Total Cross Sections for Interaction of 4.75 and 3.7 BeV/c $K^+$ and $\pi^+$ Mesons with Protons and Nuclei

Likhachev, M.F. ; Stavinskii, V.S. ; Chang, Naisen ; et al.
Sov.Phys.JETP 14 (1961) 29-31, 1961.
Inspire Record 1387792 DOI 10.17182/hepdata.70227

The total cross sections for interactions of K+ and 1r+ mesons with protons were measured. The following values were obtained: 21.3 ± 4.6 mb and 21 ± 4.3 mb for 4.75 ± 0.15 Bev/c and 3.7 ± 0.1 Bev/c K+ mesons, respectively; the corresponding values for 1r+ mesons of the same momenta were 33.3 ± 1.3mb and 30 ± 1.2mb. Data on the cross sections for inelastic collisions of K+ and 1r+ mesons with various nuclei have also been obtained.

2 data tables

No description provided.

No description provided.


Study of the $e^+e^-\to K^+K^-$ reaction in the energy range from 2.6 to 8.0 GeV

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 92 (2015) 072008, 2015.
Inspire Record 1383130 DOI 10.17182/hepdata.73784

The $e^+e^-\to K^+K^-$ cross section and charged-kaon electromagnetic form factor are measured in the $e^+e^-$ center-of-mass energy range ($E$) from 2.6 to 8.0 GeV using the initial-state radiation technique with an undetected photon. The study is performed using 469 fb$^{-1}$ of data collected with the BABAR detector at the PEP-II $e^+e^-$ collider at center-of-mass energies near 10.6 GeV. The form factor is found to decrease with energy faster than $1/E^2$, and approaches the asymptotic QCD prediction. Production of the $K^+K^-$ final state through the $J/\psi$ and $\psi(2S)$ intermediate states is observed. The results for the kaon form factor are used together with data from other experiments to perform a model-independent determination of the relative phases between single-photon and strong amplitudes in $J/\psi$ and $\psi(2S)\to K^+K^-$ decays. The values of the branching fractions measured in the reaction $e^+e^- \to K^+K^-$ are shifted relative to their true values due to interference between resonant and nonresonant amplitudes. The values of these shifts are determined to be about $\pm5\%$ for the $J/\psi$ meson and $\pm15\%$ for the $\psi(2S)$ meson.

1 data table

The $K^+K^-$ invariant-mass interval ($M_{K^+K^-}$), number of selected events ($N_{\rm sig}$) after background subtraction, detection efficiency ($\varepsilon$), ISR luminosity ($L$), measured $e^+e^-\to K^+K^-$ cross section ($\sigma_{K^+K^-}$), and the charged-kaon form factor ($|F_K|$). For the number of events and cross section. For the form factor, we quote the combined uncertainty. For the mass interval 7.5 - 8.0 GeV/$c^2$, the 90$\%$ CL upper limits for the cross section and form factor are listed.


Measurement of the proton form factor by studying $e^{+} e^{-}\rightarrow p\bar{p}$

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Phys.Rev.D 91 (2015) 112004, 2015.
Inspire Record 1358937 DOI 10.17182/hepdata.73442

Using data samples collected with the BESIII detector at the BEPCII collider, we measure the Born cross section of $e^{+}e^{-}\rightarrow p\bar{p}$ at 12 center-of-mass energies from 2232.4 to 3671.0 MeV. The corresponding effective electromagnetic form factor of the proton is deduced under the assumption that the electric and magnetic form factors are equal $(|G_{E}|= |G_{M}|)$. In addition, the ratio of electric to magnetic form factors, $|G_{E}/G_{M}|$, and $|G_{M}|$ are extracted by fitting the polar angle distribution of the proton for the data samples with larger statistics, namely at $\sqrt{s}=$ 2232.4 and 2400.0 MeV and a combined sample at $\sqrt{s}$ = 3050.0, 3060.0 and 3080.0 MeV, respectively. The measured cross sections are in agreement with recent results from BaBar, improving the overall uncertainty by about 30\%. The $|G_{E}/G_{M}|$ ratios are close to unity and consistent with BaBar results in the same $q^{2}$ region, which indicates the data are consistent with the assumption that $|G_{E}|=|G_{M}|$ within uncertainties.

1 data table

Summary of the Born cross section $\sigma_\text{Born}$, the effective FF $|G|$, and the related variables used to calculate the Born cross sections at the different c.m.energies $\sqrt{s}$, where $N_\text{obs}$ is the number of candidate events, $N_\text{bkg}$ is the estimated background yield, $\varepsilon^\prime=\varepsilon\times(1+\delta)$ is the product of detection efficiency $\varepsilon$ and the radiative correction factor $(1+\delta)$, and $L$ is the integrated luminosity. The first errors are statistical, and the second systematic.


Cross sections for the reactions $e^+ e^-\to K_S^0 K_L^0$, $K_S^0 K_L^0 \pi^+\pi^-$, $K_S^0 K_S^0 \pi^+\pi^-$, and $K_S^0 K_S^0 K^+K^-$ from events with initial-state radiation

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 89 (2014) 092002, 2014.
Inspire Record 1287920 DOI 10.17182/hepdata.64506

We study the processes $e^+ e^-\to K_S^0 K_L^0 \gamma$, $K_S^0 K_L^0 \pi^+\pi^-\gamma$, $K_S^0 K_S^0 \pi^+\pi^-\gamma$, and $K_S^0 K_S^0 K^+K^-\gamma$, where the photon is radiated from the initial state, providing cross section measurements for the hadronic states over a continuum of center-of-mass energies. The results are based on 469 fb$^{-1}$ of data collected with the BaBar detector at SLAC. We observe the $\phi(1020)$ resonance in the $K_S^0 K_L^0$ final state and measure the product of its electronic width and branching fraction with about 3% uncertainty. We present a measurement of the $e^+ e^-\to K_S^0 K_L^0 $ cross section in the energy range from 1.06 to 2.2 GeV and observe the production of a resonance at 1.67 GeV. We present the first measurements of the $e^+ e^-\to K_S^0 K_L^0 \pi^+\pi^-$, $K_S^0 K_S^0 \pi^+\pi^-$, and $K_S^0 K_S^0 K^+K^-$ cross sections, and study the intermediate resonance structures. We obtain the first observations of \jpsi decay to the $K_S^0 K_L^0 \pi^+\pi^-$, $K_S^0 K_S^0 \pi^+\pi^-$, and $K_S^0 K_S^0 K^+K^-$ final states.

22 data tables

Cross section measurement for PHI(1020).

Mass measurement for PHI(1020).

Measurement of the PHI(1020) width.

More…

Study of e+e- --> p anti-p via initial-state radiation at BABAR

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 87 (2013) 092005, 2013.
Inspire Record 1217421 DOI 10.17182/hepdata.62678

The process e+e- --> p anti-p gamma is studied using 469 fb-1 of integrated luminosity collected with the BABAR detector at the PEP-II collider, at an e+e- center-of-mass energy of 10.6 GeV. From the analysis of the p anti-p invariant mass spectrum, the energy dependence of the cross section for e+e- --> p anti-p is measured from threshold to 4.5 GeV. The energy dependence of the ratio of electric and magnetic form factors, |G_E/G_M|, and the asymmetry in the proton angular distribution are measured for p anti-p masses below 3 GeV. We also measure the branching fractions for the decays J/psi --> p anti-p and psi(2S) --> p anti p.

1 data table

Measurement of the cross section as a function of the invariant mass of the PBAR-P system and the effective form factor for the reaction E+ E- --> PBAR P. The contributions from J/PSI and PSI(25) decaying to PBAR-P have been subtracted. The form factor error is the combined statistical and systematic.


Antiproton-proton total cross-sections between 0.575 and 5.35 GeV/c

Amaldi, U. ; Fazzini, T. ; Legros, M. ; et al.
Nuovo Cim. 34 (1964) 825-853, 1964.
Inspire Record 1185176 DOI 10.17182/hepdata.37642

Total p−p cross-section measurements have been made at 28 momenta, in the range (0.575÷5.35) GeV/c. The cross-section decreases monotonically with increasing momentum. No important irregularity has been found.

1 data table

No description provided.


Precise Measurement of the $e^+ e^- \to \pi^+\pi^- (\gamma)$ Cross Section with the Initial-State Radiation Method at BABAR

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 86 (2012) 032013, 2012.
Inspire Record 1114155 DOI 10.17182/hepdata.115140

A precise measurement of the cross section of the process $e^+e^-\to\pi^+\pi^-(\gamma)$ from threshold to an energy of 3GeV is obtained with the initial-state radiation (ISR) method using 232fb$^{-1}$ of data collected with the BaBar detector at $e^+e^-$ center-of-mass energies near 10.6GeV. The ISR luminosity is determined from a study of the leptonic process $e^+e^-\to\mu^+\mu^-(\gamma)\gamma_{\rm ISR}$, which is found to agree with the next-to-leading-order QED prediction to within 1.1%. The cross section for the process $e^+e^-\to\pi^+\pi^-(\gamma)$ is obtained with a systematic uncertainty of 0.5% in the dominant $\rho$ resonance region. The leading-order hadronic contribution to the muon magnetic anomaly calculated using the measured $\pi\pi$ cross section from threshold to 1.8GeV is $(514.1 \pm 2.2({\rm stat}) \pm 3.1({\rm syst}))\times 10^{-10}$.

3 data tables

Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ The cross section values (nb) for 337 CM energy intervals (GeV) from 0.3 to 3 GeV. The cross section is bare (excluding vacuum polarization) and includes the emission of final state photons. ***WARNING*** The quoted errors are from the diagonal elements of the statistical covariance matrix (reported the Table titled "Bare cross-section statistical covariance") and added quadratically with the systematic uncertainties (reported in the Table titled "Bare cross-section systematic uncertainties"). These errors can be used when plotting the results as they are representative of the precision achieved. However, any calculation involving the cross section over some energy range MUST use, to be meaningful, the full statistical covariance matrix and the proper correlations of the systematic uncertainties. ***WARNING***

Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ systematic uncertainties contributions and total systematic uncertainties, for 337 CM energy intervals (GeV), from 0.3 to 3 GeV. All systematics contributions are each 100% correlated in all energy bins.

Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ statistical covariance matrix, for 337x337 CM energy intervals (GeV), from 0.3 to 3 GeV.


Cross Sections for the Reactions e+e- --> K+ K- pi+pi-, K+ K- pi0pi0, and K+ K- K+ K- Measured Using Initial-State Radiation Events

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Prencipe, E. ; et al.
Phys.Rev.D 86 (2012) 012008, 2012.
Inspire Record 892684 DOI 10.17182/hepdata.62222

We study the processes e+e- --> K+ K- pi+pi-gamma, K+ K- pi0pi0gamma, and K+ K- K+ K-gamma, where the photon is radiated from the initial state. About 84000, 8000, and 4200 fully reconstructed events, respectively, are selected from 454 fb-1 of BaBar data. The invariant mass of the hadronic final state defines the \epem center-of-mass energy, so that the K+ K- pi+pi- data can be compared with direct measurements of the e+e- --> K+ K- pi+pi- reaction. No direct measurements exist for the e+e- --> K+ K-pi0pi0 or e+e- --> K+ K-K+ K- reactions, and we present an update of our previous result with doubled statistics. Studying the structure of these events, we find contributions from a number of intermediate states, and extract their cross sections. In particular, we perform a more detailed study of the e+e- --> phi(1020)pipigamma reaction, and confirm the presence of the Y(2175) resonance in the phi(1020) f0(980) and K+K-f0(980) modes. In the charmonium region, we observe the J/psi in all three final states and in several intermediate states, as well as the psi(2S) in some modes, and measure the corresponding product of branching fraction and electron width.

8 data tables

The cross section for the reaction E+ E- --> K+ K- PI+ PI- measured with ISR data. Statistical errors only.

Cross section measurements for the reaction E+ E- --> K*(892)0 K- PI+. Statistical errors only.

Cross section measurements for the reaction E+ E- --> PHI PI+ PI-. Statistical errors only.

More…

High-statistics study of ${\boldmath \eta \pi^0}$ production in two-photon collisions

The Belle collaboration Uehara, S. ; Watanabe, Y. ; Nakazawa, H. ; et al.
Phys.Rev.D 80 (2009) 032001, 2009.
Inspire Record 822474 DOI 10.17182/hepdata.53739

The differential cross section for the process $\gamma \gamma \to \eta \pi^0$ has been measured in the kinematic range $0.84 \GeV < W < 4.0 \GeV$, $|\cos \theta^*|<0.8$, where $W$ and $\theta^*$ are the energy and $\pi^0$ (or $\eta$) scattering angle, respectively, in the $\gamma\gamma$ center-of-mass system. The results are based on a 223 fb$^{-1}$ data sample collected with the Belle detector at the KEKB $e^+ e^-$ collider. Clear peaks due to the $a_0(980)$ and $a_2(1320)$ are visible. The differential cross sections are fitted in the energy region $0.9 \GeV < W < 1.46 \GeV$ to obtain the parameters of the $a_0(980)$. Its mass, width and $\Gamma_{\gamma \gamma} \B (\eta \pi^0)$ are measured to be $982.3 ^{+0.6}_{-0.7} ^{+3.1}_{-4.7} \MeV/c^2$, $75.6 \pm 1.6 ^{+17.4}_{-10.0} \MeV$ and $128 ^{+3}_{-2} ^{+502}_{-43} \eV$, respectively. The energy and angular dependences above 3.1 GeV are compared with those measured in the $\pi^0 \pi^0$ channel. The integrated cross section over $|\cos \theta^*|<0.8$ has a $W^{-n}$ dependence with $n = 10.5 \pm 1.2 \pm 0.5$, which is slightly larger than that for $\pi^0 \pi^0$. The differential cross sections show a $\sin^{-4} \theta^*$ dependence similar to $\gamma \gamma \to \pi^0 \pi^0$. The measured cross section ratio, $\sigma(\eta \pi^0)/\sigma(\pi^0 \pi^0) = 0.48 \pm 0.05 \pm 0.04$, is consistent with a QCD-based prediction.

75 data tables

The total cross section integrated over ABS(COS(THETA*)) < 0.8.

The differential cross section as a function of angle for W = 0.85 GeV.

The differential cross section as a function of angle for W = 0.87 GeV.

More…

$R$ value measurements for $e^+e^-$ annihilation at 2.60, 3.07 and 3.65 GeV

The BES collaboration Ablikim, M. ; Bai, J.Z. ; Bai, Y. ; et al.
Phys.Lett.B 677 (2009) 239-245, 2009.
Inspire Record 814778 DOI 10.17182/hepdata.51953

Using a data sample with a total integrated luminosity of 10.0 pb$^{-1}$ collected at center-of-mass energies of 2.6, 3.07 and 3.65 GeV with BESII, cross sections for $e^+e^-$ annihilation into hadronic final states ($R$ values) are measured with statistical errors that are smaller than 1%, and systematic errors that are about 3.5%. The running strong interaction coupling constants $\alpha_s^{(3)}(s)$ and $\alpha_s^{(5)}(M_Z^2)$ are determined from the $R$ values.

1 data table

R values.