We have measured the polarization of J/Psi and Psi(2S) mesons produced in p\bar{p} collisions at \sqrt{s} = 1.8 TeV, using data collected at CDF during 1992-95. The polarization of promptly produced J/Psi [Psi(2S)] mesons is isolated from those produced in B-hadron decay, and measured over the kinematic range 4[5.5] < P_T < 20 GeV/c and |y| < 0.6. For P_T \gessim 12 GeV/c we do not observe significant polarization in the prompt component.
Polarization for prompt J/PSIs (Q=PROMPT) and for J/PSI from B meson decays(NAME=BEAUTY).
Polarization for prompt PSI(2S) (NAME=PROMPT) and for PSI(2S) from B meson decays (NAME=B).
We report the first measurement of the vector analyzing power in inclusive transversely polarized elastic electron-proton scattering at Q^2 = 0.1 (GeV/c)^2 and large scattering angles. This quantity should vanish in the single virtual photon exchange, plane wave impulse approximation for this reaction, and can therefore provide information on double photon exchange amplitudes for electromagnetic interactions with hadronic systems. We find a non-zero value of A=-15.4+/-5.4 ppm. No calculations of this observable for nuclei other than spin 0 have been carried out in these kinematics, and the calculation using the spin orbit interaction from a charged point nucleus of spin 0 cannot describe these data.
Polarized beam.
Polarization measurements in the A(p, 2p)B reactions on 6Li, 7Li, and 28Si nuclei at a proton-beam energy of 1 GeV were performed in a kinematically complete experiment. By using a two-arm magnetic spectrometer, two secondary protons were recorded in coincidence at asymmetric scattering angles of θ1=15°−26° and θ2=58.6° for residual-nucleus momenta in the range K B=0–150 MeV/c. Either arm of the spectrometer was equipped with polarimeters based on proportional chambers. The data coming from this experiment are analyzed within the distorted-wave impulse approximation. It is shown that the polarization of recoil protons formed at angle θ2 in the interaction featuring a proton from the P shell of the 7Li nucleus can be described under the assumption of an effective intranuclear-proton polarization by using the single-particle shell-model wave function of the nucleus. Our data on the polarizations of the two protons from the reaction (p, 2p) on a 28Si nucleus also suggest the effective polarization of the protons in the D shell of the 28Si nucleus. It is found that, for high recoil-nucleus momenta of K B≥90 MeV/c, the effective polarization of the protons in the P shell of the 6Li nucleus—this polarization was discovered in studying the polarization of recoil protons in the reaction 6Li(p, 2p)5He—cannot be described within the shell model assuming LS coupling. As might have been expected, the polarization of recoil protons knocked out from the S shells of the 6Li and 7Li nuclei comply well with the predictions obtained in the impulse approximation with allowance for the depolarization effect alone.
REACTION WITH THE LI6 P-SHELL PROTON.
REACTION WITH THE LI6 P-SHELL PROTON.
REACTION WITH THE LI6 P-SHELL PROTON.
Tensor polarization observables (t20, t21 and t22) have been measured in elastic electron-deuteron scattering for six values of momentum transfer between 0.66 and 1.7 (GeV/c)^2. The experiment was performed at the Jefferson Laboratory in Hall C using the electron HMS Spectrometer, a specially designed deuteron magnetic channel and the recoil deuteron polarimeter POLDER. The new data determine to much larger Q^2 the deuteron charge form factors G_C and G_Q. They are in good agreement with relativistic calculations and disagree with pQCD predictions.
No description provided.
No description provided.
No description provided.
Excitation functions AN(pp,Θc.m.) of the analyzing power in pp→ elastic scattering have been measured with a polarized atomic hydrogen target for projectile momenta pp between 1000 and 3300 MeV/ c. The experiment was performed for scattering angles 30°≤Θc.m.≤90° using the recirculating beam of the proton storage ring COSY during acceleration. The resulting excitation functions and angular distributions of high internal consistency have significant impact on the recent phase shift solution SAID SP99, in particular, on the spin triplet phase shifts between 1000 and 1800 MeV, and demonstrate the limited predictive power of single-energy phase shift solutions at these energies.
No description provided.
No description provided.
No description provided.
The spin correlation parameters$A_{oonn}, A_{ooss}, A_{oosk}, A_{ookk}$and the analyzing power$A_{oono}$have been measured i
Values of the coefficients for the linear combinations of the spin correlation parameters Cpq measurements for the four different beam and target polarisation orientations. For the (z,z) and (y,y) configurations the coefficients are identical for all incident kinetic energies.
Measurement of the analysing power. Statistical errors only are shown. For the systematic errors see the systematics section above. Note that there are two overlapping angular settings.
Measurements of the spin correlation parameter CNN. Statistical errors onlyare shown. For the systematics see the systematic section above. Note the two overlapping angular settings.
We report results of the first measurements of Lambda and Antilambda polarization produced in deep inelastic polarized muon scattering on the nucleon. The results are consistent with an expected trend towards positive polarization with increasing x_F. The polarizations of Lambda and Antilambda appear to have opposite signs. A large negative polarization for Lambda at low positive x_F is observed and is not explained by existing models.A possible interpretation is presented.
The measured and corrected (undiluted) polarizations.
The measured and corrected (undiluted) polarizations.
The$\tau$polarisation has been studied with the${\rm e^+e^-}\to \tau^+\tau^-$data collected by the DELPHI detector at LEP in
The errors are statistical and systematic combined in quadrature.
No description provided.
The result of a feasibility study to measure the Λ polarization in associated K + – Λ electro-production is presented. This measurement was performed in the experimental Hall C at Jefferson Lab. The scattered electron was detected in the HMS spectrometer, and the electro-produced kaon and the proton from the Λ → pπ − decay were both detected in the SOS spectrometer. This quantity is very sensitive to the elementary p ( e , e ′ K ) Λ process and gives information on resonance production, and Regge exchange, among others. The result presented was measured at Q 2 =1.50 (GeV/c) 2 and cos θ Kγ CM =14°. The limits of the Λ polarization, with respect to the p γ × p K axis, were found to be −0.21 and +0.89 with a confidence level of 68%. The result is compared to theoretical predictions based on an effective hadronic field Lagrangian model and a Regge framework model.
LAMBDA polarization, with respect to the p_gamma x p_k axis.
The spin correlation coefficient combinations Axx + Ayy, Axx - Ayy and the analyzing powers Ay(theta) were measured for pp-->pnpi+ at beam energies of 325, 350, 375 and 400 MeV. A polarized internal atomic hydrogen target and a stored, polarized proton beam were used. These polarization observables are sensitive to contributions of higher partial waves. A comparison with recent theoretical calculations is provided.
No description provided.