A polarized proton beam extracted from SATURNE II, the Saclay polarized target with$^6$Li compounds, and
Analysing power measurements in the scattering of polarized protons from either hydrogen in the LiH target or on bound protons in the LiD target. The three sets of results are independent.
Analysing power measurements in the scattering of polarized protons from either hydrogen in the LiH target or on bound protons in the LiD target. The three sets of results are independent.
Analysing power measurements in the scattering of polarized protons from either hydrogen in the LiH target or on bound protons in the LiD target. The three sets of results are independent.
A polarized proton beam extracted from SATURNE II was scattered on an unpolarized CH 2 target. The angular distribution of the beam analyzing power A oono was measured at large angles from 1.98 to 2.8 GeV and at 0.80 GeV nominal beam kinetic energy. The same observable was determined at the fixed mean laboratory angle of 13.9° in the same energy range. Both measurements are by-products of an experiment measuring the spin correlation parameter A oon .
Analysing power measurements at a fixed laboratory angle of 13.9 degrees.
No description provided.
No description provided.
Measurements of the pp spin correlation coefficients Axx, Ayy, and Axz and analyzing power Ay for pp elastic scattering at 197.8 MeV over the angular range 4.5°–17.5° have been carried out. The statistical accuracy is approximately ±0.01 for Amn and ±0.004 for Ay, while the corresponding scale factor uncertainties are 2.4% and 1.3%, respectively. The experiment makes use of a polarized hydrogen gas target internal to a proton storage ring (IUCF Cooler) and a circulating beam of polarized protons. The target polarization (Q=0.79) is switched in sign and in direction (x,y,z) every 2 s by reversing a weak guide field (about 0.3 mT). The forward-scattered protons are detected in two sets of wire chambers and a scintillator, while recoil protons are detected in coincidence with the forward protons by silicon strip detectors placed 5 cm from the proton beam. The background rate from scattering by the walls of the target cell is (0.2±0.2)% of the good event rate. Analysis methods and comparisons with pp potential models and pp partial wave analyses are described.
No description provided.
The angular dependence of the pp elastic scattering analyzing power was measured at SATURNE II with an unpolarized proton beam and the Saclay polarized proton target. The energy region in the vicinity of the accelerator depolarizing resonance Gγ = 6 at Tkin = 2.202 GeV was studied. Measurements were carried out at seven energies between 2.16 and 2.28 GeV from 17° to 55°CM. No significant anomaly was observed in the angular and energy dependence of the results presented, whereas the existing data sets differ in this energy range.
Additional random-like systematic error of 1.1 PCT.
Additional random-like systematic error of 9.9PCT.
Additional random-like systematic error of 0.2PCT.
The analyzing power AN of proton-proton elastic scattering in the Coulomb-nuclear interference region has been measured using the 200-GeV/c Fermilab polarized proton beam. A theoretically predicted interference between the hadronic non-spin-flip amplitude and the electromagnetic spin-flip amplitude is shown for the first time to be present at high energies in the region of 1.5 × 10−3 to 5.0 × 10−2 (GeV/c)2 four-momentum transfer squared, and our results are analyzed in connection with theoretical calculations. In addition, the role of possible contributions of the hadronic spin-flip amplitude is discussed.
No description provided.
The energy dependence of the pp elastic analyzing power has been measured using an internal target during polarized beam acceleration. The data were obtained in incident-energy steps varying from 4 to 17 MeV over an energy range from 0.5 to 2.0 GeV. The statistical uncertainty of the analyzing power is typically less than 0.01. A narrow structure is observed around 2.17 GeV in the two-proton invariant mass distribution. A possible explanation for the structure with narrow resonances is discussed.
Statistical errors only.
The analyzing power Ay for p+p elastic scattering at θlab=8.64°±0.07° (θcms=18.1°) and at a bombarding energy of 183.1±0.4 MeV has been determined to be Ay=0.2122±0.0017. The error includes statistics, systematic uncertainties, and the uncertainty in bombarding energy and angle. This measurement represents a calibration standard for polarized beams in this energy range. The absolute scale for the measurement has been obtained by comparison with p+C elastic scattering at the same energy at an angle where Ay is very nearly unity.
Axis error includes +- 0.0/0.0 contribution (?////).
We measured the analyzing power A out to P⊥2=7.1 (GeV/c)2 with high precision by scattering a 24-GeV/c unpolarized proton beam from the new University of Michigan polarized proton target; the target’s 1-W cooling power allowed a beam intensity of more than 2×1011 protons per pulse. This high beam intensity together with the unexpectedly high average target polarization of about 85% allowed unusually accurate measurements of A at large P⊥2. These precise data confirmed that the one-spin parameter A is nonzero and indeed quite large at high P⊥2; most theoretical models predict that A should go to zero.
Errors quoted contain both statistical and systematic uncertainties.
The analyzing power A N of proton-proton, proton-hydrocarbon, and antiproton-hydrocarbon, scattering in the Coulomb-nuclear interference region has been measured using thhe 185 GeV/ c Fermilab polarized-proton and -antiproton beams. The results are found to be consistent with theoretical predictions within statistical uncertainties.
No description provided.
Data from hydrocarbon target.
Data from hydrocarbon target.
The polarization parameter Pn000, the two-spin parameters Dn0n0, Kn00n, Ds′0s0, Ds′0k0 and the three-spin parameters Ms′0sn and Ms′0kn have been measured for pp elastic scattering angles between 60° and 88° center of mass at 241 and 314 MeV incident kinetic energies, and between 38° c.m. and 98° c.m. at 341, 366, and 398 MeV. At 473 MeV, only Pn000 and Ds′0k0 were measured between 34° c.m. and 62° c.m. The experiment was performed at SIN using a polarized proton beam and a polarized butanol target. The polarization of the scattered proton was analyzed in a carbon polarimeter. The influence of these high-precision data on the Saclay-Geneva phase-shift analysis is discussed.
Statistical errors only.
Statistical errors only.
Statistical errors only.