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR between the 2th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 749">Table 749</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR between the 3th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 750">Table 750</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR between the 3th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 751">Table 751</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR between the 3th and 3th bins of M_TTBAR (<a href="95758?version=1&table=Table 752">Table 752</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR between the 4th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 753">Table 753</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR between the 4th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 754">Table 754</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR between the 4th and 3th bins of M_TTBAR (<a href="95758?version=1&table=Table 755">Table 755</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DM_TTBAR between the 4th and 4th bins of M_TTBAR (<a href="95758?version=1&table=Table 756">Table 756</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DM_TTBAR between the 1th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 761">Table 761</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DM_TTBAR between the 2th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 762">Table 762</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DM_TTBAR between the 2th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 763">Table 763</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DM_TTBAR between the 3th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 764">Table 764</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DM_TTBAR between the 3th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 765">Table 765</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DM_TTBAR between the 3th and 3th bins of M_TTBAR (<a href="95758?version=1&table=Table 766">Table 766</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DM_TTBAR between the 4th and 1th bins of M_TTBAR (<a href="95758?version=1&table=Table 767">Table 767</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DM_TTBAR between the 4th and 2th bins of M_TTBAR (<a href="95758?version=1&table=Table 768">Table 768</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DM_TTBAR between the 4th and 3th bins of M_TTBAR (<a href="95758?version=1&table=Table 769">Table 769</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DM_TTBAR between the 4th and 4th bins of M_TTBAR (<a href="95758?version=1&table=Table 770">Table 770</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 1th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 775">Table 775</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 2th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 776">Table 776</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 2th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 777">Table 777</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 3th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 778">Table 778</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 3th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 779">Table 779</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 3th and 3th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 780">Table 780</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 4th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 781">Table 781</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 4th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 782">Table 782</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 4th and 3th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 783">Table 783</a> ) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 784">Table 784</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 1th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 789">Table 789</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 2th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 790">Table 790</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 2th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 791">Table 791</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 3th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 792">Table 792</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 3th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 793">Table 793</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 3th and 3th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 794">Table 794</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 4th and 1th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 795">Table 795</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 4th and 2th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 796">Table 796</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 4th and 3th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 797">Table 797</a> ) <li>Matrix for D2SIG/DPT_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="95758?version=1&table=Table 798">Table 798</a> ) </ul><br/> <i>Resolved with CMS binning:</i><br/> <u>1D:</u><br/> Spectra:<br/> <ul><br/> <li>DSIG/DPT_T (<a href="95758?version=1&table=Table 835">Table 835</a> ) <li>DSIG/DY_T (<a href="95758?version=1&table=Table 836">Table 836</a> ) <li>DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 837">Table 837</a> ) <li>DSIG/DPT_TTBAR (<a href="95758?version=1&table=Table 838">Table 838</a> ) <li>DSIG/DY_TTBAR (<a href="95758?version=1&table=Table 839">Table 839</a> ) </ul><br/> <i>Boosted:</i><br/> <u>1D:</u><br/> Spectra:<br/> <ul><br/> <li>1/SIG*DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 1107">Table 1107</a> ) <li>DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 1109">Table 1109</a> ) <li>1/SIG*DSIG/DPT_T (<a href="95758?version=1&table=Table 1111">Table 1111</a> ) <li>DSIG/DPT_T (<a href="95758?version=1&table=Table 1113">Table 1113</a> ) <li>SIG (<a href="95758?version=1&table=Table 1115">Table 1115</a> ) </ul><br/> Covariances:<br/> <ul><br/> <li>1/SIG*DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 1108">Table 1108</a> ) <li>DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 1110">Table 1110</a> ) <li>1/SIG*DSIG/DPT_T (<a href="95758?version=1&table=Table 1112">Table 1112</a> ) <li>DSIG/DPT_T (<a href="95758?version=1&table=Table 1114">Table 1114</a> ) </ul><br/> Inter-spectra correlations:<br/> <ul><br/> <li>Statistical correlation between DSIG/DM_TTBAR and DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 1126">Table 1126</a> ) <li>Statistical correlation between DSIG/DPT_T and DSIG/DM_TTBAR (<a href="95758?version=1&table=Table 1127">Table 1127</a> ) <li>Statistical correlation between DSIG/DPT_T and DSIG/DPT_T (<a href="95758?version=1&table=Table 1128">Table 1128</a> ) </ul><br/> <u>2D:</u><br/> Spectra:<br/> <ul><br/> <li>1/SIG*D2SIG/DM_TTBAR/DPT_T ( 350.0 GeV < PT_T < 550.0 GeV) (<a href="95758?version=1&table=Table 1116">Table 1116</a> ) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T ( 550.0 GeV < PT_T < 2000.0 GeV) (<a href="95758?version=1&table=Table 1117">Table 1117</a> ) <li>D2SIG/DM_TTBAR/DPT_T ( 350.0 GeV < PT_T < 550.0 GeV) (<a href="95758?version=1&table=Table 1121">Table 1121</a> ) <li>D2SIG/DM_TTBAR/DPT_T ( 550.0 GeV < PT_T < 2000.0 GeV) (<a href="95758?version=1&table=Table 1122">Table 1122</a> ) </ul><br/> Covariances:<br/> <ul><br/> <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T between the 1th and 1th bins of PT_T (<a href="95758?version=1&table=Table 1118">Table 1118</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T between the 2th and 1th bins of PT_T (<a href="95758?version=1&table=Table 1119">Table 1119</a> ) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T between the 2th and 2th bins of PT_T (<a href="95758?version=1&table=Table 1120">Table 1120</a> ) <li>Matrix for D2SIG/DM_TTBAR/DPT_T between the 1th and 1th bins of PT_T (<a href="95758?version=1&table=Table 1123">Table 1123</a> ) <li>Matrix for D2SIG/DM_TTBAR/DPT_T between the 2th and 1th bins of PT_T (<a href="95758?version=1&table=Table 1124">Table 1124</a> ) <li>Matrix for D2SIG/DM_TTBAR/DPT_T between the 2th and 2th bins of PT_T (<a href="95758?version=1&table=Table 1125">Table 1125</a> ) </ul><br/>

Relative differential cross-section as a function of $p_{T}^{t,had}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.

Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.

More…

Version 2
Search for long-lived, massive particles in events with a displaced vertex and a muon with large impact parameter in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 102 (2020) 032006, 2020.
Inspire Record 1788448 DOI 10.17182/hepdata.91760

A search for long-lived particles decaying into hadrons and at least one muon is presented. The analysis selects events that pass a muon or missing-transverse-momentum trigger and contain a displaced muon track and a displaced vertex. The analyzed dataset of proton-proton collisions at $\sqrt{s} = 13$ TeV was collected with the ATLAS detector and corresponds to 136 fb$^{-1}$. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particle decays that occur in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are presented as limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and interpreted as exclusion limits in scenarios with pair-production of long-lived top squarks that decay via a small $R$-parity-violating coupling into a quark and a muon. Top squarks with masses up to 1.7 TeV are excluded for a lifetime of 0.1 ns, and masses below 1.3 TeV are excluded for lifetimes between 0.01 ns and 30 ns.

44 data tables

Vertex selection acceptance for the $\tilde{t}$ $R$-hadron benchmark model as a function of the transverse decay distance $r_{DV}$.

Vertex selection acceptance for the $\tilde{t}$ $R$-hadron benchmark model as a function of the transverse decay distance $r_{DV}$.

Vertex selection efficiency for the $\tilde{t}$ $R$-hadron benchmark model as a function of the transverse decay distance $r_{DV}$.

More…

Version 2
Search for direct stau production in events with two hadronic $\tau$-leptons in $\sqrt{s} = 13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 101 (2020) 032009, 2020.
Inspire Record 1765529 DOI 10.17182/hepdata.92006

A search for the direct production of the supersymmetric partners of $\tau$-leptons (staus) in final states with two hadronically decaying $\tau$-leptons is presented. The analysis uses a dataset of $pp$ collisions corresponding to an integrated luminosity of $139$ fb$^{-1}$, recorded with the ATLAS detector at the Large Hadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected Standard Model background is observed. Limits are derived in scenarios of direct production of stau pairs with each stau decaying into the stable lightest neutralino and one $\tau$-lepton in simplified models where the two stau mass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidence level for a massless lightest neutralino.

52 data tables

The observed upper limits on the model cross-section in units of pb for simplified models with combined ${\tilde{\tau}}^{+}_{R,L} {\tilde{\tau}}^{-}_{R,L}$ production. Three points at ${M({\tilde{\chi}}^{0}_{1})}=200GeV$ were removed from the plot but kept in the table because they overlapped with the plot's legend and are far from the exclusion contour.

The observed upper limits on the model cross-section in units of pb for simplified models with combined ${\tilde{\tau}}^{+}_{R,L} {\tilde{\tau}}^{-}_{R,L}$ production. Three points at ${M({\tilde{\chi}}^{0}_{1})}=200GeV$ were removed from the plot but kept in the table because they overlapped with the plot's legend and are far from the exclusion contour.

The observed upper limits on the model cross-section in units of pb for simplified models with ${\tilde{\tau}}_L {\tilde{\tau}}_L$ only production. Three points at $M({\tilde{\chi}}^{0}_{1})=200GeV$ were removed from the plot but kept in the table because they overlapped with the plot's legend and are far from the exclusion contour.

More…

Version 2
Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in $\sqrt{s}$ = 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 101 (2020) 072001, 2020.
Inspire Record 1771533 DOI 10.17182/hepdata.91127

A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell $W$ and $Z$ bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of $\sqrt{s}$ = 13 TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb$^{-1}$. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015-2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full dataset are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV.

58 data tables

Distributions in SR-low of the data and post-fit background prediction for m<sub>T</sub>. The SR-low event selections are applied for each distribution except for the variable shown, where the selection is indicated by a red arrow. The normalization factor for the WZ background is derived from the background-only estimation described in Section 7. The expected distribution for a benchmark signal model is included for comparison. The first (last) bin includes underflow (overflow). The "Top-quark like" category contains the tt&#772;, Wt, and WW processes while the "Others" category contains backgrounds from triboson production and processes that include a Higgs boson, 3 or more tops, and tops produced in association with W or Z bosons. The bottom panel shows the ratio of the data to the post-fit background prediction. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.

Distributions in SR-low of the data and post-fit background prediction for m<sub>T</sub>. The SR-low event selections are applied for each distribution except for the variable shown, where the selection is indicated by a red arrow. The normalization factor for the WZ background is derived from the background-only estimation described in Section 7. The expected distribution for a benchmark signal model is included for comparison. The first (last) bin includes underflow (overflow). The "Top-quark like" category contains the tt&#772;, Wt, and WW processes while the "Others" category contains backgrounds from triboson production and processes that include a Higgs boson, 3 or more tops, and tops produced in association with W or Z bosons. The bottom panel shows the ratio of the data to the post-fit background prediction. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.

Distributions in SR-low of the data and post-fit background prediction for H<sup>boost</sup>. The SR-low event selections are applied for each distribution except for the variable shown, where the selection is indicated by a red arrow. The normalization factor for the WZ background is derived from the background-only estimation described in Section 7. The expected distribution for a benchmark signal model is included for comparison. The first (last) bin includes underflow (overflow). The "Top-quark like" category contains the tt&#772;, Wt, and WW processes while the "Others" category contains backgrounds from triboson production and processes that include a Higgs boson, 3 or more tops, and tops produced in association with W or Z bosons. The bottom panel shows the ratio of the data to the post-fit background prediction. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.

More…

Version 4
Search for squarks and gluinos in final states with same-sign leptons and jets using 139 fb$^{-1}$ of data collected with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 06 (2020) 046, 2020.
Inspire Record 1754675 DOI 10.17182/hepdata.91214

A search for supersymmetric partners of gluons and quarks is presented, involving signatures with jets and either two isolated leptons (electrons or muons) with the same electric charge, or at least three isolated leptons. A data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to a total integrated luminosity of 139 fb$^{-1}$, is used for the search. No significant excess over the Standard Model expectation is observed. The results are interpreted in simplified supersymmetric models featuring both R-parity conservation and R-parity violation, raising the exclusion limits beyond those of previous ATLAS searches to 1600 GeV for gluino masses and 750 GeV for bottom and top squark masses in these scenarios.

120 data tables

Observed 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g \to q \bar{q}^{'} \tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_2^0$ and $ \tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0$.

Observed 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g \to q \bar{q}^{'} \tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_2^0$ and $ \tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0$.

Observed 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g \to q \bar{q}^{'} \tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_2^0$ and $ \tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0$.

More…

Search for dark matter produced in association with a dark Higgs boson decaying into $W^{+}W^{-}$ in the one-lepton final state at $\sqrt{s}$=13 TeV using 139 fb$^{-1}$ of $pp$ collisions recorded with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 07 (2023) 116, 2023.
Inspire Record 2181868 DOI 10.17182/hepdata.132484

Several extensions of the Standard Model predict the production of dark matter particles at the LHC. A search for dark matter particles produced in association with a dark Higgs boson decaying into $W^{+}W^{-}$ in the $\ell^\pm\nu q \bar q'$ final states with $\ell=e,\mu$ is presented. This analysis uses 139 fb$^{-1}$ of $pp$ collisions recorded by the ATLAS detector at a centre-of-mass energy of 13 TeV. The $W^\pm \to q\bar q'$ decays are reconstructed from pairs of calorimeter-measured jets or from track-assisted reclustered jets, a technique aimed at resolving the dense topology from a pair of boosted quarks using jets in the calorimeter and tracking information. The observed data are found to agree with Standard Model predictions. Scenarios with dark Higgs boson masses ranging between 140 and 390 GeV are excluded.

25 data tables

Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>&beta;=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=500 GeV, with the preselections applied.

Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>&beta;=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=1000 GeV, with the preselections applied.

Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>&beta;=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=1700 GeV, with the preselections applied.

More…

Evidence for the charge asymmetry in $pp \rightarrow t\bar{t}$ production at $\sqrt{s}= 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 08 (2023) 077, 2023.
Inspire Record 2141752 DOI 10.17182/hepdata.132116

Inclusive and differential measurements of the top-antitop ($t\bar{t}$) charge asymmetry $A_\text{C}^{t\bar{t}}$ and the leptonic asymmetry $A_\text{C}^{\ell\bar{\ell}}$ are presented in proton-proton collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb$^{-1}$, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive $t\bar{t}$ charge asymmetry is measured to be $A_\text{C}^{t\bar{t}} = 0.0068 \pm 0.0015$, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the $t\bar{t}$ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients.

50 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Results:</b> <ul> <li><a href="132116?version=1&table=Resultsforchargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=1&table=Resultsforchargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=1&table=Resultsforchargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=1&table=Resultsforchargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=1&table=Resultsforleptonicchargeasymmetryinclusive">$A_C^{\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=Resultsforchargeasymmetryvsllmll">$A_C^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=Resultsforchargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=Resultsforchargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul> <b>Bounds on the Wilson coefficients:</b> <ul> <li><a href="132116?version=1&table=BoundsonWilsoncoefficientschargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=1&table=BoundsonWilsoncoefficientschargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> </ul> <b>Ranking of systematic uncertainties:</b></br> Inclusive:<a href="132116?version=1&table=NPrankingchargeasymmetryinclusive">$A_C^{t\bar{t}}$</a></br> <b>$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$:</b> <ul> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsbetattbin0">$\beta_{z,t\bar{t}} \in[0,0.3]$</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsbetattbin1">$\beta_{z,t\bar{t}} \in[0.3,0.6]$</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsbetattbin2">$\beta_{z,t\bar{t}} \in[0.6,0.8]$</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsbetattbin3">$\beta_{z,t\bar{t}} \in[0.8,1]$</a> </ul> <b>$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$:</b> <ul> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsmttbin0">$m_{t\bar{t}}$ &lt; $500$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsmttbin1">$m_{t\bar{t}} \in [500,750]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsmttbin2">$m_{t\bar{t}} \in [750,1000]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsmttbin3">$m_{t\bar{t}} \in [1000,1500]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsmttbin4">$m_{t\bar{t}}$ &gt; $1500$GeV</a> </ul> <b>$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$:</b> <ul> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsptttbin0">$p_{T,t\bar{t}} \in [0,30]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsptttbin1">$p_{T,t\bar{t}} \in[30,120]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsptttbin2">$p_{T,t\bar{t}}$ &gt; $120$GeV</a> </ul> Inclusive leptonic:<a href="132116?version=1&table=NPrankingleptonicchargeasymmetryinclusive">$A_C^{\ell\bar{\ell}}$</a></br> <b>$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=1&tableNPrankingchargeasymmetry=vsllbetallbin0">$\beta_{z,\ell\bar{\ell}} \in [0,0.3]$</a> <li><a href="132116?version=1&tableNPrankingchargeasymmetry=vsllbetallbin1">$\beta_{z,\ell\bar{\ell}} \in [0.3,0.6]$</a> <li><a href="132116?version=1&tableNPrankingchargeasymmetry=vsllbetallbin2">$\beta_{z,\ell\bar{\ell}} \in [0.6,0.8]$</a> <li><a href="132116?version=1&tableNPrankingchargeasymmetry=vsllbetallbin3">$\beta_{z,\ell\bar{\ell}} \in [0.8,1]$</a> </ul> <b>$A_C^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllmllbin0">$m_{\ell\bar{\ell}}$ &lt; $200$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllmllbin1">$m_{\ell\bar{\ell}} \in [200,300]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllmllbin2">$m_{\ell\bar{\ell}} \in [300,400]$Ge$</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllmllbin3">$m_{\ell\bar{\ell}}$ &gt; $400$GeV</a> </ul> <b>$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllptllbin0">$p_{T,\ell\bar{\ell}}\in [0,20]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllptllbin1">$p_{T,\ell\bar{\ell}}\in[20,70]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllptllbin2">$p_{T,\ell\bar{\ell}}$ &gt; $70$GeV</a> </ul> <b>NP correlations:</b> <ul> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=1&table=NPcorrelationsleptonicchargeasymmetryinclusive">$A_c^{\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryvsllmll">$A_c^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul> <b>Covariance matrices:</b> <ul> <li><a href="132116?version=1&table=Covariancematrixchargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=1&table=Covariancematrixchargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=1&table=Covariancematrixchargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=1&table=Covariancematrixleptonicchargeasymmetryvsllmll">$A_c^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=Covariancematrixleptonicchargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=Covariancematrixleptonicchargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul>

The unfolded inclusive charge asymmetry. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.

The unfolded differential charge asymmetry as a function of the invariant mass of the top pair system. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.

More…

Search for flavor-changing neutral-current couplings between the top quark and the $Z$ boson with LHC Run 2 proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
Phys.Rev.D 108 (2023) 032019, 2023.
Inspire Record 2627201 DOI 10.17182/hepdata.145074

A search for flavor-changing neutral-current couplings between a top quark, an up or charm quark and a $Z$ boson is presented, using proton-proton collision data at $\sqrt{s} = 13$ TeV collected by the ATLAS detector at the Large Hadron Collider. The analyzed dataset corresponds to an integrated luminosity of 139 fb$^{-1}$. The search targets both single-top-quark events produced as $gq\rightarrow tZ$ (with $q = u, c$) and top-quark-pair events, with one top quark decaying through the $t \rightarrow Zq$ channel. The analysis considers events with three leptons (electrons or muons), a $b$-tagged jet, possible additional jets, and missing transverse momentum. The data are found to be consistent with the background-only hypothesis and 95% confidence-level limits on the $t \rightarrow Zq$ branching ratios are set, assuming only tensor operators of the Standard Model effective field theory framework contribute to the $tZq$ vertices. These are $6.2 \times 10^{-5}$ ($13\times 10^{-5}$) for $t\rightarrow Zu$ ($t\rightarrow Zc$) for a left-handed $tZq$ coupling, and $6.6 \times 10^{-5}$ ($12\times 10^{-5}$) in the case of a right-handed coupling. These results are interpreted as 95% CL upper limits on the strength of corresponding couplings, yielding limits for $|C_{uW}^{(13)*}|$ and $|C_{uB}^{(13)*}|$ ($|C_{uW}^{(31)}|$ and $|C_{uB}^{(31)}|$) of 0.15 (0.16), and limits for $|C_{uW}^{(23)*}|$ and $|C_{uB}^{(23)*}|$ ($|C_{uW}^{(32)}|$ and $|C_{uB}^{(32)}|$) of 0.22 (0.21), assuming a new-physics energy scale $\Lambda_\text{NP}$ of 1 TeV.

18 data tables

Summary of the signal strength $\mu$ parameters obtained from the fits to extract LH and RH results for the FCNC tZu and tZc couplings. For the reference branching ratio, the most stringent limits are used.

Observed and expected 95% CL limits on the FCNC $t\rightarrow Zq$ branching ratios and the effective coupling strengths for different vertices and couplings (top eight rows). For the latter, the energy scale is assumed to be $\Lambda_{NP}$ = 1 TeV. The bottom rows show, for the case of the FCNC $t\rightarrow Zu$ branching ratio, the observed and expected 95% CL limits when only one of the two SRs, either SR1 or SR2, and all CRs are included in the likelihood.

Comparison between data and background prediction before the fit (Pre-Fit) for the mass of the SM top-quark candidate in SR1. The uncertainty band includes both the statistical and systematic uncertainties in the background prediction. The four FCNC LH signals are also shown separately, normalized to five times the cross-section corresponding to the most stringent observed branching ratio limits. The first (last) bin in all distributions includes the underflow (overflow). The lower panels show the ratios of the data (Data) to the background prediction (Bkg.).

More…

Differential cross-section measurements for the electroweak production of dijets in association with a $Z$ boson in proton-proton collisions at ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 81 (2021) 163, 2021.
Inspire Record 1803608 DOI 10.17182/hepdata.94218

Differential cross-section measurements are presented for the electroweak production of two jets in association with a $Z$ boson. These measurements are sensitive to the vector-boson fusion production mechanism and provide a fundamental test of the gauge structure of the Standard Model. The analysis is performed using proton-proton collision data collected by ATLAS at $\sqrt{s}$=13 TeV and with an integrated luminosity of 139 fb$^{-1}$. The differential cross-sections are measured in the $Z\rightarrow \ell^+\ell^-$ decay channel ($\ell=e,\mu$) as a function of four observables: the dijet invariant mass, the rapidity interval spanned by the two jets, the signed azimuthal angle between the two jets, and the transverse momentum of the dilepton pair. The data are corrected for the effects of detector inefficiency and resolution and are sufficiently precise to distinguish between different state-of-the-art theoretical predictions calculated using Powheg+Pythia8, Herwig7+Vbfnlo and Sherpa 2.2. The differential cross-sections are used to search for anomalous weak-boson self-interactions using a dimension-six effective field theory. The differential cross-section as a function of the signed azimuthal angle between the two jets is found to be particularly sensitive to the interference between the Standard Model and dimension-six scattering amplitudes and provides a direct test of charge-conjugation and parity invariance in the weak-boson self-interactions.

21 data tables

Differential cross-sections for EW $Zjj$ production as a function of $m_{jj}$ with breakdown of associated uncertainties. The statistical uncertainty is correlated across bins according to the statistical cross correlation matrix presented in Table 21.

Differential cross-sections for EW $Zjj$ production as a function of $|\Delta y_{jj}|$ with breakdown of associated uncertainties. The statistical uncertainty is correlated across bins according to the statistical cross correlation matrix presented in Table 21.

Differential cross-sections for EW $Zjj$ production as a function of $p_{\mathrm{T},\ell\ell}$ with breakdown of associated uncertainties. The statistical uncertainty is correlated across bins according to the statistical cross correlation matrix presented in Table 21.

More…

Measurements of the production cross-section for a $Z$ boson in association with $b$-jets in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 07 (2020) 044, 2020.
Inspire Record 1788444 DOI 10.17182/hepdata.94219

This paper presents a measurement of the production cross-section of a $Z$ boson in association with $b$-jets, in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 35.6 fb$^{-1}$. Inclusive and differential cross-sections are measured for events containing a $Z$ boson decaying into electrons or muons and produced in association with at least one or at least two $b$-jets with transverse momentum $p_\textrm{T}>$ 20 GeV and rapidity $|y| < 2.5$. Predictions from several Monte Carlo generators based on leading-order (LO) or next-to-leading-order (NLO) matrix elements interfaced with a parton-shower simulation and testing different flavour schemes for the choice of initial-state partons are compared with measured cross-sections. The 5-flavour number scheme predictions at NLO accuracy agree better with data than 4-flavour number scheme ones. The 4-flavour number scheme predictions underestimate data in events with at least one b-jet.

15 data tables

Measured fiducial cross sections for events with $Z(\rightarrow ll)\ge+1$ b-jets or with $Z(\rightarrow ll)\ge+2$ b-jets. The statistical uncertainties and the individual components of systematic uncertainty are given in each bin. Statistical uncertainties are bin-to-bin uncorrelated.

Differential fiducial cross section of the Z boson $p_{\text{T}}$ in events with $Z(\rightarrow ll)\ge+1$ b-jets. The statistical uncertainties and the individual components of systematic uncertainty are given in each bin. Statistical uncertainties are bin-to-bin uncorrelated.

Differential fiducial cross section of the leading b-jet $p_{\text{T}}$ in events with $Z(\rightarrow ll)\ge+1$ b-jets. The statistical uncertainties and the individual components of systematic uncertainty are given in each bin. Statistical uncertainties are bin-to-bin uncorrelated.

More…

Search for Higgs boson decays into a $Z$ boson and a light hadronically decaying resonance using 13 TeV $pp$ collision data from the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 125 (2020) 221802, 2020.
Inspire Record 1789583 DOI 10.17182/hepdata.93626

A search for Higgs boson decays into a $Z$ boson and a light resonance in two-lepton plus jet events is performed, using a $pp$ collision dataset with an integrated luminosity of 139 fb$^{-1}$ collected at $\sqrt{s}=13$ TeV by the ATLAS experiment at the CERN LHC. The resonance considered is a light boson with a mass below 4 GeV from a possible extended scalar sector, or a charmonium state. Multivariate discriminants are used for the event selection and for evaluating the mass of the light resonance. No excess of events above the expected background is found. Observed (expected) 95$\% $ confidence-level upper limits are set on the Higgs boson production cross section times branching fraction to a $Z$ boson and the signal resonance, with values in the range 17 pb to 340 pb ($16^{+6}_{-5}$ pb to $320^{+130}_{-90}$ pb) for the different light spin-0 boson mass and branching fraction hypotheses, and with values of 110 pb and 100 pb ($100^{+40}_{-30}$ pb and $100^{+40}_{-30}$ pb) for the $\eta_c$ and $J/\psi$ hypotheses, respectively.

4 data tables

Observed number of data events and expected number of background events in the signal region.

Efficiencies of the MLP selection, complete selection and total expected signal yields for each signal sample, assuming B$(H\to Z(Q/a))=100\%$ and $\sigma(pp\to H) = \sigma_\text{SM}(pp\to H)$. Pythia 8 branching fractions of $a$ are assumed using a $\tan\beta$ value of 1. The MLP efficiencies, total efficiencies, and expected yields are determined using MC samples, with uncertainties due to MC sample statistics, except for the expected background yield. The expected background yield and its uncertainty is calculated as described in the main text of the paper.

Expected and observed 95% CL upper limits on $\sigma(pp\to H)B(H\to Za)/$pb. These results are quoted for $B(a\to gg)=100\%$ and $B(a\to s\bar{s})=100\%$ for each signal sample. The smaller (larger) quoted ranges around the expected limits represent $\pm 1\sigma$ ($\pm 2\sigma$) fluctuations.

More…

Measurement of the Lund jet plane using charged particles in 13 TeV proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 124 (2020) 222002, 2020.
Inspire Record 1790256 DOI 10.17182/hepdata.93183

The prevalence of hadronic jets at the LHC requires that a deep understanding of jet formation and structure is achieved in order to reach the highest levels of experimental and theoretical precision. There have been many measurements of jet substructure at the LHC and previous colliders, but the targeted observables mix physical effects from various origins. Based on a recent proposal to factorize physical effects, this Letter presents a double-differential cross-section measurement of the Lund jet plane using 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collision data collected with the ATLAS detector using jets with transverse momentum above 675 GeV. The measurement uses charged particles to achieve a fine angular resolution and is corrected for acceptance and detector effects. Several parton shower Monte Carlo models are compared with the data. No single model is found to be in agreement with the measured data across the entire plane.

36 data tables

Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties

Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for use in MC tuning.

Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single vertical slice of the Lund jet plane between 0.00 < ln(R/#DeltaR) < 0.33.

More…

Test of CP invariance in vector-boson fusion production of the Higgs boson in the H → ττ channel in proton–proton collisions at s=13TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 805 (2020) 135426, 2020.
Inspire Record 1780099 DOI 10.17182/hepdata.91678

A test of CP invariance in Higgs boson production via vector-boson fusion is performed in the $H\rightarrow\tau\tau$ decay channel. This test uses the Optimal Observable method and is carried out using 36.1 $\mathrm{fb}^{-1}$ of $\sqrt{s}$ = 13 TeV proton$-$proton collision data collected by the ATLAS experiment at the LHC. Contributions from CP-violating interactions between the Higgs boson and electroweak gauge bosons are described by an effective field theory, in which the parameter $\tilde{d}$ governs the strength of CP violation. No sign of CP violation is observed in the distributions of the Optimal Observable, and $\tilde{d}$ is constrained to the interval $[-0.090, 0.035]$ at the 68% confidence level (CL), compared to an expected interval of $\tilde{d} \in [-0.035,0.033]$ based upon the Standard Model prediction. No constraints can be set on $\tilde{d}$ at 95% CL, while an expected 95% CL interval of $\tilde{d} \in [-0.21,0.15]$ for the Standard Model hypothesis was expected.

26 data tables

Post-fit BDT distributions after the VBF event selection for the $\tau_{\mathrm{lep}}\tau_{\mathrm{lep}}$ SF analysis channel. The VBF signal is shown for $\mu = 0.73$ and $\tilde d = -0.01$. ''Other bkg'' denotes all background contributions not listed explicitly in the legend. The size of the combined statistical, experimental, and theoretical uncertainties is given. The exact value of the $p_{\mathrm{T}}$ cut on the leptons depends on the trigger.

Post-fit BDT distributions after the VBF event selection for the $\tau_{\mathrm{lep}}\tau_{\mathrm{lep}}$ DF analysis channel. The VBF signal is shown for $\mu = 0.73$ and $\tilde d = -0.01$. ''Other bkg'' denotes all background contributions not listed explicitly in the legend. The size of the combined statistical, experimental, and theoretical uncertainties is given.

Post-fit BDT distributions after the VBF event selection for the $\tau_{\mathrm{lep}}\tau_{\mathrm{had}}$ analysis channel. The VBF signal is shown for $\mu = 0.73$ and $\tilde d = -0.01$. ''Other bkg'' denotes all background contributions not listed explicitly in the legend. The size of the combined statistical, experimental, and theoretical uncertainties is given. The exact value of the $p_{\mathrm{T}}$ cut on the leading lepton depends on the trigger.

More…

Search for new resonances in mass distributions of jet pairs using 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 03 (2020) 145, 2020.
Inspire Record 1759712 DOI 10.17182/hepdata.91126

A search for new resonances decaying into a pair of jets is reported using the dataset of proton-proton collisions recorded at $\sqrt{s}=13$ TeV with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to an integrated luminosity of 139 fb$^{-1}$. The distribution of the invariant mass of the two leading jets is examined for local excesses above a data-derived estimate of the Standard Model background. In addition to an inclusive dijet search, events with jets identified as containing $b$-hadrons are examined specifically. No significant excess of events above the smoothly falling background spectra is observed. The results are used to set cross-section upper limits at 95% confidence level on a range of new physics scenarios. Model-independent limits on Gaussian-shaped signals are also reported. The analysis looking at jets containing $b$-hadrons benefits from improvements in the jet flavour identification at high transverse momentum, which increases its sensitivity relative to the previous analysis beyond that expected from the higher integrated luminosity.

24 data tables

The probability of an event to pass the b-tagging requirement after the rest of the event selection, shown as a function of the resonance mass and for the 1b and 2b analysis categories.

Dijet invariant mass distribution for the inclusive category with |y*| < 0.6.

Dijet invariant mass distribution for the inclusive category with |y*| < 1.2.

More…

Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using $\sqrt(s) = 13$ TeV proton$-$proton collisions recorded by ATLAS in Run 2 of the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 10 (2020) 062, 2020.
Inspire Record 1811596 DOI 10.17182/hepdata.93733

Results of a search for new particles decaying into eight or more jets and moderate missing transverse momentum are presented. The analysis uses 139 fb$^{-1}$ of proton$-$proton collision data at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the Large Hadron Collider between 2015 and 2018. The selection rejects events containing isolated electrons or muons, and makes requirements according to the number of $b$-tagged jets and the scalar sum of masses of large-radius jets. The search extends previous analyses both in using a larger dataset and by employing improved jet and missing transverse momentum reconstruction methods which more cleanly separate signal from background processes. No evidence for physics beyond the Standard Model is found. The results are interpreted in the context of supersymmetry-inspired simplified models, significantly extending the limits on the gluino mass in those models. In particular, limits on the gluino mass are set at 2 TeV when the lightest neutralino is nearly massless in a model assuming a two-step cascade decay via the lightest chargino and second-lightest neutralino.

67 data tables

Post-fit yields for data and prediction in each of the multi-bin signal regions for the 8 jet regions.

Post-fit yields for data and prediction in each of the multi-bin signal regions for the 9 jet regions.

Post-fit yields for data and prediction in each of the multi-bin signal regions for the 10 jet regions.

More…

Search for heavy diboson resonances in semileptonic final states in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 1165, 2020.
Inspire Record 1793572 DOI 10.17182/hepdata.93922

This paper reports on a search for heavy resonances decaying into $WW$, $ZZ$ or $WZ$ using proton-proton collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV. The data, corresponding to an integrated luminosity of 139 $\mathrm{fb^{-1}}$, were recorded with the ATLAS detector from 2015 to 2018 at the Large Hadron Collider. The search is performed for final states in which one $W$ or $Z$ boson decays leptonically, and the other $W$ boson or $Z$ boson decays hadronically. The data are found to be described well by expected backgrounds. Upper bounds on the production cross sections of heavy scalar, vector or tensor resonances are derived in the mass range 300-5000 GeV within the context of Standard Model extensions with warped extra dimensions or including a heavy vector triplet. Production through gluon-gluon fusion, Drell-Yan or vector-boson fusion are considered, depending on the assumed model.

23 data tables

Selection acceptance times efficiency for the 0 leptons signal events from MC simulations as a function of the resonance mass for ggF/DY production.

Selection acceptance times efficiency for the 0 leptons signal events from MC simulations as a function of the resonance mass for VBF production.

Selection acceptance times efficiency for the 1 lepton signal events from MC simulations as a function of the resonance mass for ggF/DY production.

More…

Higgs boson production cross-section measurements and their EFT interpretation in the $4\ell$ decay channel at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 957, 2020.
Inspire Record 1790250 DOI 10.17182/hepdata.94311

Higgs boson properties are studied in the four-lepton decay channel (where lepton = $e$, $\mu$) using 139 fb$^{-1}$ of proton-proton collision data recorded at $\sqrt{s}$ = 13 TeV by the ATLAS experiment at the Large Hadron Collider. The inclusive cross-section times branching ratio for $H\to ZZ^*$ decay is measured to be $1.34 \pm 0.12$ pb for a Higgs boson with absolute rapidity below 2.5, in good agreement with the Standard Model prediction of $1.33 \pm 0.08$ pb. Cross-sections times branching ratio are measured for the main Higgs boson production modes in several exclusive phase-space regions. The measurements are interpreted in terms of coupling modifiers and of the tensor structure of Higgs boson interactions using an effective field theory approach. Exclusion limits are set on the CP-even and CP-odd `beyond the Standard Model' couplings of the Higgs boson to vector bosons, gluons and top quarks.

74 data tables

The expected number of SM Higgs boson events with a mass $m_{H}$= 125 GeV for an integrated luminosity of 139 fb$^{-1}$ at $\sqrt{s}$=13 TeV in each reconstructed event signal (115 < $m_{4l}$< 130 GeV) and sideband ($m_{4l}$ in 105-115 GeV or 130-160 GeV for $ZZ^{*}$, 130-350 GeV for $tXX$) category, shown separately for each production bin of the Production Mode Stage. The ggF and $bbH$ yields are shown separately but both contribute to the same (ggF)production bin, and $ZH$ and $WH$ are reported separately but are merged together for the final result. Statistical and systematic uncertainties, including those for total SM cross-section predictions, are added in quadrature. Contributions that are below 0.2% of the total signal in each reconstructed event category are not shown and are replaced by -.

The impact of the dominant systematic uncertainties (in percent) on the cross-sections in production bins of the Production Mode Stage and the Reduced Stage 1.1. Similar sources of systematic uncertainties are grouped together in luminosity (Lumi.),electron/muon reconstruction and identification efficiencies and pile up modelling ($e$, $\mu$, pile up), jet energy scale/resolution and $b$-tagging efficiencies (Jets, flav. tag), uncertainties in reducible background (reducible bkg), theoretical uncertainties in $ZZ^{*}$ background and $tXX$ background, and theoretical uncertainties in the signal due to parton distribution function (PDF), QCD scale (QCD) and parton showering algorithm (Shower). The uncertainties are rounded to the nearest 0.5%, except for the luminosity uncertainty, which is measured to be 1.7% and increases for the $VH$ signal processes due to the simulation-based normalisation of the $VVV$ background. The uncertainties that are below 0.5% are not shown and replaced by -.

The expected and the observed (post-fit) the four-lepton invariant mass distribution for the selected Higgs boson candidates, shown for an integrated luminosity of 139fb$^{-1}$ at $\sqrt{s}$=13TeV. The SM Higgs boson signal is assumed tohave a mass $m_{H}$= 125GeV.

More…

Measurements of the Higgs boson inclusive and differential fiducial cross sections in the 4$\ell$ decay channel at $\sqrt{s}$ = 13 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 942, 2020.
Inspire Record 1790439 DOI 10.17182/hepdata.94312

Inclusive and differential fiducial cross sections of the Higgs boson are measured in the $H \to ZZ^{*} \to 4\ell$ ($\ell = e,\mu$) decay channel. The results are based on proton$-$proton collision data produced at the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector from 2015 to 2018, equivalent to an integrated luminosity of 139 fb$^{-1}$. The inclusive fiducial cross section for the $H \to ZZ^{*} \to 4\ell$ process is measured to be $\sigma_\mathrm{fid} = 3.28 \pm 0.32$ fb, in agreement with the Standard Model prediction of $\sigma_\mathrm{fid, SM} = 3.41 \pm 0.18 $ fb. Differential fiducial cross sections are measured for a variety of observables which are sensitive to the production and decay of the Higgs boson. All measurements are in agreement with the Standard Model predictions. The results are used to constrain anomalous Higgs boson interactions with Standard Model particles.

76 data tables

Fractional uncertainties for the inclusive fiducial and total cross sections, and range of systematic uncertainties for the differential measurements. The columns e/$\mu$ and jets represent the experimental uncertainties in lepton and jet reconstruction and identification, respectively. The Z + jets, $t\bar{t}$, tXX (Other Bkg.) column includes uncertainties related to the estimation of these background sources. The $ZZ^{*}$ theory ($ZZ^{*}$ th.) uncertainties include the PDF and scale variations. Signal theory (Sig th.) uncertainties include PDF choice, QCD scale, and shower modelling of the signal. Finally, the column labelled Comp. contains uncertainties related to production mode composition and unfolding bias which affect the response matrices. The uncertainties have been rounded to the nearest 0.5%, except for the luminosity uncertainty which has been measured to be 1.7%.

Expected (pre-fit) and observed number of events in the four decay final states after the event selection, in the mass range 115< $m_{4l}$ < 130 GeV. The sum of the expected number of SM Higgs boson events and the estimated background yields is compared to the data. Combined statistical and systematic uncertainties are included for the predictions.

The fiducial and total cross sections of Higgs boson production measured in the 4l final state. The fiducial cross sections are given separately for each decay final state, and for same- and different-flavour decays. The inclusive fiducial cross section is measured as the sum of all final states ($\sigma_{sum}$), as well as by combining the per-final state measurements assuming SM $ZZ^{*} \to 4l$ relative branching ratios ($\sigma_{comb}$). For the total cross section ($\sigma_{tot}$), the Higgs boson branching ratio at $m_{H}$= 125 GeV is assumed. The total SM prediction is accurate to N3LO in QCD and NLO EW for the ggF process. The cross sections for all other Higgs boson production modes XH are added. For the fiducial cross section predictions, the SM cross sections are multiplied by the acceptances determined using the NNLOPS sample for ggF. The p-values indicating the compatibility of the measurement and the SM prediction are shown as well. They do not include the systematic uncertainty in the theoretical predictions.

More…