Fiducial and differential cross sections of Higgs boson production measured in the four-lepton decay channel in $pp$ collisions at $\sqrt{s}$=8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 738 (2014) 234-253, 2014.
Inspire Record 1310835 DOI 10.17182/hepdata.78567

Measurements of fiducial and differential cross sections of Higgs boson production in the ${H \rightarrow ZZ ^{*}\rightarrow 4\ell}$ decay channel are presented. The cross sections are determined within a fiducial phase space and corrected for detection efficiency and resolution effects. They are based on 20.3 fb$^{-1}$ of $pp$ collision data, produced at $\sqrt{s}$=8 TeV centre-of-mass energy at the LHC and recorded by the ATLAS detector. The differential measurements are performed in bins of transverse momentum and rapidity of the four-lepton system, the invariant mass of the subleading lepton pair and the decay angle of the leading lepton pair with respect to the beam line in the four-lepton rest frame, as well as the number of jets and the transverse momentum of the leading jet. The measured cross sections are compared to selected theoretical calculations of the Standard Model expectations. No significant deviation from any of the tested predictions is found.

6 data tables

Measured differential fiducial cross sections in Higgs transverse momentum (second column). The given uncertainty includes statistical and systematic components. The third (fourth) column gives the theoretical prediction of Higgs production in the fiducial volume using Powheg Minlo HJ (HRes) for the ggF process, Powheg for the VBF process, and Pythia 8 for the VH and ttH process. The uncertainty includes PDF, scale, and branching fraction uncertainty. The fifth column gives the non-ggF prediction (total minus ggF). All predicted distributions were normalized to the best predicted inclusive Higgs production cross sections available at the time of the publication.

Measured differential fiducial cross sections in the absolute value of the Higgs rapidity (second column). The given uncertainty includes statistical and systematic components. The third (fourth) column gives the theoretical prediction of Higgs production in the fiducial volume using Powheg Minlo HJ (HRes) for the ggF process, Powheg for the VBF process, and Pythia 8 for the VH and ttH process. The uncertainty includes PDF, scale, and branching fraction uncertainty. The fifth column gives the non-ggF prediction (total minus ggF). All predicted distributions were normalized to the best predicted inclusive Higgs production cross sections available at the time of the publication.

Measured differential fiducial cross sections in m34, which corresponds to the invariant mass of the off-shell Z boson (second column). The given uncertainty includes statistical and systematic components. The third column gives the theoretical prediction of Higgs production in the fiducial volume using Powheg Minlo HJ for the ggF process, Powheg for the VBF process, and Pythia 8 for the VH and ttH process. The uncertainty includes PDF, scale, and branching fraction uncertainty. The fourth column gives the non-ggF prediction (total minus ggF). All predicted distributions were normalized to the best predicted inclusive Higgs production cross sections available at the time of the publication.

More…

Version 2
Search for new phenomena in dijet events using 37 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s}=$13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 96 (2017) 052004, 2017.
Inspire Record 1519428 DOI 10.17182/hepdata.77265

Dijet events are studied in the proton--proton collision dataset recorded at $\sqrt{s}=$13 TeV with the ATLAS detector at the Large Hadron Collider in 2015 and 2016, corresponding to integrated luminosities of 3.5 fb$^{-1}$ and 33.5 fb$^{-1}$ respectively. Invariant mass and angular distributions are compared to background predictions and no significant deviation is observed. For resonance searches, a new method for fitting the background component of the invariant mass distribution is employed. The dataset is then used to set upper limits at a 95% confidence level on a range of new physics scenarios. Excited quarks with masses below 6.0 TeV are excluded, and limits are set on quantum black holes, heavy W' bosons, W* bosons, and a range of masses and couplings in a Z' dark matter mediator model. Model-independent limits on signals with a Gaussian shape are also set, using a new approach allowing factorization of physics and detector effects. From the angular distributions, a scale of new physics in contact interaction models is excluded for scenarios with either constructive or destructive interference. These results represent a substantial improvement over those obtained previously with lower integrated luminosity.

18 data tables

The number of events as a function of the dijet invariant mass, compared to background prediction from fit and corresponding uncertainties, in the region defined by |y*|<0.6

The number of events as a function of the dijet invariant mass, compared to background prediction from fit and corresponding uncertainties, in the region defined by |y*|<0.6

The number of events as a function of the dijet invariant mass, compared to background prediction from fit and corresponding uncertainties, in the region defined by |y*|<1.2 optimized for the W* search.

More…

Search for direct top squark pair production in final states with two leptons in $\sqrt{s} = 13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 898, 2017.
Inspire Record 1615470 DOI 10.17182/hepdata.78219

The results of a search for direct pair production of top squarks in events with two opposite-charge leptons (electrons or muons) are reported, using 36.1 fb$^{-1}$ of integrated luminosity from proton--proton collisions at $\sqrt{s}=13$ TeV collected by the ATLAS detector at the Large Hadron Collider. To cover a range of mass differences between the top squark $\tilde{t}$ and lighter supersymmetric particles, four possible decay modes of the top squark are targeted with dedicated selections: the decay $\tilde{t} \rightarrow b \tilde{\chi}_{1}^{\pm}$ into a $b$-quark and the lightest chargino with $\tilde{\chi}_{1}^{\pm} \rightarrow W \tilde{\chi}_{1}^{0}$, the decay $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$ into an on-shell top quark and the lightest neutralino, the three-body decay $\tilde{t} \rightarrow b W \tilde{\chi}_{1}^{0}$ and the four-body decay $\tilde{t} \rightarrow b \ell \nu \tilde{\chi}_{1}^{0}$. No significant excess of events is observed above the Standard Model background for any selection, and limits on top squarks are set as a function of the $\tilde{t}$ and $\tilde{\chi}_{1}^{0}$ masses. The results exclude at 95% confidence level $\tilde{t}$ masses up to about 720 GeV, extending the exclusion region of supersymmetric parameter space covered by previous searches.

100 data tables

Two-body selection background fit results for the CRs of the SRA$^{2-body}_{180}$ and SRB$^{2-body}_{140}$ background fits. The nominal expectations from MC simulation are given for comparison for those backgrounds (top, $VV$-SF, ttZ and $VZ$) that are normalised to data in dedicated CRs. The `Others category contains the contributions from $ttW$, $tth$, $ttWW$, $ttt$, $tttt$, $Wh$, $ggh$ and $Zh$ production. Combined statistical and systematic uncertainties are given. Entries marked ``--'' indicate a negligible background contribution. Uncertainties on the predicted background event yields are quoted as symmetric except where the negative uncertainty extends to zero predicted events, in which case the negative uncertainty is truncated.

Two-body selection background fit results for the CRs of the SRC$^{2-body}_{110}$ background fit. The nominal expectations from MC simulation are given for comparison for those backgrounds ($t\bar t$, $t\bar t Z$) that are normalised to data in dedicated CRs. The Others category contains the contributions from $t\bar t W$, $t\bar t h$, $t\bar t WW$, $t\bar t t$, $t\bar t t\bar t$, $Wh$, $ggh$ and $Zh$ production. Combined statistical and systematic uncertainties are given. Entries marked $--$ indicate a negligible background contribution. Uncertainties on the predicted background event yields are quoted as symmetric except where the negative uncertainty extends to zero predicted events, in which case the negative uncertainty is truncated.

Two-body selection distribution of $n_{jets}$ in CR$^{2-body}_{top}$ after the background fits. The contributions from all SM backgrounds are shown as a histogram stack; the bands represent the total statistical and detector-related systematic uncertainty. The rightmost bin of each plot includes overflow events.

More…

Search for the dimuon decay of the Higgs boson in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 119 (2017) 051802, 2017.
Inspire Record 1599399 DOI 10.17182/hepdata.78379

A search for the dimuon decay of the Higgs boson was performed using data corresponding to an integrated luminosity of 36.1 fb$^{-1}$ collected with the ATLAS detector in $pp$ collisions at $\sqrt{s}=13$ TeV at the Large Hadron Collider. No significant excess is observed above the expected background. The observed (expected) upper limit on the cross section times branching ratio is 3.0 (3.1) times the Standard Model prediction at the 95% confidence level for a Higgs boson mass of 125 GeV. When combined with the $pp$ collision data at $\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV, the observed (expected) upper limit is 2.8 (2.9) times the Standard Model prediction.

3 data tables

Measurement of signal strength

Event yields for the expected signal (S) and background (B) processes, and numbers of the observed data events in different categories. The full widths at half maximum (FWHM) of the signal $m_{μμ}$ distributions are also shown. In each category, the event yields are counted within an $m_{μμ}$ interval, which is centered at the simulated signal peak and contains 90% of the expected signal events. The expected signal event yields are normalized to $36.1 fb^-1$. The background in each category is normalized to the observed data yield, while the relative fractions between the different processes are fixed to the SM predictions.

The 95% CL upper limit on signal strength


A search for resonances decaying into a Higgs boson and a new particle $X$ in the $XH \to qqbb$ final state with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 779 (2018) 24-45, 2018.
Inspire Record 1624549 DOI 10.17182/hepdata.78568

A search for heavy resonances decaying into a Higgs boson ($H$) and a new particle ($X$) is reported, utilizing 36.1 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} =$ 13 TeV collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle $X$ is assumed to decay to a pair of light quarks, and the fully hadronic final state $XH \rightarrow q\bar q'b\bar b$ is analysed. The search considers the regime of high $XH$ resonance masses, where the $X$ and $H$ bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of $XH$ mass versus $X$ mass is scanned for evidence of a signal, over a range of $XH$ resonance mass values between 1 TeV and 4 TeV, and for $X$ particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of $XH$ and $X$ masses, on the production cross-section of the $XH\rightarrow q\bar q'b\bar b$ resonance.

90 data tables
More…

Study of $WW\gamma$ and $WZ\gamma$ production in $pp$ collisions at $\sqrt{s} = 8$ TeV and search for anomalous quartic gauge couplings with the ATLAS experiment

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 646, 2017.
Inspire Record 1610451 DOI 10.17182/hepdata.78400

This paper presents a study of $WW\gamma$ and $WZ\gamma$ triboson production using events from proton--proton collisions at a centre-of-mass energy of $\sqrt{s} = 8$ TeV recorded with the ATLAS detector at the LHC and corresponding to an integrated luminosity of 20.2 fb$^{-1}$. The $WW\gamma$ production cross-section is determined using a final state containing an electron, a muon, a photon, and neutrinos ($e\nu\mu\nu\gamma$). Upper limits on the production cross-section of the $e\nu\mu\nu\gamma$ final state and the $WW\gamma$ and $WZ\gamma$ final states containing an electron or a muon, two jets, a photon, and a neutrino ($e\nu jj\gamma$ or $\mu\nu jj\gamma$) are also derived. The results are compared to the cross-sections predicted by the Standard Model at next-to-leading order in the strong-coupling constant. In addition, upper limits on the production cross-sections are derived in a fiducial region optimised for a search for new physics beyond the Standard Model. The results are interpreted in the context of anomalous quartic gauge couplings using an effective field theory. Confidence intervals at 95% confidence level are derived for the 14 coupling coefficients to which $WW\gamma$ and $WZ\gamma$ production are sensitive.

8 data tables

Computed fiducial cross section in the $e\nu\mu\nu\gamma$ channel. The first uncertainty shown is the statistical uncertainty and the second one is the total systematic uncertainty including the uncertainty due to the luminosity. The theoretical prediction is determined with the VBFNLO generator and its uncertainty does not account for an uncertainty related to the scale introduced by restricting the jet multiplicity in the fully leptonic channel.

Observed and expected cross-section upper limits at 95\% CL for the different final states using the CL$_{\text{s}}$ method. The expected cross-section limits are computed assuming no signal is present. The last column shows the theory prediction for the signal cross-section ($\sigma_{\text{theo}}$) computed with the VBFNLO generator and corrected to particle level. The $\ell \nu jj \gamma$ cross-section corresponds to the average cross-section per lepton flavour in the semileptonic analysis and all events of the $e \nu jj \gamma$ and $\mu\nu jj \gamma$ final states are employed for the determination of this limit.

Observed and expected cross-section upper limits at 95\% CL using the CL$_{\text{s}}$ method for the different final states with the photon \et threshold optimised for maximal aQGC sensitivity. The expected cross-section limits are computed assuming the absence of $WV\gamma$ production. The last column shows the theory prediction for the SM signal cross-section computed with the VBFNLO generator and corrected to particle level. The $\ell \nu jj \gamma$ cross-section corresponds to the average cross-section per lepton flavour in the semileptonic analysis and all events of the $e \nu jj \gamma$ and $\mu\nu jj \gamma$ final states are employed for the determination of this limit.

More…

Version 2
Measurement of the production cross section of three isolated photons in $pp$ collisions at $\sqrt{s}$ = 8 TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 781 (2018) 55-76, 2018.
Inspire Record 1644367 DOI 10.17182/hepdata.80511

A measurement of the production of three isolated photons in proton-proton collisions at a centre-of-mass energy $\sqrt{s}$ = 8 TeV is reported. The results are based on an integrated luminosity of 20.2 fb$^{-1}$ collected with the ATLAS detector at the LHC. The differential cross sections are measured as functions of the transverse energy of each photon, the difference in azimuthal angle and in pseudorapidity between pairs of photons, the invariant mass of pairs of photons, and the invariant mass of the triphoton system. A measurement of the inclusive fiducial cross section is also reported. Next-to-leading-order perturbative QCD predictions are compared to the cross-section measurements. The predictions underestimate the measurement of the inclusive fiducial cross section and the differential measurements at low photon transverse energies and invariant masses. They provide adequate descriptions of the measurements at high values of the photon transverse energies, invariant mass of pairs of photons, and invariant mass of the triphoton system.

13 data tables

The three isolated photons cross section with systematic and statistical uncertainties as a function of ET(Photon1).

The three isolated photons cross section with systematic and statistical uncertainties as a function of ET(Photon2).

The three isolated photons cross section with systematic and statistical uncertainties as a function of ET(Photon3).

More…

Measurement of the Higgs boson coupling properties in the $H\rightarrow ZZ^{*} \rightarrow 4\ell$ decay channel at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 03 (2018) 095, 2018.
Inspire Record 1641268 DOI 10.17182/hepdata.83009

The coupling properties of the Higgs boson are studied in the four-lepton decay channel using 36.1 fb$^{-1}$ of $pp$ collision data from the LHC at a centre-of-mass energy of 13 TeV collected by the ATLAS detector. Cross sections are measured for the four key production modes in several exclusive regions of the Higgs boson production phase space and are interpreted in terms of coupling modifiers. The inclusive cross section times branching ratio for $H \rightarrow ZZ^*$ decay and for a Higgs boson absolute rapidity below 2.5 is measured to be $1.73^{+0.24}_{-0.23}$(stat.)$^{+0.10}_{-0.08}$(exp.)$\pm 0.04$(th.) pb compared to the Standard Model prediction of $1.34\pm0.09$ pb. In addition, the tensor structure of the Higgs boson couplings is studied using an effective Lagrangian approach for the description of interactions beyond the Standard Model. Constraints are placed on the non-Standard-Model CP-even and CP-odd couplings to $Z$ bosons and on the CP-odd coupling to gluons.

28 data tables

The expected number of SM Higgs boson events with a mass mH= 125.09 GeV in the mass range 118 < m4l < 129 GeV for an integrated luminosity of 36.1/fb and sqrt(s)= 13 TeV in each reconstructed event category, shown separately for each Stage-0 production bin. The ggF and bbH contributions are shown separately but both contribute to the same (ggF) production bin. Statistical and systematic uncertainties are added in quadrature.

The observed and expected numbers of signal and background events in the four-lepton decay channels for an integrated luminosity of 36.1/fb and at sqrt(s)= 13 TeV, assuming the SM Higgs boson signal with a mass m_{H} = 125.09 GeV . The second column shows the expected number of signal events for the full mass range while the subsequent columns correspond to the mass range of 118 < m4l < 129 GeV. In addition to the ZZ* background, the contribution of other backgrounds is shown, comprising the data-driven estimate from Table 4 and the simulation-based estimate of contributions from rare triboson and tbar{t}V processes. Statistical and systematic uncertainties are added in quadrature.

The expected and observed numbers of signal events in reconstructed event categories for an integrated luminosity of 36.1/fb at sqrt(s)= 13 TeV, together with signal acceptances for each Stage-0 production mode. Results are obtained in bins of BDT discriminants using coarse binning with several bins merged into one. Signal acceptances less than 0.0001 are set to 0.

More…

Search for pair production of Higgs bosons in the $b\bar{b}b\bar{b}$ final state using proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2019) 030, 2019.
Inspire Record 1668124 DOI 10.17182/hepdata.82599

A search for Higgs boson pair production in the $b\bar{b}b\bar{b}$ final state is carried out with up to 36.1 $\mathrm{fb}^{-1}$ of LHC proton--proton collision data collected at $\sqrt{s}$ = 13 TeV with the ATLAS detector in 2015 and 2016. Three benchmark signals are studied: a spin-2 graviton decaying into a Higgs boson pair, a scalar resonance decaying into a Higgs boson pair, and Standard Model non-resonant Higgs boson pair production. Two analyses are carried out, each implementing a particular technique for the event reconstruction that targets Higgs bosons reconstructed as pairs of jets or single boosted jets. The resonance mass range covered is 260--3000 GeV. The analyses are statistically combined and upper limits on the production cross section of Higgs boson pairs times branching ratio to $b\bar{b}b\bar{b}$ are set in each model. No significant excess is observed; the largest deviation of data over prediction is found at a mass of 280 GeV, corresponding to 2.3 standard deviations globally. The observed 95% confidence level upper limit on the non-resonant production is 13 times the Standard Model prediction.

4 data tables

The observed and expected 95% CL upper limits on the production cross section times branching ratio for the narrow-width scalar.

The observed and expected 95% CL upper limits on the production cross section times branching ratio for the bulk Randall-Sundrum model with $\frac{k}{\overline{M}_{\mathrm{Pl}}} = 1$.

The observed and expected 95% CL upper limits on the production cross section times branching ratio for the bulk Randall-Sundrum model with $\frac{k}{\overline{M}_{\mathrm{Pl}}} = 2$.

More…

Version 3
A search for $B-L$ $R$-parity-violating top squarks in $\sqrt{s} = 13$ TeV $pp$ collisions with the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 97 (2018) 032003, 2018.
Inspire Record 1630899 DOI 10.17182/hepdata.78376

A search is presented for the direct pair production of the stop, the supersymmetric partner of the top quark, that decays through an $R$-parity-violating coupling to a final state with two leptons and two jets, at least one of which is identified as a $b$-jet. The dataset corresponds to an integrated luminosity of 36.1 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of $\sqrt{s} = 13$ TeV, collected in 2015 and 2016 by the ATLAS detector at the LHC. No significant excess is observed over the Standard Model background, and exclusion limits are set on stop pair production at a 95% confidence level. Lower limits on the stop mass are set between 600 GeV and 1.5 TeV for branching ratios above 10% for decays to an electron or muon and a $b$-quark.

212 data tables

Signal acceptance (in %) in the (BRe,BRtau) plane for a 800 GeV stop, for the SR800 signal region.

Expected exclusion limit contour in the (BRe,BRtau) plane for a 600 GeV stop. All limits are computed at 95% CL.

Expected exclusion limit contour in the (BRe,BRtau) plane for a 600 GeV stop. All limits are computed at 95% CL.

More…