Search for new phenomena in events with two opposite-charge leptons, jets and missing transverse momentum in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 04 (2021) 165, 2021.
Inspire Record 1844425 DOI 10.17182/hepdata.98627

The results of a search for direct pair production of top squarks and for dark matter in events with two opposite-charge leptons (electrons or muons), jets and missing transverse momentum are reported, using 139 fb$^{-1}$ of integrated luminosity from proton-proton collisions at $\sqrt{s} = 13$ TeV, collected by the ATLAS detector at the Large Hadron Collider during Run 2 (2015-2018). This search considers the pair production of top squarks and is sensitive across a wide range of mass differences between the top squark and the lightest neutralino. Additionally, spin-0 mediator dark-matter models are considered, in which the mediator is produced in association with a pair of top quarks. The mediator subsequently decays to a pair of dark-matter particles. No significant excess of events is observed above the Standard Model background, and limits are set at 95% confidence level. The results exclude top squark masses up to about 1 TeV, and masses of the lightest neutralino up to about 500 GeV. Limits on dark-matter production are set for scalar (pseudoscalar) mediator masses up to about 250 (300) GeV.

196 data tables

Two-body selection. Distributions of $m_{T2}$ in $SR^{2-body}_{110,\infty}$ for (a) different-flavour and (b) same-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference dark-matter signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction.

Two-body selection. Distributions of $m_{T2}$ in $SR^{2-body}_{110,\infty}$ for (a) different-flavour and (b) same-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference dark-matter signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction.

Three-body selection. Distributions of $M_{\Delta}^R$ in (a,b) $SR_{W}^{3-body}$ and (c,d) $SR_{T}^{3-body}$ for (left) same-flavour and (right) different-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.

More…

Search for the rare decay of the W boson into a pion and a photon in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 819 (2021) 136409, 2021.
Inspire Record 1829749 DOI 10.17182/hepdata.100165

A search is performed for the rare decay W$^\pm\to\pi^\pm\gamma$ in proton-proton collisions at $\sqrt{s} =$ 13 TeV. Data corresponding to an on W integrated luminosity of 137 fb$^{-1}$ were collected during 2016 to 2018 with the CMS detector. This analysis exploits a novel search strategy based on W boson production in top quark pair events. An inclusive search for the W$^\pm\to\pi^\pm\gamma$ decay is not optimal at the LHC because of the high trigger thresholds. Instead, a trigger selection is exploited in which the W boson originating from one of the top quarks is used to tag the event in a leptonic decay. The W boson emerging from the other top quark is used to search for the W$^\pm\to\pi^\pm\gamma$ signature. Such decays are characterized by an isolated track pointing to a large energy deposit, and by an isolated photon of large transverse momentum. The presence of b quark jets reduces the background from the hadronization of light-flavor quarks and gluons. The W$^\pm\to\pi^\pm\gamma$ decay is not observed. An upper exclusion limit is set to this branching fraction, corresponding to 1.50 $\times$ 10$^{-5}$ at 95% confidence level, whereas the expected upper limit exclusion limit is 0.85 $^{+0.52}_{-0.29}$ $\times$ 10$^{-5}$.

2 data tables

The product of signal efficiency and acceptance per year and per lepton channel (muon or electron).

Expected and observed upper exclusion limits on the branching fraction of the decay of a W boson into a pion and a photon, using 2016 to 2018 data.


Search for dark matter produced in association with a dark Higgs boson decaying into $W^\pm W^\mp$ or $ZZ$ in fully hadronic final states from $\sqrt{s}=13$ TeV $pp$ collisions recorded with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 126 (2021) 121802, 2021.
Inspire Record 1822529 DOI 10.17182/hepdata.97191

Several extensions of the Standard Model predict the production of dark matter particles at the LHC. An uncharted signature of dark matter particles produced in association with $VV=W^\pm W^\mp$ or $ZZ$ pairs from a decay of a dark Higgs boson $s$ is searched for using 139 fb$^{-1}$ of $pp$ collisions recorded by the ATLAS detector at a center-of-mass energy of 13 TeV. The $s\to V(q\bar q)V(q\bar q)$ decays are reconstructed with a novel technique aimed at resolving the dense topology from boosted $VV$ pairs using jets in the calorimeter and tracking information. Dark Higgs scenarios with $m_s > 160$ GeV are excluded.

13 data tables

Data overlaid on SM background post-fit yields stacked in each SR and CR category and E<sub>T</sub><sup>miss</sup> bin with the maximum-likelihood estimators set to the conditional values of the CR-only fit, and propagated to SR and CRs. Pre-fit uncertainties cover differences between the data and pre-fit background prediction.

Dominant sources of uncertainty for three dark Higgs scenarios after the fit to Asimov data generated from the expected values of the maximum-likelihood estimators including predicted signals with m<sub>Z'</sub> = 1 TeV and m<sub>s</sub> of (a) 160 GeV, (b) 235 GeV, and (c) 310 GeV. The uncertainty in the fitted signal yield relative to the theory prediction is presented. Total is the quadrature sum of statistical and total systematic uncertainties, which consider correlations.

The ratios (&mu;) of the 95&#37; C.L. upper limits on the combined s&rarr; W<sup>&plusmn;</sup>W<sup>&#8723;</sup> and s&rarr; ZZ cross section to simplified model expectations for the m<sub>Z'</sub>=0.5 TeV scenario, for various m<sub>s</sub> hypotheses. The observed limits (solid line) are consistent with the expectation under the SM-only hypothesis (dashed line) within uncertainties (filled band), except for a small excess for m<sub>s</sub>=160 GeV, discussed in the text.

More…

Search for phenomena beyond the Standard Model in events with large $b$-jet multiplicity using the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 81 (2021) 11, 2021.
Inspire Record 1821239 DOI 10.17182/hepdata.95683

A search is presented for new phenomena in events characterised by high jet multiplicity, no leptons (electrons or muons), and four or more jets originating from the fragmentation of $b$-quarks ($b$-jets). The search uses 139 fb$^{-1}$ of $\sqrt{s}$ = 13 TeV proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider during Run 2. The dominant Standard Model background originates from multijet production and is estimated using a data-driven technique based on an extrapolation from events with low $b$-jet multiplicity to the high $b$-jet multiplicities used in the search. No significant excess over the Standard Model expectation is observed and 95% confidence-level limits that constrain simplified models of R-parity-violating supersymmetry are determined. The exclusion limits reach 950 GeV in top-squark mass in the models considered.

49 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=stbchionly_obs">Stop to bottom quark and chargino exclusion contour (Obs.)</a> <li><a href="?table=stbchionly_exp">Stop to bottom quark and chargino exclusion contour (Exp.)</a> <li><a href="?table=stbchi_obs">Stop to higgsino LSP exclusion contour (Obs.)</a> <li><a href="?table=stbchi_exp">Stop to higgsino LSP exclusion contour (Exp.)</a> <li><a href="?table=sttN_obs">Stop to top quark and neutralino exclusion contour (Obs.)</a> <li><a href="?table=sttN_exp">Stop to top quark and neutralino exclusion contour (Exp.)</a> </ul> <b>Upper limits:</b> <ul> <li><a href="?table=stbchionly_xSecUL_obs">Obs Xsection upper limit in stop to bottom quark and chargino</a> <li><a href="?table=stop_xSecUL_obs">Obs Xsection upper limit in higgsino LSP</a> <li><a href="?table=stbchionly_xSecUL_exp">Exp Xsection upper limit in stop to bottom quark and chargino</a> <li><a href="?table=stop_xSecUL_exp">Exp Xsection upper limit in higgsino LSP</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=SR_yields">SR_yields</a> </ul> <b>Cut flows:</b> <ul> <li><a href="?table=cutflow">cutflow</a> </ul> <b>Acceptance and efficiencies:</b> As explained in <a href="https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults#summary_of_auxiliary_material">the twiki</a>. <ul> <li> <b>stbchi_6je4be:</b> <a href="?table=stbchi_Acc_6je4be">stbchi_Acc_6je4be</a> <a href="?table=stbchi_Eff_6je4be">stbchi_Eff_6je4be</a> <li> <b>stbchi_7je4be:</b> <a href="?table=stbchi_Acc_7je4be">stbchi_Acc_7je4be</a> <a href="?table=stbchi_Eff_7je4be">stbchi_Eff_7je4be</a> <li> <b>stbchi_8je4be:</b> <a href="?table=stbchi_Acc_8je4be">stbchi_Acc_8je4be</a> <a href="?table=stbchi_Eff_8je4be">stbchi_Eff_8je4be</a> <li> <b>stbchi_9ji4be:</b> <a href="?table=stbchi_Acc_9ji4be">stbchi_Acc_9ji4be</a> <a href="?table=stbchi_Eff_9ji4be">stbchi_Eff_9ji4be</a> <li> <b>stbchi_6je5bi:</b> <a href="?table=stbchi_Acc_6je5bi">stbchi_Acc_6je5bi</a> <a href="?table=stbchi_Eff_6je5bi">stbchi_Eff_6je5bi</a> <li> <b>stbchi_7je5bi:</b> <a href="?table=stbchi_Acc_7je5bi">stbchi_Acc_7je5bi</a> <a href="?table=stbchi_Eff_7je5bi">stbchi_Eff_7je5bi</a> <li> <b>stbchi_8je5bi:</b> <a href="?table=stbchi_Acc_8je5bi">stbchi_Acc_8je5bi</a> <a href="?table=stbchi_Eff_8je5bi">stbchi_Eff_8je5bi</a> <li> <b>stbchi_9ji5bi:</b> <a href="?table=stbchi_Acc_9ji5bi">stbchi_Acc_9ji5bi</a> <a href="?table=stbchi_Eff_9ji5bi">stbchi_Eff_9ji5bi</a> <li> <b>stbchi_8ji5bi:</b> <a href="?table=stbchi_Acc_8ji5bi">stbchi_Acc_8ji5bi</a> <a href="?table=stbchi_Eff_8ji5bi">stbchi_Eff_8ji5bi</a> <li> <b>sttN_6je4be:</b> <a href="?table=sttN_Acc_6je4be">sttN_Acc_6je4be</a> <a href="?table=sttN_Eff_6je4be">sttN_Eff_6je4be</a> <li> <b>sttN_7je4be:</b> <a href="?table=sttN_Acc_7je4be">sttN_Acc_7je4be</a> <a href="?table=sttN_Eff_7je4be">sttN_Eff_7je4be</a> <li> <b>sttN_8je4be:</b> <a href="?table=sttN_Acc_8je4be">sttN_Acc_8je4be</a> <a href="?table=sttN_Eff_8je4be">sttN_Eff_8je4be</a> <li> <b>sttN_9ji4be:</b> <a href="?table=sttN_Acc_9ji4be">sttN_Acc_9ji4be</a> <a href="?table=sttN_Eff_9ji4be">sttN_Eff_9ji4be</a> <li> <b>sttN_6je5bi:</b> <a href="?table=sttN_Acc_6je5bi">sttN_Acc_6je5bi</a> <a href="?table=sttN_Eff_6je5bi">sttN_Eff_6je5bi</a> <li> <b>sttN_7je5bi:</b> <a href="?table=sttN_Acc_7je5bi">sttN_Acc_7je5bi</a> <a href="?table=sttN_Eff_7je5bi">sttN_Eff_7je5bi</a> <li> <b>sttN_8je5bi:</b> <a href="?table=sttN_Acc_8je5bi">sttN_Acc_8je5bi</a> <a href="?table=sttN_Eff_8je5bi">sttN_Eff_8je5bi</a> <li> <b>sttN_9ji5bi:</b> <a href="?table=sttN_Acc_9ji5bi">sttN_Acc_9ji5bi</a> <a href="?table=sttN_Eff_9ji5bi">sttN_Eff_9ji5bi</a> <li> <b>sttN_8ji5bi:</b> <a href="?table=sttN_Acc_8ji5bi">sttN_Acc_8ji5bi</a> <a href="?table=sttN_Eff_8ji5bi">sttN_Eff_8ji5bi</a> </ul> <b>Truth Code snippets</b> and <b>SLHA</a> files are available under "Resources" (purple button on the left)

The observed exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{\pm}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contours are excluded. Limits are shown for $B(\tilde{t} \rightarrow b \chi^{+}_{1})$ equal to unity.

The expected exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{\pm}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contour are excluded. Limits are shown for $B(\tilde{t} \rightarrow b \chi^{+}_{1})$ equal to unity.

More…

Version 2
Reconstruction and identification of boosted di-$\tau$ systems in a search for Higgs boson pairs using 13 TeV proton$-$proton collision data in ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 11 (2020) 163, 2020.
Inspire Record 1809175 DOI 10.17182/hepdata.95432

In this paper, a new technique for reconstructing and identifying hadronically decaying $\tau^+\tau^-$ pairs with a large Lorentz boost, referred to as the di-$\tau$ tagger, is developed and used for the first time in the ATLAS experiment at the Large Hadron Collider. A benchmark di-$\tau$ tagging selection is employed in the search for resonant Higgs boson pair production, where one Higgs boson decays into a boosted $b\bar{b}$ pair and the other into a boosted $\tau^+\tau^-$ pair, with two hadronically decaying $\tau$-leptons in the final state. Using 139 fb$^{-1}$ of proton$-$proton collision data recorded at a centre-of-mass energy of 13 TeV, the efficiency of the di-$\tau$ tagger is determined and the background with quark- or gluon-initiated jets misidentified as di-$\tau$ objects is estimated. The search for a heavy, narrow, scalar resonance produced via gluon$-$gluon fusion and decaying into two Higgs bosons is carried out in the mass range 1$-$3 TeV using the same dataset. No deviations from the Standard Model predictions are observed, and 95% confidence-level exclusion limits are set on this model.

8 data tables

Signal acceptance times selection efficiency as a function of the resonance mass, at various stages of the event selection. From top to bottom: an event pre-selection (trigger, object definitions and $E_{T}^{miss}>10$ GeV) is performed first; the requirements on the di-$\tau$ object and large-$R$ jet detailed in the text are then applied; finally, the $HH$ SR definition must be satisfied.

Signal acceptance times selection efficiency as a function of the resonance mass, at various stages of the event selection. From top to bottom: an event pre-selection (trigger, object definitions and $E_{T}^{miss}>10$ GeV) is performed first; the requirements on the di-$\tau$ object and large-$R$ jet detailed in the text are then applied; finally, the $HH$ SR definition must be satisfied.

Distribution of $m^{vis}_{HH}$ after applying all the event selection that define the $HH$ SR, except the requirement on $m^{vis}_{HH}$. The background labelled as "Others" contains $W$+jets, diboson, $t\bar{t}$ and single-top-quark processes. The $X\rightarrow HH \rightarrow b\bar{b}\tau^{+}\tau^{-}$ signal is overlaid for two resonance mass hypotheses with a cross-section set to the expected limit, while all backgrounds are pre-fit. The first and the last bins contains the under-flow and over-flow bin entries, respectively. The hatched bands represent combined statistical and systematic uncertainties.

More…

Version 2
Search for Higgs boson decays into two new low-mass spin-0 particles in the 4$b$ channel with the ATLAS detector using $pp$ collisions at $\sqrt{s}= 13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 102 (2020) 112006, 2020.
Inspire Record 1797642 DOI 10.17182/hepdata.94383

This paper describes a search for beyond the Standard Model decays of the Higgs boson into a pair of new spin-0 particles subsequently decaying into $b$-quark pairs, $H \rightarrow aa \rightarrow (b\bar{b})(b\bar{b})$, using proton-proton collision data collected by the ATLAS detector at the Large Hadron Collider at center-of-mass energy $\sqrt{s}=13$ TeV. This search focuses on the regime where the decay products are collimated and in the range $15 \leq m_a \leq 30$ GeV and is complementary to a previous search in the same final state targeting the regime where the decay products are well separated and in the range $20 \leq m_a \leq 60$ GeV. A novel strategy for the identification of the $a \rightarrow b\bar{b}$ decays is deployed to enhance the efficiency for topologies with small separation angles. The search is performed with 36 fb$^{-1}$ of integrated luminosity collected in 2015 and 2016 and sets upper limits on the production cross-section of $H \rightarrow aa \rightarrow (b\bar{b})(b\bar{b})$, where the Higgs boson is produced in association with a $Z$ boson.

10 data tables

Summary of the 95% CL upper limits on $\sigma_{ZH} BR(H\rightarrow aa \rightarrow (b\bar{b})(b\bar{b}))$. Both observed and expected limits are listed. In the case of the expected limits, one- and two-standard-deviation uncertainty bands are also listed.

Summary of the 95% CL upper limits on $\sigma_{ZH} BR(H\rightarrow aa \rightarrow (b\bar{b})(b\bar{b}))$. Both observed and expected limits are listed. In the case of the expected limits, one- and two-standard-deviation uncertainty bands are also listed.

Summary of the observed 95% CL upper limits on $\sigma_{ZH} BR(H\rightarrow aa \rightarrow (b\bar{b})(b\bar{b}))$ for the resolved analysis.

More…

Version 2
Search for a scalar partner of the top quark in the all-hadronic $t\bar{t}$ plus missing transverse momentum final state at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 737, 2020.
Inspire Record 1793461 DOI 10.17182/hepdata.93906

A search for direct pair production of scalar partners of the top quark (top squarks or scalar third-generation up-type leptoquarks) in the all-hadronic $t\bar{t}$ plus missing transverse momentum final state is presented. The analysis of 139 fb$^{-1}$ of ${\sqrt{s}=13}$ TeV proton-proton collision data collected using the ATLAS detector at the LHC yields no significant excess over the Standard Model background expectation. To interpret the results, a supersymmetric model is used where the top squark decays via $\tilde{t} \to t^{(*)} \tilde{\chi}^0_1$, with $t^{(*)}$ denoting an on-shell (off-shell) top quark and $\tilde{\chi}^0_1$ the lightest neutralino. Three specific event selections are optimised for the following scenarios. In the scenario where $m_{\tilde{t}}> m_t+m_{\tilde{\chi}^0_1}$, top squark masses are excluded in the range 400-1250 GeV for $\tilde{\chi}^0_1$ masses below $200$ GeV at 95 % confidence level. In the situation where $m_{\tilde{t}}\sim m_t+m_{\tilde{\chi}^0_1}$, top squark masses in the range 300-630 GeV are excluded, while in the case where $m_{\tilde{t}}< m_W+m_b+m_{\tilde{\chi}^0_1}$ (with $m_{\tilde{t}}-m_{\tilde{\chi}^0_1}\ge 5$ GeV), considered for the first time in an ATLAS all-hadronic search, top squark masses in the range 300-660 GeV are excluded. Limits are also set for scalar third-generation up-type leptoquarks, excluding leptoquarks with masses below $1240$ GeV when considering only leptoquark decays into a top quark and a neutrino.

118 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=stop_obs">Stop exclusion contour (Obs.)</a> <li><a href="?table=stop_obs_down">Stop exclusion contour (Obs. Down)</a> <li><a href="?table=stop_obs_up">Stop exclusion contour (Obs. Up)</a> <li><a href="?table=stop_exp">Stop exclusion contour (Exp.)</a> <li><a href="?table=stop_exp_down">Stop exclusion contour (Exp. Down)</a> <li><a href="?table=stop_exp_up">Stop exclusion contour (Exp. Up)</a> <li><a href="?table=LQ3u_obs">LQ3u exclusion contour (Obs.)</a> <li><a href="?table=LQ3u_obs_down">LQ3u exclusion contour (Obs. Down)</a> <li><a href="?table=LQ3u_obs_up">LQ3u exclusion contour (Obs. Up)</a> <li><a href="?table=LQ3u_exp">LQ3u exclusion contour (Exp.)</a> <li><a href="?table=LQ3u_exp_down">LQ3u exclusion contour (Exp. Down)</a> <li><a href="?table=LQ3u_exp_up">LQ3u exclusion contour (Exp. Up)</a> </ul> <b>Upper limits:</b> <ul> <li><a href="?table=stop_xSecUpperLimit_obs">stop_xSecUpperLimit_obs</a> <li><a href="?table=stop_xSecUpperLimit_exp">stop_xSecUpperLimit_exp</a> <li><a href="?table=LQ3u_xSecUpperLimit_obs">LQ3u_xSecUpperLimit_obs</a> <li><a href="?table=LQ3u_xSecUpperLimit_exp">LQ3u_xSecUpperLimit_exp</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=SRATW_metsigST">SRATW_metsigST</a> <li><a href="?table=SRBTT_m_1fatjet_kt12">SRBTT_m_1fatjet_kt12</a> <li><a href="?table=SRC_RISR">SRC_RISR</a> <li><a href="?table=SRD0_htSig">SRD0_htSig</a> <li><a href="?table=SRD1_htSig">SRD1_htSig</a> <li><a href="?table=SRD2_htSig">SRD2_htSig</a> </ul> <b>Cut flows:</b> <ul> <li><a href="?table=cutflow_SRATT">cutflow_SRATT</a> <li><a href="?table=cutflow_SRATW">cutflow_SRATW</a> <li><a href="?table=cutflow_SRAT0">cutflow_SRAT0</a> <li><a href="?table=cutflow_SRB">cutflow_SRB</a> <li><a href="?table=cutflow_SRC">cutflow_SRC</a> <li><a href="?table=cutflow_SRD0">cutflow_SRD0</a> <li><a href="?table=cutflow_SRD1">cutflow_SRD1</a> <li><a href="?table=cutflow_SRD2">cutflow_SRD2</a> </ul> <b>Acceptance and efficiencies:</b> As explained in <a href="https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults#summary_of_auxiliary_material">the twiki</a>. <ul> <li> <b>SRATT:</b> <a href="?table=Acc_SRATT">Acc_SRATT</a> <a href="?table=Eff_SRATT">Eff_SRATT</a> <li> <b>SRATW:</b> <a href="?table=Acc_SRATW">Acc_SRATW</a> <a href="?table=Eff_SRATW">Eff_SRATW</a> <li> <b>SRAT0:</b> <a href="?table=Acc_SRAT0">Acc_SRAT0</a> <a href="?table=Eff_SRAT0">Eff_SRAT0</a> <li> <b>SRBTT:</b> <a href="?table=Acc_SRBTT">Acc_SRBTT</a> <a href="?table=Eff_SRBTT">Eff_SRBTT</a> <li> <b>SRBTW:</b> <a href="?table=Acc_SRBTW">Acc_SRBTW</a> <a href="?table=Eff_SRBTW">Eff_SRBTW</a> <li> <b>SRBT0:</b> <a href="?table=Acc_SRBT0">Acc_SRBT0</a> <a href="?table=Eff_SRBT0">Eff_SRBT0</a> <li> <b>SRC1:</b> <a href="?table=Acc_SRC1">Acc_SRC1</a> <a href="?table=Eff_SRC1">Eff_SRC1</a> <li> <b>SRC2:</b> <a href="?table=Acc_SRC2">Acc_SRC2</a> <a href="?table=Eff_SRC2">Eff_SRC2</a> <li> <b>SRC3:</b> <a href="?table=Acc_SRC3">Acc_SRC3</a> <a href="?table=Eff_SRC3">Eff_SRC3</a> <li> <b>SRC4:</b> <a href="?table=Acc_SRC4">Acc_SRC4</a> <a href="?table=Eff_SRC4">Eff_SRC4</a> <li> <b>SRC5:</b> <a href="?table=Acc_SRC5">Acc_SRC5</a> <a href="?table=Eff_SRC5">Eff_SRC5</a> <li> <b>SRD0:</b> <a href="?table=Acc_SRD0">Acc_SRD0</a> <a href="?table=Eff_SRD0">Eff_SRD0</a> <li> <b>SRD1:</b> <a href="?table=Acc_SRD1">Acc_SRD1</a> <a href="?table=Eff_SRD1">Eff_SRD1</a> <li> <b>SRD2:</b> <a href="?table=Acc_SRD2">Acc_SRD2</a> <a href="?table=Eff_SRD2">Eff_SRD2</a> </ul> <b>Truth Code snippets</b> and <b>SLHA</a> files are available under "Resources" (purple button on the left)

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=stop_obs">Stop exclusion contour (Obs.)</a> <li><a href="?table=stop_obs_down">Stop exclusion contour (Obs. Down)</a> <li><a href="?table=stop_obs_up">Stop exclusion contour (Obs. Up)</a> <li><a href="?table=stop_exp">Stop exclusion contour (Exp.)</a> <li><a href="?table=stop_exp_down">Stop exclusion contour (Exp. Down)</a> <li><a href="?table=stop_exp_up">Stop exclusion contour (Exp. Up)</a> <li><a href="?table=LQ3u_obs">LQ3u exclusion contour (Obs.)</a> <li><a href="?table=LQ3u_obs_down">LQ3u exclusion contour (Obs. Down)</a> <li><a href="?table=LQ3u_obs_up">LQ3u exclusion contour (Obs. Up)</a> <li><a href="?table=LQ3u_exp">LQ3u exclusion contour (Exp.)</a> <li><a href="?table=LQ3u_exp_down">LQ3u exclusion contour (Exp. Down)</a> <li><a href="?table=LQ3u_exp_up">LQ3u exclusion contour (Exp. Up)</a> </ul> <b>Upper limits:</b> <ul> <li><a href="?table=stop_xSecUpperLimit_obs">stop_xSecUpperLimit_obs</a> <li><a href="?table=stop_xSecUpperLimit_exp">stop_xSecUpperLimit_exp</a> <li><a href="?table=LQ3u_xSecUpperLimit_obs">LQ3u_xSecUpperLimit_obs</a> <li><a href="?table=LQ3u_xSecUpperLimit_exp">LQ3u_xSecUpperLimit_exp</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=SRATW_metsigST">SRATW_metsigST</a> <li><a href="?table=SRBTT_m_1fatjet_kt12">SRBTT_m_1fatjet_kt12</a> <li><a href="?table=SRC_RISR">SRC_RISR</a> <li><a href="?table=SRD0_htSig">SRD0_htSig</a> <li><a href="?table=SRD1_htSig">SRD1_htSig</a> <li><a href="?table=SRD2_htSig">SRD2_htSig</a> </ul> <b>Cut flows:</b> <ul> <li><a href="?table=cutflow_SRATT">cutflow_SRATT</a> <li><a href="?table=cutflow_SRATW">cutflow_SRATW</a> <li><a href="?table=cutflow_SRAT0">cutflow_SRAT0</a> <li><a href="?table=cutflow_SRB">cutflow_SRB</a> <li><a href="?table=cutflow_SRC">cutflow_SRC</a> <li><a href="?table=cutflow_SRD0">cutflow_SRD0</a> <li><a href="?table=cutflow_SRD1">cutflow_SRD1</a> <li><a href="?table=cutflow_SRD2">cutflow_SRD2</a> </ul> <b>Acceptance and efficiencies:</b> As explained in <a href="https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults#summary_of_auxiliary_material">the twiki</a>. <ul> <li> <b>SRATT:</b> <a href="?table=Acc_SRATT">Acc_SRATT</a> <a href="?table=Eff_SRATT">Eff_SRATT</a> <li> <b>SRATW:</b> <a href="?table=Acc_SRATW">Acc_SRATW</a> <a href="?table=Eff_SRATW">Eff_SRATW</a> <li> <b>SRAT0:</b> <a href="?table=Acc_SRAT0">Acc_SRAT0</a> <a href="?table=Eff_SRAT0">Eff_SRAT0</a> <li> <b>SRBTT:</b> <a href="?table=Acc_SRBTT">Acc_SRBTT</a> <a href="?table=Eff_SRBTT">Eff_SRBTT</a> <li> <b>SRBTW:</b> <a href="?table=Acc_SRBTW">Acc_SRBTW</a> <a href="?table=Eff_SRBTW">Eff_SRBTW</a> <li> <b>SRBT0:</b> <a href="?table=Acc_SRBT0">Acc_SRBT0</a> <a href="?table=Eff_SRBT0">Eff_SRBT0</a> <li> <b>SRC1:</b> <a href="?table=Acc_SRC1">Acc_SRC1</a> <a href="?table=Eff_SRC1">Eff_SRC1</a> <li> <b>SRC2:</b> <a href="?table=Acc_SRC2">Acc_SRC2</a> <a href="?table=Eff_SRC2">Eff_SRC2</a> <li> <b>SRC3:</b> <a href="?table=Acc_SRC3">Acc_SRC3</a> <a href="?table=Eff_SRC3">Eff_SRC3</a> <li> <b>SRC4:</b> <a href="?table=Acc_SRC4">Acc_SRC4</a> <a href="?table=Eff_SRC4">Eff_SRC4</a> <li> <b>SRC5:</b> <a href="?table=Acc_SRC5">Acc_SRC5</a> <a href="?table=Eff_SRC5">Eff_SRC5</a> <li> <b>SRD0:</b> <a href="?table=Acc_SRD0">Acc_SRD0</a> <a href="?table=Eff_SRD0">Eff_SRD0</a> <li> <b>SRD1:</b> <a href="?table=Acc_SRD1">Acc_SRD1</a> <a href="?table=Eff_SRD1">Eff_SRD1</a> <li> <b>SRD2:</b> <a href="?table=Acc_SRD2">Acc_SRD2</a> <a href="?table=Eff_SRD2">Eff_SRD2</a> </ul> <b>Truth Code snippets</b> and <b>SLHA</a> files are available under "Resources" (purple button on the left)

The observed exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contours are excluded.

More…

Version 4
Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 125 (2020) 051801, 2020.
Inspire Record 1782650 DOI 10.17182/hepdata.93071

A search for heavy neutral Higgs bosons is performed using the LHC Run 2 data, corresponding to an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. The search for heavy resonances is performed over the mass range 0.2-2.5 TeV for the $\tau^+\tau^-$ decay with at least one $\tau$-lepton decaying into final states with hadrons. The data are in good agreement with the background prediction of the Standard Model. In the $M_{h}^{125}$ scenario of the Minimal Supersymmetric Standard Model, values of $\tan\beta>8$ and $\tan\beta>21$ are excluded at the 95% confidence level for neutral Higgs boson masses of 1.0 TeV and 1.5 TeV, respectively, where $\tan\beta$ is the ratio of the vacuum expectation values of the two Higgs doublets.

216 data tables

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.

More…

Version 2
Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in $\sqrt{s}$ = 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 101 (2020) 072001, 2020.
Inspire Record 1771533 DOI 10.17182/hepdata.91127

A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell $W$ and $Z$ bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of $\sqrt{s}$ = 13 TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb$^{-1}$. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015-2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full dataset are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV.

58 data tables

Distributions in SR-low of the data and post-fit background prediction for m<sub>T</sub>. The SR-low event selections are applied for each distribution except for the variable shown, where the selection is indicated by a red arrow. The normalization factor for the WZ background is derived from the background-only estimation described in Section 7. The expected distribution for a benchmark signal model is included for comparison. The first (last) bin includes underflow (overflow). The "Top-quark like" category contains the tt&#772;, Wt, and WW processes while the "Others" category contains backgrounds from triboson production and processes that include a Higgs boson, 3 or more tops, and tops produced in association with W or Z bosons. The bottom panel shows the ratio of the data to the post-fit background prediction. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.

Distributions in SR-low of the data and post-fit background prediction for m<sub>T</sub>. The SR-low event selections are applied for each distribution except for the variable shown, where the selection is indicated by a red arrow. The normalization factor for the WZ background is derived from the background-only estimation described in Section 7. The expected distribution for a benchmark signal model is included for comparison. The first (last) bin includes underflow (overflow). The "Top-quark like" category contains the tt&#772;, Wt, and WW processes while the "Others" category contains backgrounds from triboson production and processes that include a Higgs boson, 3 or more tops, and tops produced in association with W or Z bosons. The bottom panel shows the ratio of the data to the post-fit background prediction. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.

Distributions in SR-low of the data and post-fit background prediction for H<sup>boost</sup>. The SR-low event selections are applied for each distribution except for the variable shown, where the selection is indicated by a red arrow. The normalization factor for the WZ background is derived from the background-only estimation described in Section 7. The expected distribution for a benchmark signal model is included for comparison. The first (last) bin includes underflow (overflow). The "Top-quark like" category contains the tt&#772;, Wt, and WW processes while the "Others" category contains backgrounds from triboson production and processes that include a Higgs boson, 3 or more tops, and tops produced in association with W or Z bosons. The bottom panel shows the ratio of the data to the post-fit background prediction. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.

More…

Version 4
Search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson decaying into two $b$-jets in (pp) collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 691, 2020.
Inspire Record 1755298 DOI 10.17182/hepdata.90607

The results of a search for electroweakino pair production $pp \rightarrow \tilde\chi^\pm_1 \tilde\chi^0_2$ in which the chargino ($\tilde\chi^\pm_1$) decays into a $W$ boson and the lightest neutralino ($\tilde\chi^0_1$), while the heavier neutralino ($\tilde\chi^0_2$) decays into the Standard Model 125 GeV Higgs boson and a second $\tilde\chi^0_1$ are presented. The signal selection requires a pair of $b$-tagged jets consistent with those from a Higgs boson decay, and either an electron or a muon from the $W$ boson decay, together with missing transverse momentum from the corresponding neutrino and the stable neutralinos. The analysis is based on data corresponding to 139 $\mathrm{fb}^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collisions provided by the Large Hadron Collider and recorded by the ATLAS detector. No statistically significant evidence of an excess of events above the Standard Model expectation is found. Limits are set on the direct production of the electroweakinos in simplified models, assuming pure wino cross-sections. Masses of $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ up to 740 GeV are excluded at 95% confidence level for a massless $\tilde{\chi}^{0}_{1}$.

212 data tables

The post-fit $m_{CT}$ distribution is shown in the validation region VR-onLM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.

The post-fit $m_{CT}$ distribution is shown in the validation region VR-onLM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.

The post-fit $m_{CT}$ distribution is shown in the validation region VR-onLM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.

More…