This letter presents measurements of the differential cross-sections for inclusive electron and muon production in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using data collected by the ATLAS detector at the LHC. The muon cross-section is measured as a function of pT in the range 4 < pT < 100 GeV and within pseudorapidity |eta| < 2.5. In addition the electron and muon cross-sections are measured in the range 7 < pT < 26 GeV and within |eta| <2.0, excluding 1.37<|eta|<1.52. Integrated luminosities of 1.3 pb-1 and 1.4 pb-1 are used for the electron and muon measurements, respectively. After subtraction of the W/Z/gamma* contribution, the differential cross-sections are found to be in good agreement with theoretical predictions for heavy-flavour production obtained from Fixed Order NLO calculations with NLL high-pT resummation, and to be sensitive to the effects of NLL resummation.
Differential cross section as a function of PT for electron heavy-flavour production in the |pseudorapidity| region < 2.0 (excluding 1.37 to 1.52). The systematic error includes the 3.4% luminosity uncertainty.
Inclusive muon cross section for |eta| < 2.5 and pT > 4 GeV: (stat) statistical error, (sys) systematic error.The first systematic error is the intrinsic error of the measurement, the second the error is due to the luminosity.
Inclusive muon cross section after subtraction of W,Z, Drell-Yan and top background for |eta| < 2.5 and pT > 4 GeV: (stat) statistical error, (sys) systematic error. The first systematic error is the intrinsic error of the measurement, the second the error due to the luminosity, the third is due to the subtraction of the background and is dominated by the error on the W, Z inclusive cross sections.
A search is presented for a high mass neutral particle that decays directly to the emu final state. The data sample was recorded by the ATLAS detector in sqrt(s) = 7 TeV pp collisions at the LHC from March to June 2011 and corresponds to an integrated luminosity of 1.07 fb^-1. The data are found to be consistent with the Standard Model background. The high emu mass region is used to set 95% confidence level upper limits on the production of two possible new physics processes: tau sneutrinos in an R-parity violating supersymmetric model and Z'-like vector bosons in a lepton flavor violating model.
Observed and predicted E-MU invariant mass distributions.
Observed and predicted electron PT distributions.
Observed and predicted muon PT distributions.
Hitherto unobserved long-lived massive particles with electric and/or colour charge are predicted by a range of theories which extend the Standard Model. In this paper a search is performed at the ATLAS experiment for slow-moving charged particles produced in proton-proton collisions at 7 TeV centre-of-mass energy at the LHC, using a data-set corresponding to an integrated luminosity of 34 pb-1. No deviations from Standard Model expectations are found. This result is interpreted in a framework of supersymmetry models in which coloured sparticles can hadronise into long-lived bound hadronic states, termed R-hadrons, and 95% CL limits are set on the production cross-sections of squarks and gluinos. The influence of R-hadron interactions in matter was studied using a number of different models, and lower mass limits for stable sbottoms and stops are found to be 294 and 309 GeV respectively. The lower mass limit for a stable gluino lies in the range from 562 to 586 GeV depending on the model assumed. Each of these constraints is the most stringent to date.
Distribution of the observed rate of energy loss in the Pixel detector plus the simulated background and model estimates for three gluino masses.
Distribution of the observed BETA values in the Tile Calorimeter plus the simulated background and model estimates for three gluino masses.
Distribution of the heavy particle Mass estimated from the Pixel detector data plus the simulated background and model estimates for three gluino masses. A cut of dE/dx > 1.1 MeV/(gm*cm**2) is imposed.;.
Results are presented of a search for any particle(s) decaying to six or more jets in association with missing transverse momentum. The search is performed using 1.34 fb^-1 of sqrt(s)=7 TeV proton-proton collisions recorded by the ATLAS detector during 2011. Data-driven techniques are used to determine the backgrounds in kinematic regions that require at least six, seven or eight jets, well beyond the multiplicities required in previous analyses. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a supersymmetry model (MSUGRA/CMSSM) where they extend previous constraints.
Observed and predicted distributions of the variable ET(C=MISSING)/SQRT(HT) for events with exactly 6 jets each having PT > 55 GeV.
Observed and predicted distributions of the variable ET(C=MISSING)/SQRT(HT) for events with exactly 5 jets each having PT > 80 GeV.
Observed and predicted jet multiplicity distribution for jets with PT > 55 Gev in the ET(C=MISSING)/SQRT(HT) region 1.5-2 GeV.
A first measurement of the inelastic cross-section is presented for proton-proton collisions at a center of mass energy sqrt{s}=7 TeV using the ATLAS detector at the Large Hadron Collider. In a dataset corresponding to an integrated luminosity of 20 mub-1, events are selected by requiring hits on scintillation counters mounted in the forward region of the detector. An inelastic cross-section of $60.3 +/- 2.1 mb is measured for xi > 5x10^-6, where xi=M_X^2/s is calculated from the invariant mass, M_X, of hadrons selected using the largest rapidity gap in the event. For diffractive events this corresponds to requiring at least one of the dissociation masses to be larger than 15.7 GeV.
The measured and extrapolated inelastic cross section. The first error is the experimental error and the second (sys) error is the error in the extrapolation.
The production cross sections of the inclusive Drell-Yan processes W to l nu and Z/gamma to ll (l=e,mu) are measured in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector. The cross sections are reported integrated over a fiducial kinematic range, extrapolated to the full range and also evaluated differentially as a function of the W decay lepton pseudorapidity and the Z boson rapidity, respectively. Based on an integrated luminosity of about 35 pb^-1 collected in 2010, the precision of these measurements reaches a few per cent. The integrated and the differential W+- and Z/gamma cross sections in the e and mu channels are combined, and compared with perturbative QCD calculations, based on a number of different parton distribution sets available at NNLO.
Cross sections for Z0 production from the combined electron and muon data sets in the defined fiducial regions. The first (sys) error is the uncorrelated systematic error and the second is the correlated systematic error.
Correlated Systematic Uncertainties for Z0 production.
Cross sections for W- production from the combined electron and muon data sets in the defined fiducial regions. The first (sys) error is the uncorrelated systematic error and the second is the correlated systematic error.
The results of a search for supersymmetric particles in final states with four or more leptons (electrons or muons) and missing transverse momentum with the ATLAS detector are presented. The analysis uses a sample corresponding to an integrated luminosity of 2.06 fb−1 of proton-proton data recorded in 2011 at a centre-of-mass energy of 7 TeV. With an inclusive selection four events are observed, while 1.7±0.9 are expected from Standard Model processes. After applying a Z boson veto for leptons pairs with the same flavour and opposite charge, no events are observed for 0.7±0.8 events expected. Within the selection acceptance, we determine 95% C.L. visible cross-section upper limits for new phenomena of 3.5 fb and 1.5 fb for the selections without and with the Z-veto, respectively.
Transverse momentum(energy) distribution of the leading muon(electron) for events with at least 4 leptons each having transverse PT(ET) > 10 GeV.
Transverse momentum(energy) distribution of the second leading muon(electron) for events with at least 4 leptons each having transverse PT(ET) > 10 GeV.
Transverse momentum(energy) distribution of the third leading muon(electron) for events with at least 4 leptons each having transverse PT(ET) > 10 GeV.
We present first measurements of charged and neutral particle-flow correlations in pp collisions using the ATLAS calorimeters. Data were collected in 2009 and 2010 at centre-of-mass energies of 900 GeV and 7 TeV. Events were selected using a minimum-bias trigger which required a charged particle in scintillation counters on either side of the interaction point. Particle flows, sensitive to the underlying event, are measured using clusters of energy in the ATLAS calorimeters, taking advantage of their fine granularity. No Monte Carlo generator used in this analysis can accurately describe the measurements. The results are independent of those based on charged particles measured by the ATLAS tracking systems and can be used to constrain the parameters of Monte Carlo generators.
900 GeV Particle density vs. Delta(phi) with leading particle pT > 1 GeV.
900 GeV Particle density vs. Delta(phi) with leading particle pT > 2 GeV.
900 GeV Particle density vs. Delta(phi) with leading particle pT > 3 GeV.
Dijet angular distributions from the first LHC pp collisions at center-of-mass energy sqrt(s) = 7 TeV have been measured with the ATLAS detector. The dataset used for this analysis represents an integrated luminosity of 3.1 pb-1. Dijet $\chi$ distributions and centrality ratios have been measured up to dijet masses of 2.8 TeV, and found to be in good agreement with Standard Model predictions. Analysis of the $\chi$ distributions excludes quark contact interactions with a compositeness scale $\Lambda$ below 3.4 TeV, at 95% confidence level, significantly exceeding previous limits.
CHI distribution for mass bin 340 to 520 GeV.
CHI distribution for mass bin 520 to 800 GeV.
CHI distribution for mass bin 800 to 1200 GeV.
A search for new heavy particles manifested as resonances in two-jet final states is presented. The data were produced in 7 TeV proton-proton collisions by the Large Hadron Collider (LHC) and correspond to an integrated luminosity of 315 nb^-1 collected by the ATLAS detector. No resonances were observed. Upper limits were set on the product of cross section and signal acceptance for excited-quark (q*) production as a function of q* mass. These exclude at the 95% CL the q* mass interval 0.30 < mq* < 1.26 TeV, extending the reach of previous experiments.
The dijet mass distribution (NUMBER OF EVENTS).
95 PCT CL upper limit of the cross section x acceptance.