A precise measurement of the Z-boson double-differential transverse momentum and rapidity distributions in the full phase space of the decay leptons with the ATLAS experiment at $\sqrt s$ = 8 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Eur.Phys.J.C 84 (2024) 315, 2024.
Inspire Record 2698794 DOI 10.17182/hepdata.144246

This paper presents for the first time a precise measurement of the production properties of the Z boson in the full phase space of the decay leptons. The measurement is obtained from proton-proton collision data collected by the ATLAS experiment in 2012 at $\sqrt s$ = 8 TeV at the LHC and corresponding to an integrated luminosity of 20.2 fb$^{-1}$. The results, based on a total of 15.3 million Z-boson decays to electron and muon pairs, extend and improve a previous measurement of the full set of angular coefficients describing Z-boson decay. The double-differential cross-section distributions in Z-boson transverse momentum p$_T$ and rapidity y are measured in the pole region, defined as 80 $<$ m $<$ 100 GeV, over the range $|y| <$ 3.6. The total uncertainty of the normalised cross-section measurements in the peak region of the p$_T$ distribution is dominated by statistical uncertainties over the full range and increases as a function of rapidity from 0.5-1.0% for $|y| <$ 2.0 to 2-7% at higher rapidities. The results for the rapidity-dependent transverse momentum distributions are compared to state-of-the-art QCD predictions, which combine in the best cases approximate N$^4$LL resummation with N$^3$LO fixed-order perturbative calculations. The differential rapidity distributions integrated over p$_T$ are even more precise, with accuracies from 0.2-0.3% for $|y| <$ 2.0 to 0.4-0.9% at higher rapidities, and are compared to fixed-order QCD predictions using the most recent parton distribution functions. The agreement between data and predictions is quite good in most cases.

10 data tables

Measured $p_T$ cross sections in full-lepton phase space for |y| < 0.4.

Measured $p_T$ cross sections in full-lepton phase space for 0.4 < |y| < 0.8.

Measured $p_T$ cross sections in full-lepton phase space for 0.8 < |y| < 1.2.

More…

Fiducial and differential cross sections of Higgs boson production measured in the four-lepton decay channel in $pp$ collisions at $\sqrt{s}$=8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 738 (2014) 234-253, 2014.
Inspire Record 1310835 DOI 10.17182/hepdata.78567

Measurements of fiducial and differential cross sections of Higgs boson production in the ${H \rightarrow ZZ ^{*}\rightarrow 4\ell}$ decay channel are presented. The cross sections are determined within a fiducial phase space and corrected for detection efficiency and resolution effects. They are based on 20.3 fb$^{-1}$ of $pp$ collision data, produced at $\sqrt{s}$=8 TeV centre-of-mass energy at the LHC and recorded by the ATLAS detector. The differential measurements are performed in bins of transverse momentum and rapidity of the four-lepton system, the invariant mass of the subleading lepton pair and the decay angle of the leading lepton pair with respect to the beam line in the four-lepton rest frame, as well as the number of jets and the transverse momentum of the leading jet. The measured cross sections are compared to selected theoretical calculations of the Standard Model expectations. No significant deviation from any of the tested predictions is found.

6 data tables

Measured differential fiducial cross sections in Higgs transverse momentum (second column). The given uncertainty includes statistical and systematic components. The third (fourth) column gives the theoretical prediction of Higgs production in the fiducial volume using Powheg Minlo HJ (HRes) for the ggF process, Powheg for the VBF process, and Pythia 8 for the VH and ttH process. The uncertainty includes PDF, scale, and branching fraction uncertainty. The fifth column gives the non-ggF prediction (total minus ggF). All predicted distributions were normalized to the best predicted inclusive Higgs production cross sections available at the time of the publication.

Measured differential fiducial cross sections in the absolute value of the Higgs rapidity (second column). The given uncertainty includes statistical and systematic components. The third (fourth) column gives the theoretical prediction of Higgs production in the fiducial volume using Powheg Minlo HJ (HRes) for the ggF process, Powheg for the VBF process, and Pythia 8 for the VH and ttH process. The uncertainty includes PDF, scale, and branching fraction uncertainty. The fifth column gives the non-ggF prediction (total minus ggF). All predicted distributions were normalized to the best predicted inclusive Higgs production cross sections available at the time of the publication.

Measured differential fiducial cross sections in m34, which corresponds to the invariant mass of the off-shell Z boson (second column). The given uncertainty includes statistical and systematic components. The third column gives the theoretical prediction of Higgs production in the fiducial volume using Powheg Minlo HJ for the ggF process, Powheg for the VBF process, and Pythia 8 for the VH and ttH process. The uncertainty includes PDF, scale, and branching fraction uncertainty. The fourth column gives the non-ggF prediction (total minus ggF). All predicted distributions were normalized to the best predicted inclusive Higgs production cross sections available at the time of the publication.

More…

Inclusive-photon production and its dependence on photon isolation in $pp$ collisions at $\sqrt s=13$ TeV using 139 fb$^{-1}$ of ATLAS data

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 086, 2023.
Inspire Record 2628741 DOI 10.17182/hepdata.134100

Measurements of differential cross sections are presented for inclusive isolated-photon production in $pp$ collisions at a centre-of-mass energy of 13 TeV provided by the LHC and using 139 fb$^{-1}$ of data recorded by the ATLAS experiment. The cross sections are measured as functions of the photon transverse energy in different regions of photon pseudorapidity. The photons are required to be isolated by means of a fixed-cone method with two different cone radii. The dependence of the inclusive-photon production on the photon isolation is investigated by measuring the fiducial cross sections as functions of the isolation-cone radius and the ratios of the differential cross sections with different radii in different regions of photon pseudorapidity. The results presented in this paper constitute an improvement with respect to those published by ATLAS earlier: the measurements are provided for different isolation radii and with a more granular segmentation in photon pseudorapidity that can be exploited in improving the determination of the proton parton distribution functions. These improvements provide a more in-depth test of the theoretical predictions. Next-to-leading-order QCD predictions from JETPHOX and SHERPA and next-to-next-to-leading-order QCD predictions from NNLOJET are compared to the measurements, using several parameterisations of the proton parton distribution functions. The measured cross sections are well described by the fixed-order QCD predictions within the experimental and theoretical uncertainties in most of the investigated phase-space region.

48 data tables

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $|\eta^{\gamma}|<0.6$ and photon isolation cone radius $R=0.4$.

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.6<|\eta^{\gamma}|<0.8$ and photon isolation cone radius $R=0.4$.

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.8<|\eta^{\gamma}|<1.37$ and photon isolation cone radius $R=0.4$.

More…

Measurement of $D^{*\pm}$, $D^\pm$ and $D_s^\pm$ meson production cross sections in $pp$ collisions at $\sqrt{s}=7$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Nucl.Phys.B 907 (2016) 717-763, 2016.
Inspire Record 1408878 DOI 10.17182/hepdata.77020

The production of $D^{*\pm}$, $D^\pm$ and $D_s^\pm$ charmed mesons has been measured with the ATLAS detector in $pp$ collisions at $\sqrt{s}=7$ TeV at the LHC, using data corresponding to an integrated luminosity of $280\,$nb$^{-1}$. The charmed mesons have been reconstructed in the range of transverse momentum $3.5<p_{\rm T}(D)<100$ GeV and pseudorapidity $|\eta(D)|<2.1$. The differential cross sections as a function of transverse momentum and pseudorapidity were measured for $D^{*\pm}$ and $D^\pm$ production. The next-to-leading-order QCD predictions are consistent with the data in the visible kinematic region within the large theoretical uncertainties. Using the visible $D$ cross sections and an extrapolation to the full kinematic phase space, the strangeness-suppression factor in charm fragmentation, the fraction of charged non-strange $D$ mesons produced in a vector state, and the total cross section of charm production at $\sqrt{s}=7$ TeV were derived.

4 data tables

The visible low-$p_T$, $3.5<p_T(D)<20\rm{\ GeV}$, and high-$p_T$, $20<p_T(D)<100\rm{\ GeV}$, cross sections of $D^{*\pm}$, $D^\pm$ and $D^\pm_s$ production with $|\eta|<2.1$. The data uncertainties are the total uncertainties obtained as sums in quadrature of the statistical, systematic, luminosity and branching-fraction uncertainties.

The measured differential cross sections $\rm{d}\sigma/\rm{d}p_T$ of $D^{*\pm}$ and $D^\pm$ production with $|\eta|<2.1$. The first and second errors are the statistical and systematic uncertainties, respectively. The systematic uncertainties corresponding to the tracking ($\delta_2$) uncertainties (Table 2 of the paper) are strongly correlated. The fully correlated uncertainties linked with the luminosity measurement ($3.5\%$) and branching fractions ($1.5\%$ and $2.1\%$ for $D^{*\pm}$ and $D^\pm$, respectively) are not shown.

The measured differential cross sections $\rm{d}\sigma/\rm{d}|\eta|$ of $D^{*\pm}$ and $D^\pm$ production with $3.5<p_T<20\,$GeV. The first and second errors are the statistical and systematic uncertainties, respectively. The systematic uncertainty fractions corresponding to the tracking ($\delta_2$) uncertainties (Table 2 of the paper) are strongly correlated. The fully correlated uncertainties linked with the luminosity measurement ($3.5\%$) and branching fractions ($1.5\%$ and $2.1\%$ for $D^{*\pm}$ and $D^\pm$, respectively) are not shown.

More…

Measurement of $W$ boson angular distributions in events with high transverse momentum jets at $\sqrt{s}=$ 8 TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 765 (2017) 132-153, 2017.
Inspire Record 1487726 DOI 10.17182/hepdata.74701

The $W$ boson angular distribution in events with high transverse momentum jets is measured using data collected by the ATLAS experiment from proton-proton collisions at a centre-of-mass energy $\sqrt{s}=$ 8 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb$^{-1}$. The focus is on the contributions to $W$ + jets processes from real $W$ emission, which is achieved by studying events where a muon is observed close to a high transverse momentum jet. At small angular separations, these contributions are expected to be large. Various theoretical models of this process are compared to the data in terms of the absolute cross-section and the angular distributions of the muon from the leptonic $W$ decay.

5 data tables

Measured integrated cross-sections as a function of leading jet transverse momentum for the collinear region ($0.2 < \Delta R < 2.4$), the back-to-back region ($\Delta R > 2.4$) and inclusively.

Measured cross-section as a function of angular separation between the muon and the closest jet. Multiplicative correction factors for using prompt muons and prompt dressing photons in the particle-level selection, derived from ALPGEN 2.14 interfaced with PYTHIA 6.426, are also shown.

Breakdown of uncertainties in percent.

More…

Version 2
Measurement of differential cross sections and $W^+/W^-$ cross-section ratios for $W$ boson production in association with jets at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 05 (2018) 077, 2018.
Inspire Record 1635273 DOI 10.17182/hepdata.80076

This paper presents a measurement of the $W$ boson production cross section and the $W^{+}/W^{-}$ cross-section ratio, both in association with jets, in proton--proton collisions at $\sqrt{s}=8$ TeV with the ATLAS experiment at the Large Hadron Collider. The measurement is performed in final states containing one electron and missing transverse momentum using data corresponding to an integrated luminosity of 20.2 fb$^{-1}$. Differential cross sections for events with one or two jets are presented for a range of observables, including jet transverse momenta and rapidities, the scalar sum of transverse momenta of the visible particles and the missing transverse momentum in the event, and the transverse momentum of the $W$ boson. For a subset of the observables, the differential cross sections of positively and negatively charged $W$ bosons are measured separately. In the cross-section ratio of $W^{+}/W^{-}$ the dominant systematic uncertainties cancel out, improving the measurement precision by up to a factor of nine. The observables and ratios selected for this paper provide valuable input for the up quark, down quark, and gluon parton distribution functions of the proton.

86 data tables

Cross section for the production of W bosons for different inclusive jet multiplicities.

Statistical correlation between bins in data for the cross section for the production of W bosons for different inclusive jet multiplicities.

Differential cross sections for the production of W<sup>+</sup> bosons, W<sup>-</sup> bosons and the W<sup>+</sup>/W<sup>-</sup> cross section ratio as a function of the inclusive jet multiplicity.

More…

Measurement of fiducial and differential $W^+W^-$ production cross-sections at $\sqrt{s}=$13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 79 (2019) 884, 2019.
Inspire Record 1734263 DOI 10.17182/hepdata.89225

A measurement of fiducial and differential cross-sections for $W^+W^-$ production in proton-proton collisions at $\sqrt{s}=$13 TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of $36.1$ fb$^{-1}$ is presented. Events with one electron and one muon are selected, corresponding to the decay of the diboson system as $WW\rightarrow e^{\pm}\nu\mu^{\mp}\nu$. To suppress top-quark background, events containing jets with a transverse momentum exceeding 35 GeV are not included in the measurement phase space. The fiducial cross-section, six differential distributions and the cross-section as a function of the jet-veto transverse momentum threshold are measured and compared with several theoretical predictions. Constraints on anomalous electroweak gauge boson self-interactions are also presented in the framework of a dimension-six effective field theory.

43 data tables

Measured fiducial cross-section as a function of the jet-veto $p_{T}$ threshold. The value at the jet-veto $p_{T}$ threshold of 35GeV corresponds to the nominal fiducial cross section measured in this publication.

Statistical correlation between bins in data for the measured fiducial cross-section as a function of the jet-veto $p_{T}$ threshold. The value at the jet-veto $p_{T}$ threshold of 35GeV corresponds to the nominal fiducial cross section measured in this publication.

Total correlation between bins in data for the measured fiducial cross-section as a function of the jet-veto $p_{T}$ threshold. The value at the jet-veto $p_{T}$ threshold of 35GeV corresponds to the nominal fiducial cross section measured in this publication.

More…

Measurement of fiducial differential cross sections of gluon-fusion production of Higgs bosons decaying to $WW^{\ast}{\rightarrow\,}e\nu\mu\nu$ with the ATLAS detector at $\sqrt{s}=8$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 08 (2016) 104, 2016.
Inspire Record 1444991 DOI 10.17182/hepdata.76843

This paper describes a measurement of fiducial and differential cross sections of gluon-fusion Higgs boson production in the $H{\rightarrow\,}WW^{\ast}{\rightarrow\,}e\nu\mu\nu$ channel, using 20.3 fb$^{-1}$ of proton-proton collision data. The data were produced at a centre-of-mass energy of $\sqrt{s} = 8$ TeV at the CERN Large Hadron Collider and recorded by the ATLAS detector in 2012. Cross sections are measured from the observed $H{\rightarrow\,}WW^{\ast}{\rightarrow\,}e\nu\mu\nu$ signal yield in categories distinguished by the number of associated jets. The total cross section is measured in a fiducial region defined by the kinematic properties of the charged leptons and neutrinos. Differential cross sections are reported as a function of the number of jets, the Higgs boson transverse momentum, the dilepton rapidity, and the transverse momentum of the leading jet. The jet-veto efficiency, or fraction of events with no jets above a given transverse momentum threshold, is also reported. All measurements are compared to QCD predictions from Monte Carlo generators and fixed-order calculations, and are in agreement with the Standard Model predictions.

22 data tables

Measured total fiducial cross section in fb.

Measured fiducial cross section in fb as a function of Njet. Jet PT>25 GeV for |eta|<2.4 and PT>30 GeV for 2.4<|eta|<4.5.

Measured fiducial cross section in fb/GeV as a function of pTH.

More…

Measurement of inclusive and differential cross sections in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 10 (2017) 132, 2017.
Inspire Record 1615206 DOI 10.17182/hepdata.79497

Inclusive and differential fiducial cross sections of Higgs boson production in proton-proton collisions are measured in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel. The proton-proton collision data were produced at the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector in 2015 and 2016, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. The inclusive fiducial cross section in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel is measured to be 3.62 $\pm$ 0.50 (stat) $^{+0.25}_{-0.20}$ (sys) fb, in agreement with the Standard Model prediction of 2.91 $\pm$ 0.13 fb. The cross section is also extrapolated to the total phase space including all Standard Model Higgs boson decays. Several differential fiducial cross sections are measured for observables sensitive to the Higgs boson production and decay, including kinematic distributions of jets produced in association with the Higgs boson. Good agreement is found between data and Standard Model predictions. The results are used to put constraints on anomalous Higgs boson interactions with Standard Model particles, using the pseudo-observable extension to the kappa-framework.

16 data tables

Measured differential fiducial cross sections in Higgs transverse momentum (second column). The given uncertainty is split into statistical (first) and systematic components (second). Values without uncertainties are 95% CL limits in the absence of signal events. The third column gives the theoretical prediction of Higgs production in the fiducial volume using Powheg NNLOPS for the ggF process, Powheg for the VBF and the VH processes, and Madgraph5_aMC@NLO for the ttH and bbH processes. The uncertainty includes PDF, scale, and branching fraction uncertainty. All predictions were normalized to the best available inclusive Higgs production cross sections at the time of the publication.

Measured differential fiducial cross sections in Higgs rapidity (second column). The given uncertainty is split into statistical (first) and systematic components (second). Values without uncertainties are 95% CL limits in the absence of signal events. The third column gives the theoretical prediction of Higgs production in the fiducial volume using Powheg NNLOPS for the ggF process, Powheg for the VBF and the VH processes, and Madgraph5_aMC@NLO for the ttH and bbH processes. The uncertainty includes PDF, scale, and branching fraction uncertainty. All predictions were normalized to the best available inclusive Higgs production cross sections at the time of the publication.

Measured differential fiducial cross sections in invariant mass of the subleading lepton pair (second column). The given uncertainty is split into statistical (first) and systematic components (second). Values without uncertainties are 95% CL limits in the absence of signal events. The third column gives the theoretical prediction of Higgs production in the fiducial volume using Powheg NNLOPS for the ggF process, Powheg for the VBF and the VH processes, and Madgraph5_aMC@NLO for the ttH and bbH processes. The uncertainty includes PDF, scale, and branching fraction uncertainty. All predictions were normalized to the best available inclusive Higgs production cross sections at the time of the publication.

More…

Measurement of prompt photon production in $\sqrt{s_\mathrm{NN}} = 8.16$ TeV $p$+Pb collisions with ATLAS

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 796 (2019) 230-252, 2019.
Inspire Record 1723858 DOI 10.17182/hepdata.87256

The inclusive production rates of isolated, prompt photons in $p$+Pb collisions at $\sqrt{s_\mathrm{NN}} = 8.16$ TeV are studied with the ATLAS detector at the Large Hadron Collider using a dataset with an integrated luminosity of 165 nb$^{-1}$ recorded in 2016. The cross-section and nuclear modification factor $R_{p\mathrm{Pb}}$ are measured as a function of photon transverse energy from 20 GeV to 550 GeV and in three nucleon-nucleon centre-of-mass pseudorapidity regions, (-2.83,-2.02), (-1.84,0.91), and (1.09,1.90). The cross-section and $R_{p\mathrm{Pb}}$ values are compared with the results of a next-to-leading-order perturbative QCD calculation, with and without nuclear parton distribution function modifications, and with expectations based on a model of the energy loss of partons prior to the hard scattering. The data disfavour a large amount of energy loss and provide new constraints on the parton densities in nuclei.

7 data tables

The measured cross sections for prompt, isolated photons with rapidity in (1.09,1.90).

The measured cross sections for prompt, isolated photons with rapidity in (−1.84,0.91).

The measured cross sections for prompt, isolated photons with rapidity in (−2.83,−2.02).

More…