Search for pair-produced higgsinos decaying via Higgs or $Z$ bosons to final states containing a pair of photons and a pair of $b$-jets with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
CERN-EP-2023-039, 2024.
Inspire Record 2773395 DOI 10.17182/hepdata.144072

A search is presented for the pair production of higgsinos $\tilde{\chi}$ in gauge-mediated supersymmetry models, where the lightest neutralinos $\tilde{\chi}_1^0$ decay into a light gravitino $\tilde{G}$ either via a Higgs $h$ or $Z$ boson. The search is performed with the ATLAS detector at the Large Hadron Collider using 139 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV. It targets final states in which a Higgs boson decays into a photon pair, while the other Higgs or $Z$ boson decays into a $b\bar{b}$ pair, with missing transverse momentum associated with the two gravitinos. Search regions dependent on the amount of missing transverse momentum are defined by the requirements that the diphoton mass should be consistent with the mass of the Higgs boson, and the $b\bar{b}$ mass with the mass of the Higgs or $Z$ boson. The main backgrounds are estimated with data-driven methods using the sidebands of the diphoton mass distribution. No excesses beyond Standard Model expectations are observed and higgsinos with masses up to 320 GeV are excluded, assuming a branching fraction of 100% for $\tilde{\chi}_1^0\rightarrow h\tilde{G}$. This analysis excludes higgsinos with masses of 130 GeV for branching fractions to $h\tilde{G}$ as low as 36%, thus providing complementarity to previous ATLAS searches in final states with multiple leptons or multiple $b$-jets, targeting different decays of the electroweak bosons.

25 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <b>Histograms:</b><ul> <li><a href=?table=Distribution1>Figure 3a: $m_{\gamma\gamma}$ Distribution in VR1</a> <li><a href=?table=Distribution2>Figure 3b: $E_{\mathrm{T}}^{\mathrm{miss}}$ Distribution in VR1</a> <li><a href=?table=Distribution3>Figure 3c: $m_{\gamma\gamma}$ Distribution in VR2</a> <li><a href=?table=Distribution4>Figure 3d: $E_{\mathrm{T}}^{\mathrm{miss}}$ Distribution in VR2</a> <li><a href=?table=Distribution5>Figure 4a: N-1 $m_{\gamma\gamma}$ Distribution for SR1h</a> <li><a href=?table=Distribution6>Figure 4b: N-1 $m_{\gamma\gamma}$ Distribution for SR1Z</a> <li><a href=?table=Distribution7>Figure 4c: N-1 $m_{\gamma\gamma}$ Distribution for SR2</a> <li><a href=?table=Distribution8>Auxiliary Figure 1: Signal and Validation Region Yields</a> </ul> <b>Tables:</b><ul> <li><a href=?table=YieldsTable1>Table 3: Signal Region Yields & Model-independent Limits</a> <li><a href=?table=Cutflow1>Auxiliary Table 1: Benchmark Signal Cutflows</a> </ul> <b>Cross section limits:</b><ul> <li><a href=?table=X-sectionU.L.1>Figure 5: 1D Cross-section Limits</a> <li><a href=?table=X-sectionU.L.2>Auxiliary Figure 3: 2D Cross-section Limits</a> </ul> <b>2D CL limits:</b><ul> <li><a href=?table=Exclusioncontour1>Figure 6: Expected Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour2>Figure 6: $+1\sigma$ Variation for Expected Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour3>Figure 6: $-1\sigma$ Variation for Expected Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour4>Figure 6: Observed Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour5>Figure 6: $+1\sigma$ Variation for Observed Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour6>Figure 6: $-1\sigma$ Variation for Observed Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> </ul> <b>2D Acceptance and Efficiency maps:</b><ul> <li><a href=?table=Acceptance1>Auxiliary Figure 4a: Acceptances SR1h</a> <li><a href=?table=Acceptance2>Auxiliary Figure 4b: Acceptances SR1Z</a> <li><a href=?table=Acceptance3>Auxiliary Figure 4c: Acceptances SR2</a> <li><a href=?table=Efficiency1>Auxiliary Figure 5a: Efficiencies SR1h</a> <li><a href=?table=Efficiency2>Auxiliary Figure 5b: Efficiencies SR1Z</a> <li><a href=?table=Efficiency3>Auxiliary Figure 5c: Efficiencies SR2</a> </ul>

Distribution of the diphoton invariant mass in validation region VR1. The solid histograms are stacked to show the SM expectations after the 2&times;2D background estimation technique is applied. Background and signal predictions are normalised to the luminosity. The background category "h (other)" includes events originating from VBF, Vh, ggF, thq, thW and bb&#772;h, all subdominant in this signature. Statistical and systematic uncertainties are indicated by the shaded area. The lower panel of each plot shows the ratio of the data to the SM prediction for the respective bin. The first and last bins include the underflows and overflows respectively.

Distribution of the missing transverse momentum in validation region VR1. The solid histograms are stacked to show the SM expectations after the 2&times;2D background estimation technique is applied. Background and signal predictions are normalised to the luminosity. The background category "h (other)" includes events originating from VBF, Vh, ggF, thq, thW and bb&#772;h, all subdominant in this signature. Statistical and systematic uncertainties are indicated by the shaded area. The lower panel of each plot shows the ratio of the data to the SM prediction for the respective bin. The first and last bins include the underflows and overflows respectively.

More…

Search for nearly mass-degenerate higgsinos using low-momentum mildly-displaced tracks in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2024-012, 2024.
Inspire Record 2751400 DOI 10.17182/hepdata.146944

Higgsinos with masses near the electroweak scale can solve the hierarchy problem and provide a dark matter candidate, while detecting them at the LHC remains challenging if their mass-splitting is $\mathcal{O}$(1 GeV). This Letter presents a novel search for nearly mass-degenerate higgsinos in events with an energetic jet, missing transverse momentum, and a low-momentum track with a significant transverse impact parameter using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}$ = 13 TeV collected by the ATLAS experiment. For the first time since LEP, a range of mass-splittings between the lightest charged and neutral higgsinos from 0.3 GeV to 0.9 GeV is excluded at 95% confidence level, with a maximum reach of approximately 170 GeV in the higgsino mass.

31 data tables

Number of expected and observed data events in the SR (top), and the model-independent upper limits obtained from their consistency (bottom). The symbol $\tau_{\ell}$ ($\tau_{h}$) refers to fully-leptonic (hadron-involved) tau decays. The Others category includes contributions from minor background processes including $t\bar{t}$, single-top and diboson. The individual uncertainties can be correlated and do not necessarily sum up in quadrature to the total uncertainty. The bottom section shows the observed 95% CL upper limits on the visible cross-section ($\langle\epsilon\sigma\rangle_{\mathrm{obs}}^{95}$), on the number of generic signal events ($S_{\mathrm{obs}}^{95}$) as well as the expected limit ($S_{\mathrm{exp}}^{95}$) given the expected number (and $\pm 1\sigma$ deviations from the expectation) of background events.

Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.

Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.

More…

Search for Resonant Production of Dark Quarks in the Dijet Final State with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 02 (2024) 128, 2024.
Inspire Record 2719976 DOI 10.17182/hepdata.145191

This paper presents a search for a new $Z^\prime$ resonance decaying into a pair of dark quarks which hadronise into dark hadrons before promptly decaying back as Standard Model particles. This analysis is based on proton-proton collision data recorded at $\sqrt{s}=13$ TeV with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to an integrated luminosity of 139 fb$^{-1}$. After selecting events containing large-radius jets with high track multiplicity, the invariant mass distribution of the two highest-transverse-momentum jets is scanned to look for an excess above a data-driven estimate of the Standard Model multijet background. No significant excess of events is observed and the results are thus used to set 95 % confidence-level upper limits on the production cross-section times branching ratio of the $Z^\prime$ to dark quarks as a function of the $Z^\prime$ mass for various dark-quark scenarios.

13 data tables

Distribution of the di-jet invariant mass, $m_{\mathrm{JJ}}$ for the data, the simulated multi-jet background and of some representative signals (models A, B, C and D with $m_{Z'}=2.5$ TeV), shown after applying the preselections described in the text. The simulated background is normalised to the data and the signals are normalised to a production cross-section of 10 fb.

Distributions of the number of tracks associated to the leading jet, $n_{track,1}$, for the data, the simulated multi-jet background and of some representative signals (models A, B, C and D with $m_{Z^\prime}=2.5$ TeV), shown after applying the preselections described in the text. All distributions are normalised to unity. The uncertainty band around the background prediction corresponds to the modelling uncertainty described in Section 6.

Distributions of the number of tracks associated to the subleading jet, $n_{track,2}$, for the data, the simulated multi-jet background and of some representative signals (models A, B, C and D with $m_{Z^\prime}=2.5$ TeV), shown after applying the preselections described in the text. All distributions are normalised to unity. The uncertainty band around the background prediction corresponds to the modelling uncertainty described in Section 6.

More…

Search for vector-boson resonances decaying into a top quark and a bottom quark using $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 12 (2023) 073, 2023.
Inspire Record 2688749 DOI 10.17182/hepdata.142662

A search for a new massive charged gauge boson, $W'$, is performed with the ATLAS detector at the LHC. The dataset used in this analysis was collected from proton-proton collisions at a centre-of-mass energy of $\sqrt{s} =13$ TeV, and corresponds to an integrated luminosity of 139 fb$^{-1}$. The reconstructed $tb$ invariant mass is used to search for a $W'$ boson decaying into a top quark and a bottom quark. The result is interpreted in terms of a $W'$ boson with purely right-handed or left-handed chirality in a mass range of 0.5-6 TeV. Different values for the coupling of the $W'$ boson to the top and bottom quarks are considered, taking into account interference with single-top-quark production in the $s$-channel. No significant deviation from the background prediction is observed. The results are expressed as upper limits on the $W' \rightarrow tb$ production cross-section times branching ratio as a function of the $W'$-boson mass and in the plane of the coupling vs the $W'$-boson mass.

33 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=contour_lh">$W^{\prime}_L$ exclusion contour</a> <li><a href="?table=contour_rh">$W^{\prime}_R$ exclusion contour</a> </ul> <b>Upper limits:</b> <ul> <li><a href="?table=limit_lh_gf05">$W^{\prime}_L$ $g^{\prime}/g$ = 0.5 upper limit</a> <li><a href="?table=limit_lh_gf10">$W^{\prime}_L$ $g^{\prime}/g$ = 1.0 upper limit</a> <li><a href="?table=limit_lh_gf20">$W^{\prime}_L$ $g^{\prime}/g$ = 2.0 upper limit</a> <li><a href="?table=limit_rh_gf05">$W^{\prime}_R$ $g^{\prime}/g$ = 0.5 upper limit</a> <li><a href="?table=limit_rh_gf10">$W^{\prime}_R$ $g^{\prime}/g$ = 1.0 upper limit</a> <li><a href="?table=limit_rh_gf20">$W^{\prime}_R$ $g^{\prime}/g$ = 2.0 upper limit</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=0l_sr1">0L channel Signal Region 1</a> <li><a href="?table=0l_sr2">0L channel Signal Region 2</a> <li><a href="?table=0l_sr3">0L channel Signal Region 3</a> <li><a href="?table=0l_vr">0L channel Validation Region</a> <li><a href="?table=1l_sr_2j1b">1L channel 2j1b Signal Region</a> <li><a href="?table=1l_sr_3j1b">1L channel 3j1b Signal Region</a> <li><a href="?table=1l_sr_2j2b">1L channel 2j2b Signal Region</a> <li><a href="?table=1l_sr_3j2b">1L channel 3j2b Signal Region</a> <li><a href="?table=1l_cr_2j1b">1L channel 2j1b Control Region</a> <li><a href="?table=1l_cr_3j1b">1L channel 3j1b Control Region</a> <li><a href="?table=1l_vr_2j1b">1L channel 2j1b Validation Region</a> <li><a href="?table=1l_vr_3j1b">1L channel 3j1b Validation Region</a> </ul> <b>Acceptance and efficiencies:</b> <ul> <li><a href="?table=acc_0l_lh_gf10">0L channel $W^{\prime}_L$ $g^{\prime}/g$ = 1.0 Acc. X Eff.</a> <li><a href="?table=acc_0l_lh_gf05">0L channel $W^{\prime}_L$ $g^{\prime}/g$ = 0.5 Acc. X Eff.</a> <li><a href="?table=acc_0l_lh_gf20">0L channel $W^{\prime}_L$ $g^{\prime}/g$ = 2.0 Acc. X Eff.</a> <li><a href="?table=acc_1l_lh_gf10">1L channel $W^{\prime}_L$ $g^{\prime}/g$ = 1.0 Acc. X Eff.</a> <li><a href="?table=acc_1l_lh_gf05">1L channel $W^{\prime}_L$ $g^{\prime}/g$ = 0.5 Acc. X Eff.</a> <li><a href="?table=acc_1l_lh_gf20">1L channel $W^{\prime}_L$ $g^{\prime}/g$ = 2.0 Acc. X Eff.</a> <li><a href="?table=acc_0l_rh_gf10">0L channel $W^{\prime}_R$ $g^{\prime}/g$ = 1.0 Acc. X Eff.</a> <li><a href="?table=acc_0l_rh_gf05">0L channel $W^{\prime}_R$ $g^{\prime}/g$ = 0.5 Acc. X Eff.</a> <li><a href="?table=acc_0l_rh_gf20">0L channel $W^{\prime}_R$ $g^{\prime}/g$ = 2.0 Acc. X Eff.</a> <li><a href="?table=acc_1l_rh_gf10">1L channel $W^{\prime}_R$ $g^{\prime}/g$ = 1.0 Acc. X Eff.</a> <li><a href="?table=acc_1l_rh_gf05">1L channel $W^{\prime}_R$ $g^{\prime}/g$ = 0.5 Acc. X Eff.</a> <li><a href="?table=acc_1l_rh_gf20">1L channel $W^{\prime}_R$ $g^{\prime}/g$ = 2.0 Acc. X Eff.</a> </ul>

Distribution (events/100 GeV) of the reconstructed $m_{tb}$ for data and backgrounds in the 0-lepton channel's signal region 1 after the background-only fit to data. The systematics uncertainty is shown for the post-fit background sum, including the background statistical uncertainty. The individual background components are obtained after the fit, too. There are also the pre-fit background sum and the expected signal distribution. The distribution of the $W^{\prime}$ boson signal for a mass of 3 TeV is normalised to the predicted cross-section. The last bin in each distribution includes overflow.

Distribution (events/100 GeV) of the reconstructed $m_{tb}$ for data and backgrounds in the 0-lepton channel's signal region 2 after the background-only fit to data. The systematics uncertainty is shown for the post-fit background sum, including the background statistical uncertainty. The individual background components are obtained after the fit, too. There are also the pre-fit background sum and the expected signal distribution. The distribution of the $W^{\prime}$ boson signal for a mass of 3 TeV is normalised to the predicted cross-section. The last bin in each distribution includes overflow.

More…

Pursuit of paired dijet resonances in the Run 2 dataset with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Rev.D 108 (2023) 112005, 2023.
Inspire Record 2682337 DOI 10.17182/hepdata.140530

New particles with large masses that decay into hadronically interacting particles are predicted by many models of physics beyond the Standard Model. A search for a massive resonance that decays into pairs of dijet resonances is performed using 140 fb$^{-1}$ of proton$-$proton collisions at $\sqrt{s}=13$ TeV recorded by the ATLAS detector during Run 2 of the Large Hadron Collider. Resonances are searched for in the invariant mass of the tetrajet system, and in the average invariant mass of the pair of dijet systems. A data-driven background estimate is obtained by fitting the tetrajet and dijet invariant mass distributions with a four-parameter dijet function and a search for local excesses from resonant production of dijet pairs is performed. No significant excess of events beyond the Standard Model expectation is observed, and upper limits are set on the production cross-sections of new physics scenarios.

74 data tables

The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.10 < $\alpha$ < 0.12.

The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.12 < $\alpha$ < 0.14.

The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.14 < $\alpha$ < 0.16.

More…

Search for pair production of squarks or gluinos decaying via sleptons or weak bosons in final states with two same-sign or three leptons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 02 (2024) 107, 2024.
Inspire Record 2673888 DOI 10.17182/hepdata.139720

A search for pair production of squarks or gluinos decaying via sleptons or weak bosons is reported. The search targets a final state with exactly two leptons with same-sign electric charge or at least three leptons without any charge requirement. The analysed data set corresponds to an integrated luminosity of 139 fb$^{-1}$ of proton$-$proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Multiple signal regions are defined, targeting several SUSY simplified models yielding the desired final states. A single control region is used to constrain the normalisation of the $WZ$+jets background. No significant excess of events over the Standard Model expectation is observed. The results are interpreted in the context of several supersymmetric models featuring R-parity conservation or R-parity violation, yielding exclusion limits surpassing those from previous searches. In models considering gluino (squark) pair production, gluino (squark) masses up to 2.2 (1.7) TeV are excluded at 95% confidence level.

102 data tables

Observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$

Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$

Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$

More…

Version 2
Anomaly detection search for new resonances decaying into a Higgs boson and a generic new particle $X$ in hadronic final states using $\sqrt{s} = 13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 108 (2023) 052009, 2023.
Inspire Record 2666488 DOI 10.17182/hepdata.135828

A search is presented for a heavy resonance $Y$ decaying into a Standard Model Higgs boson $H$ and a new particle $X$ in a fully hadronic final state. The full Large Hadron Collider Run 2 dataset of proton-proton collisions at $\sqrt{s}= 13$ TeV collected by the ATLAS detector from 2015 to 2018 is used, and corresponds to an integrated luminosity of 139 fb$^{-1}$. The search targets the high $Y$-mass region, where the $H$ and $X$ have a significant Lorentz boost in the laboratory frame. A novel signal region is implemented using anomaly detection, where events are selected solely because of their incompatibility with a learned background-only model. It is defined using a jet-level tagger for signal-model-independent selection of the boosted $X$ particle, representing the first application of fully unsupervised machine learning to an ATLAS analysis. Two additional signal regions are implemented to target a benchmark $X$ decay into two quarks, covering topologies where the $X$ is reconstructed as either a single large-radius jet or two small-radius jets. The analysis selects Higgs boson decays into $b\bar{b}$, and a dedicated neural-network-based tagger provides sensitivity to the boosted heavy-flavor topology. No significant excess of data over the expected background is observed, and the results are presented as upper limits on the production cross section $\sigma(pp \rightarrow Y \rightarrow XH \rightarrow q\bar{q}b\bar{b}$) for signals with $m_Y$ between 1.5 and 6 TeV and $m_X$ between 65 and 3000 GeV.

12 data tables

Acceptance times efficiency for signal grid in anomaly signal region.

Acceptance times efficiency for signal grid in anomaly signal region.

Acceptance times efficiency for signal grid in merged two-prong signal region.

More…

Search for direct production of winos and higgsinos in events with two same-charge leptons or three leptons in $pp$ collision data at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 11 (2023) 150, 2023.
Inspire Record 2660233 DOI 10.17182/hepdata.134245

A search for supersymmetry targeting the direct production of winos and higgsinos is conducted in final states with either two leptons ($e$ or $\mu$) with the same electric charge, or three leptons. The analysis uses 139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13$ TeV collected with the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess over the Standard Model expectation is observed. Simplified and complete models with and without $R$-parity conservation are considered. In topologies with intermediate states including either $Wh$ or $WZ$ pairs, wino masses up to 525 GeV and 250 GeV are excluded, respectively, for a bino of vanishing mass. Higgsino masses smaller than 440 GeV are excluded in a natural $R$-parity-violating model with bilinear terms. Upper limits on the production cross section of generic events beyond the Standard Model as low as 40 ab are obtained in signal regions optimised for these models and also for an $R$-parity-violating scenario with baryon-number-violating higgsino decays into top quarks and jets. The analysis significantly improves sensitivity to supersymmetric models and other processes beyond the Standard Model that may contribute to the considered final states.

70 data tables

Observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).

positive one $\sigma$ observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).

negative $\sigma$ variation of observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).

More…

Search in diphoton and dielectron final states for displaced production of Higgs or $Z$ bosons with the ATLAS detector in $\sqrt{s} = 13$ TeV $pp$ collisions

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 108 (2023) 012012, 2023.
Inspire Record 2654099 DOI 10.17182/hepdata.135829

A search is presented for displaced production of Higgs bosons or $Z$ bosons, originating from the decay of a neutral long-lived particle (LLP) and reconstructed in the decay modes $H\rightarrow \gamma\gamma$ and $Z\rightarrow ee$. The analysis uses the full Run 2 data set of proton$-$proton collisions delivered by the LHC at an energy of $\sqrt{s}=13$ TeV between 2015 and 2018 and recorded by the ATLAS detector, corresponding to an integrated luminosity of 139 fb$^{-1}$. Exploiting the capabilities of the ATLAS liquid argon calorimeter to precisely measure the arrival times and trajectories of electromagnetic objects, the analysis searches for the signature of pairs of photons or electrons which arise from a common displaced vertex and which arrive after some delay at the calorimeter. The results are interpreted in a gauge-mediated supersymmetry breaking model with pair-produced higgsinos that decay to LLPs, and each LLP subsequently decays into either a Higgs boson or a $Z$ boson. The final state includes at least two particles that escape direct detection, giving rise to missing transverse momentum. No significant excess is observed above the background expectation. The results are used to set upper limits on the cross section for higgsino pair production, up to a $\tilde\chi^0_1$ mass of 369 (704) GeV for decays with 100% branching ratio of $\tilde\chi^0_1$ to Higgs ($Z$) bosons for a $\tilde\chi^0_1$ lifetime of 2 ns. A model-independent limit is also set on the production of pairs of photons or electrons with a significant delay in arrival at the calorimeter.

45 data tables

Average timing distributions for SR data and the estimated background as determined by the background-only fit, in each of the five exclusive $\rho$ categories. For comparison, the expected timing shapes for a few different signal models are superimposed, with each model labeled by the values of the $\tilde\chi^0_1$ mass and lifetime, as well as decay mode. To provide some indication of the variations in signal yield and shape, three signal models are shown for each of the $\tilde\chi^0_1$ decay modes, namely $\tilde\chi^0_1$ $\rightarrow$ $H \tilde G$ and $\tilde\chi^0_1$ $\rightarrow$ $Z \tilde G$. The models shown include a rather low $\tilde\chi^0_1$ mass value of 135 GeV for lifetimes of either 2 ns or 10 ns, and a higher $\tilde\chi^0_1$ mass value which is near the 95% CL exclusion limit for each decay mode for a lifetime of 2 ns. Each signal model is shown with the signal normalization corresponding to a BR value of unity for the decay mode in question.

Average timing distributions for SR data and the estimated background as determined by the background-only fit, in each of the five exclusive $\rho$ categories. For comparison, the expected timing shapes for a few different signal models are superimposed, with each model labeled by the values of the $\tilde\chi^0_1$ mass and lifetime, as well as decay mode. To provide some indication of the variations in signal yield and shape, three signal models are shown for each of the $\tilde\chi^0_1$ decay modes, namely $\tilde\chi^0_1$ $\rightarrow$ $H \tilde G$ and $\tilde\chi^0_1$ $\rightarrow$ $Z \tilde G$. The models shown include a rather low $\tilde\chi^0_1$ mass value of 135 GeV for lifetimes of either 2 ns or 10 ns, and a higher $\tilde\chi^0_1$ mass value which is near the 95% CL exclusion limit for each decay mode for a lifetime of 2 ns. Each signal model is shown with the signal normalization corresponding to a BR value of unity for the decay mode in question.

Average timing distributions for SR data and the estimated background as determined by the background-only fit, in each of the five exclusive $\rho$ categories. For comparison, the expected timing shapes for a few different signal models are superimposed, with each model labeled by the values of the $\tilde\chi^0_1$ mass and lifetime, as well as decay mode. To provide some indication of the variations in signal yield and shape, three signal models are shown for each of the $\tilde\chi^0_1$ decay modes, namely $\tilde\chi^0_1$ $\rightarrow$ $H \tilde G$ and $\tilde\chi^0_1$ $\rightarrow$ $Z \tilde G$. The models shown include a rather low $\tilde\chi^0_1$ mass value of 135 GeV for lifetimes of either 2 ns or 10 ns, and a higher $\tilde\chi^0_1$ mass value which is near the 95% CL exclusion limit for each decay mode for a lifetime of 2 ns. Each signal model is shown with the signal normalization corresponding to a BR value of unity for the decay mode in question.

More…

Version 2
Search for long-lived, massive particles in events with displaced vertices and multiple jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 2306 (2023) 200, 2023.
Inspire Record 2628398 DOI 10.17182/hepdata.137762

A search for long-lived particles decaying into hadrons is presented. The analysis uses 139 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s} = 13$ TeV by the ATLAS detector at the LHC using events that contain multiple energetic jets and a displaced vertex. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particles decaying in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are used to set limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and on scenarios with pair-production of supersymmetric particles with long-lived electroweakinos that decay via a small $R$-parity-violating coupling. The pair-production of electroweakinos with masses below 1.5 TeV is excluded for mean proper lifetimes in the range from 0.03 ns to 1 ns. When produced in the decay of $m(\tilde{g})=2.4$ TeV gluinos, electroweakinos with $m(\tilde\chi^0_1)=1.5$ TeV are excluded with lifetimes in the range of 0.02 ns to 4 ns.

96 data tables

<b>Tables of Yields:</b> <a href="?table=validation_regions_yields_highpt_SR">Validation Regions Summary Yields, High-pT jet selections</a> <a href="?table=validation_regions_yields_trackless_SR">Validiation Regions Summary Yields, Trackless jet selections</a> <a href="?table=yields_highpt_SR_observed">Signal region (and sidebands) observed yields, High-pT jet selections</a> <a href="?table=yields_highpt_SR_expected">Signal region (and sidebands) expected yields, High-pT jet selections</a> <a href="?table=yields_trackless_SR_observed">Signal region (and sidebands) observed yields, Trackless jet selections</a> <a href="?table=yields_trackless_SR_expected">Signal region (and sidebands) expected yields, Trackless jet selections</a> <b>Exclusion Contours:</b> <a href="?table=excl_ewk_exp_nominal">EWK RPV signal; expected, nominal</a> <a href="?table=excl_ewk_exp_up">EWK RPV signal; expected, $+1\sigma$</a> <a href="?table=excl_ewk_exp_down">EWK RPV signal; expected, $-1\sigma$</a> <a href="?table=excl_ewk_obs_nominal">EWK RPV signal; observed, nominal</a> <a href="?table=excl_ewk_obs_up">EWK RPV signal; observed, $+1\sigma$</a> <a href="?table=excl_ewk_obs_down">EWK RPV signal; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $-1\sigma$</a> <a href="?table=excl_xsec_ewk">EWK RPV signal; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_xsec_strong_mgluino_2400">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_nominal">Strong RPV signal, $\tau$=0.01 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_exp_up">Strong RPV signal, $\tau$=0.01 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_down">Strong RPV signal, $\tau$=0.01 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_nominal">Strong RPV signal, $\tau$=0.01 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_obs_up">Strong RPV signal, $\tau$=0.01 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_down">Strong RPV signal, $\tau$=0.01 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_nominal">Strong RPV signal, $\tau$=0.10 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_exp_up">Strong RPV signal, $\tau$=0.10 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_down">Strong RPV signal, $\tau$=0.10 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_nominal">Strong RPV signal, $\tau$=0.10 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_obs_up">Strong RPV signal, $\tau$=0.10 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_down">Strong RPV signal, $\tau$=0.10 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_nominal">Strong RPV signal, $\tau$=1.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_1_ns_exp_up">Strong RPV signal, $\tau$=1.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_down">Strong RPV signal, $\tau$=1.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_nominal">Strong RPV signal, $\tau$=1.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_1_ns_obs_up">Strong RPV signal, $\tau$=1.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_down">Strong RPV signal, $\tau$=1.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_nominal">Strong RPV signal, $\tau$=10.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_10_ns_exp_up">Strong RPV signal, $\tau$=10.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_down">Strong RPV signal, $\tau$=10.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_nominal">Strong RPV signal, $\tau$=10.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_10_ns_obs_up">Strong RPV signal, $\tau$=10.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_down">Strong RPV signal, $\tau$=10.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_xsec_strong_chi0_1250">Strong RPV signal, m($\tilde{\chi}^0_1$)=1.25 TeV; cross-section limits for fixed lifetime values.</a> <br/><b>Reinterpretation Material:</b> See the attached resource (purple button on the left) or directly <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-08/hepdata_info.pdf">this link</a> for information about acceptance definition and about how to use the efficiency histograms below. SLHA files are also available in the reource page of this HEPData record. <a href="?table=acceptance_highpt_strong"> Acceptance cutflow, High-pT SR, Strong production.</a> <a href="?table=acceptance_trackless_ewk"> Acceptance cutflow, Trackless SR, EWK production.</a> <a href="?table=acceptance_trackless_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=acceptance_highpt_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=event_efficiency_HighPt_R_1150_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R &lt; 1150 mm</a> <a href="?table=event_efficiency_HighPt_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_HighPt_R_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R &gt; 3870 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R &lt; 1150 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_Trackless_R_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R &gt; 3870 mm</a> <a href="?table=vertex_efficiency_R_22_mm">Reinterpretation Material: Vertex-level Efficiency for R &lt; 22 mm</a> <a href="?table=vertex_efficiency_R_22_25_mm">Reinterpretation Material: Vertex-level Efficiency for R [22, 25] mm</a> <a href="?table=vertex_efficiency_R_25_29_mm">Reinterpretation Material: Vertex-level Efficiency for R [25, 29] mm</a> <a href="?table=vertex_efficiency_R_29_38_mm">Reinterpretation Material: Vertex-level Efficiency for R [29, 38] mm</a> <a href="?table=vertex_efficiency_R_38_46_mm">Reinterpretation Material: Vertex-level Efficiency for R [38, 46] mm</a> <a href="?table=vertex_efficiency_R_46_73_mm">Reinterpretation Material: Vertex-level Efficiency for R [46, 73] mm</a> <a href="?table=vertex_efficiency_R_73_84_mm">Reinterpretation Material: Vertex-level Efficiency for R [73, 84] mm</a> <a href="?table=vertex_efficiency_R_84_111_mm">Reinterpretation Material: Vertex-level Efficiency for R [84, 111] mm</a> <a href="?table=vertex_efficiency_R_111_120_mm">Reinterpretation Material: Vertex-level Efficiency for R [111, 120] mm</a> <a href="?table=vertex_efficiency_R_120_145_mm">Reinterpretation Material: Vertex-level Efficiency for R [120, 145] mm</a> <a href="?table=vertex_efficiency_R_145_180_mm">Reinterpretation Material: Vertex-level Efficiency for R [145, 180] mm</a> <a href="?table=vertex_efficiency_R_180_300_mm">Reinterpretation Material: Vertex-level Efficiency for R [180, 300] mm</a> <br/><b>Cutflow Tables:</b> <a href="?table=cutflow_highpt_strong"> Cutflow (Acceptance x Efficiency), High-pT SR, Strong production.</a> <a href="?table=cutflow_trackless_ewk"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production.</a> <a href="?table=cutflow_trackless_ewk_hf"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production with heavy-flavor quarks.</a> <a href="?table=cutflow_highpt_ewk_hf"> Cutflow (Acceptance x Efficiency), High-pT SR, EWK production with heavy-flavor quarks.</a>

Validation of background estimate in validation regions for the High-pT jet selections

Validation of background estimate in validation regions for the Trackless jet selections

More…

Search for dark matter produced in association with a single top quark and an energetic $W$ boson in $\sqrt{s}=$ 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 83 (2023) 603, 2023.
Inspire Record 2514114 DOI 10.17182/hepdata.136029

This paper presents a search for dark matter, $\chi$, using events with a single top quark and an energetic $W$ boson. The analysis is based on proton-proton collision data collected with the ATLAS experiment at $\sqrt{s}=$ 13 TeV during LHC Run 2 (2015-2018), corresponding to an integrated luminosity of 139 fb$^{-1}$. The search considers final states with zero or one charged lepton (electron or muon), at least one $b$-jet and large missing transverse momentum. In addition, a result from a previous search considering two-charged-lepton final states is included in the interpretation of the results. The data are found to be in good agreement with the Standard Model predictions and the results are interpreted in terms of 95% confidence-level exclusion limits in the context of a class of dark matter models involving an extended two-Higgs-doublet sector together with a pseudoscalar mediator particle. The search is particularly sensitive to on-shell production of the charged Higgs boson state, $H^{\pm}$, arising from the two-Higgs-doublet mixing, and its semi-invisible decays via the mediator particle, $a$: $H^{\pm} \rightarrow W^\pm a (\rightarrow \chi\chi)$. Signal models with $H^{\pm}$ masses up to 1.5 TeV and $a$ masses up to 350 GeV are excluded assuming a tan$\beta$ value of 1. For masses of $a$ of 150 (250) GeV, tan$\beta$ values up to 2 are excluded for $H^{\pm}$ masses between 200 (400) GeV and 1.5 TeV. Signals with tan$\beta$ values between 20 and 30 are excluded for $H^{\pm}$ masses between 500 and 800 GeV.

161 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=highst_mamh_obs">Combined sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=highst_mamh_exp">Combined sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=highst_mhtb_lowma_obs">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=highst_mhtb_lowma_exp">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=highst_mhtb_highma_obs">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=highst_mhtb_highma_exp">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=lowst_mamh_obs">Combined sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=lowst_mamh_exp">Combined sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=lowst_mhtb_lowma_obs">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=lowst_mhtb_lowma_exp">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=lowst_mhtb_highma_obs">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=lowst_mhtb_highma_exp">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_mamh_obs">0L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_mamh_exp">0L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_mhtb_lowma_obs">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_mhtb_lowma_exp">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_mhtb_highma_obs">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_mhtb_highma_exp">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_mamh_obs">0L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_mamh_exp">0L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_mhtb_lowma_obs">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_mhtb_lowma_exp">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_mhtb_highma_obs">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_mhtb_highma_exp">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_mamh_obs">1L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_mamh_exp">1L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_mhtb_lowma_obs">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_mhtb_lowma_exp">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_mhtb_highma_obs">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_mhtb_highma_exp">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_mamh_obs">1L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=1LBoosted_lowst_mamh_exp">1L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_mhtb_lowma_obs">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=1LBoosted_lowst_mhtb_lowma_exp">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_mhtb_highma_exp">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_highst_mamh_obs">2L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=2L_highst_mamh_exp">2L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_highst_mhtb_lowma_obs">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=2L_highst_mhtb_lowma_exp">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_highst_mhtb_highma_obs">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=2L_highst_mhtb_highma_exp">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_lowst_mamh_exp">2L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_lowst_mhtb_lowma_exp">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_lowst_mhtb_highma_exp">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=highst_dmtt_mamh_obs">Combined sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=highst_dmtt_mamh_exp">Combined sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=highst_dmtt_mhtb_lowma_obs">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=highst_dmtt_mhtb_lowma_exp">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=highst_dmtt_mhtb_highma_obs">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=highst_dmtt_mhtb_highma_exp">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=lowst_dmtt_mamh_obs">Combined sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=lowst_dmtt_mamh_exp">Combined sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=lowst_dmtt_mhtb_lowma_obs">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=lowst_dmtt_mhtb_lowma_exp">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=lowst_dmtt_mhtb_highma_obs">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=lowst_dmtt_mhtb_highma_exp">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mamh_obs">0L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mamh_exp">0L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mhtb_lowma_obs">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mhtb_lowma_exp">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mhtb_highma_obs">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mhtb_highma_exp">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mamh_obs">0L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mamh_exp">0L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mhtb_lowma_obs">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mhtb_lowma_exp">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mhtb_highma_obs">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mhtb_highma_exp">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mamh_obs">1L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mamh_exp">1L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mhtb_lowma_obs">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mhtb_lowma_exp">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mhtb_highma_obs">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mhtb_highma_exp">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mamh_obs">1L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mamh_exp">1L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mhtb_lowma_obs">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mhtb_lowma_exp">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mhtb_highma_obs">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mhtb_highma_exp">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_highst_dmtt_mamh_obs">2L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=2L_highst_dmtt_mamh_exp">2L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_highst_dmtt_mhtb_lowma_obs">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=2L_highst_dmtt_mhtb_lowma_exp">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_highst_dmtt_mhtb_highma_obs">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=2L_highst_dmtt_mhtb_highma_exp">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_lowst_dmtt_mamh_exp">2L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_lowst_dmtt_mhtb_lowma_obs">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=2L_lowst_dmtt_mhtb_lowma_exp">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_lowst_dmtt_mhtb_highma_obs">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=2L_lowst_dmtt_mhtb_highma_exp">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> </ul> <b>Upper limits:</b> <ul> <li><a href="?table=mamH_xSecUpperLimit_Comb_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_Comb_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_Comb_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_Comb_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_Comb_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_Comb_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_Comb_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_Comb_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_Comb_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_Comb_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_Comb_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_Comb_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_0L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 0L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_0L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 0L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_0L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 0L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_0L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.7) cross-sections from 0L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_0L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.7) cross-sections from 0L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_0L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.7) cross-sections from 0L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_0L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 0L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_0L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 0L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_0L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 0L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_0L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.35) cross-sections from 0L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_0L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.35) cross-sections from 0L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_0L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.35) cross-sections from 0L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_1L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 1L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_1L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 1L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_1L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 1L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_1L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.7) cross-sections from 1L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_1L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.7) cross-sections from 1L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_1L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.7) cross-sections from 1L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_1L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 1L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_1L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 1L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_1L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 1L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_1L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.35) cross-sections from 1L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_1L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.35) cross-sections from 1L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_1L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.35) cross-sections from 1L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=SR0L_mwtagged">0L region m(b1,W-tagged)</a> <li><a href="?table=SR0L_mtbmet">0L region m_{\mathrm{T}}^{\mathrm{b,E_{\mathrm{T}^{\mathrm{miss}}}}}</a> <li><a href="?table=SR0L_nwtagged">0L region N_{\mathrm{W-tagged}}</a> <li><a href="?table=SR1L_Had_mbj">1L hadronic top $m_{\mathrm{b1},\mathrm{\cancel{b1}}}$</a> <li><a href="?table=SR1L_Lep_mbj">1L leptonic top $m_{\mathrm{b1},\mathrm{\cancel{b1}}}$</a> <li><a href="?table=SR1L_Lep_nwtaggged">1L leptonic top region N_{\mathrm{W-tagged}}</a> </ul> <b>Cut flows:</b> <ul> <li><a href="?table=cutflow_SR0L">Cutflow of 4 signal points in the 0L regions.</a> <li><a href="?table=cutflow_SR1L_Had">Cutflow of 4 signal points in the 1L hadronic top regions.</a> <li><a href="?table=cutflow_SR1L_Lep">Cutflow of 4 signal points in the 1L leptonic top region.</a> </ul> <b>Acceptance and efficiencies:</b> <ul> <li> <b>highst_grid1_0L:</b> <a href="?table=highst_grid1_Acc_0L">Acceptance table of the 0L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <a href="?table=highst_grid1_Eff_0L">Efficiency table of the 0L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <li> <b>highst_grid2_0L:</b> <a href="?table=highst_grid2_Acc_0L">Acceptance table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <a href="?table=highst_grid2_Eff_0L">Efficiency table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <li> <b>highst_grid3_0L:</b> <a href="?table=highst_grid3_Acc_0L">Acceptance table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <a href="?table=highst_grid3_Eff_0L">Efficiency table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <li> <b>highst_grid1_1L:</b> <a href="?table=highst_grid1_Acc_1L">Acceptance table of the 1L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <a href="?table=highst_grid1_Eff_1L">Efficiency table of the 1L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <li> <b>highst_grid2_1L:</b> <a href="?table=highst_grid2_Acc_1L">Acceptance table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <a href="?table=highst_grid2_Eff_1L">Efficiency table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <li> <b>highst_grid3_1L:</b> <a href="?table=highst_grid3_Acc_1L">Acceptance table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <a href="?table=highst_grid3_Eff_1L">Efficiency table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <li> <b>lowst_grid1_0L:</b> <a href="?table=lowst_grid1_Acc_0L">Acceptance table of the 0L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <a href="?table=lowst_grid1_Eff_0L">Efficiency table of the 0L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <li> <b>lowst_grid2_0L:</b> <a href="?table=lowst_grid2_Acc_0L">Acceptance table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <a href="?table=lowst_grid2_Eff_0L">Efficiency table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <li> <b>lowst_grid3_0L:</b> <a href="?table=lowst_grid3_Acc_0L">Acceptance table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <a href="?table=lowst_grid3_Eff_0L">Efficiency table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <li> <b>lowst_grid1_1L:</b> <a href="?table=lowst_grid1_Acc_1L">Acceptance table of the 1L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <a href="?table=lowst_grid1_Eff_1L">Efficiency table of the 1L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <li> <b>lowst_grid2_1L:</b> <a href="?table=lowst_grid2_Acc_1L">Acceptance table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <a href="?table=lowst_grid2_Eff_1L">Efficiency table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <li> <b>lowst_grid3_1L:</b> <a href="?table=lowst_grid3_Acc_1L">Acceptance table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <a href="?table=lowst_grid3_Eff_1L">Efficiency table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> </ul> <b>Truth Code snippets</b> are available under "Resources" (purple button on the left)

The observed exclusion contour at 95% CL as a function of the $m_a$ vs. $m_{H^{\pm}}$ and assuming tan$\beta$ = 1, $m_{\mathrm{DM}} = 10 \mathrm{GeV}$, $g_{\chi} = 1$ and sin$\theta = 0.7$. Masses that are within the contours are excluded. Only signals simulating the tW+DM final states are considered in this contour.

The expected exclusion contour at 95% CL as a function of the $m_a$ vs. $m_{H^{\pm}}$ and assuming tan$\beta$ = 1, $m_{\mathrm{DM}} = 10 \mathrm{GeV}$, $g_{\chi} = 1$ and sin$\theta = 0.7$. Masses that are within the contours are excluded. Only signals simulating the tW+DM final states are considered in this contour.

More…

Search for dark matter produced in association with a dark Higgs boson decaying into $W^{+}W^{-}$ in the one-lepton final state at $\sqrt{s}$=13 TeV using 139 fb$^{-1}$ of $pp$ collisions recorded with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 07 (2023) 116, 2023.
Inspire Record 2181868 DOI 10.17182/hepdata.132484

Several extensions of the Standard Model predict the production of dark matter particles at the LHC. A search for dark matter particles produced in association with a dark Higgs boson decaying into $W^{+}W^{-}$ in the $\ell^\pm\nu q \bar q'$ final states with $\ell=e,\mu$ is presented. This analysis uses 139 fb$^{-1}$ of $pp$ collisions recorded by the ATLAS detector at a centre-of-mass energy of 13 TeV. The $W^\pm \to q\bar q'$ decays are reconstructed from pairs of calorimeter-measured jets or from track-assisted reclustered jets, a technique aimed at resolving the dense topology from a pair of boosted quarks using jets in the calorimeter and tracking information. The observed data are found to agree with Standard Model predictions. Scenarios with dark Higgs boson masses ranging between 140 and 390 GeV are excluded.

25 data tables

Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>&beta;=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=500 GeV, with the preselections applied.

Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>&beta;=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=1000 GeV, with the preselections applied.

Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>&beta;=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=1700 GeV, with the preselections applied.

More…

Constraints on spin-0 dark matter mediators and invisible Higgs decays using ATLAS 13 TeV $pp$ collision data with two top quarks and missing transverse momentum in the final state

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 503, 2023.
Inspire Record 2180393 DOI 10.17182/hepdata.129623

This paper presents a statistical combination of searches targeting final states with two top quarks and invisible particles, characterised by the presence of zero, one or two leptons, at least one jet originating from a $b$-quark and missing transverse momentum. The analyses are searches for phenomena beyond the Standard Model consistent with the direct production of dark matter in $pp$ collisions at the LHC, using 139 fb$^{-\text{1}}$ of data collected with the ATLAS detector at a centre-of-mass energy of 13 TeV. The results are interpreted in terms of simplified dark matter models with a spin-0 scalar or pseudoscalar mediator particle. In addition, the results are interpreted in terms of upper limits on the Higgs boson invisible branching ratio, where the Higgs boson is produced according to the Standard Model in association with a pair of top quarks. For scalar (pseudoscalar) dark matter models, with all couplings set to unity, the statistical combination extends the mass range excluded by the best of the individual channels by 50 (25) GeV, excluding mediator masses up to 370 GeV. In addition, the statistical combination improves the expected coupling exclusion reach by 14% (24%), assuming a scalar (pseudoscalar) mediator mass of 10 GeV. An upper limit on the Higgs boson invisible branching ratio of 0.38 (0.30$^{+\text{0.13}}_{-\text{0.09}}$) is observed (expected) at 95% confidence level.

40 data tables

Post-fit signal region yields for the tt0L-high and the tt0L-low analyses. The bottom panel shows the statistical significance of the difference between the SM prediction and the observed data in each region. '$t\bar{t}$ (other)' represents $t\bar{t}$ events without extra jets or events with extra light-flavour jets. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.

Representative fit distribution in the signal region for the tt1L analysis: each bin of such distribution corresponds to a single SR included in the fit. 'Other' includes contributions from $t\bar{t}W$, $tZ$, $tWZ$ and $t\bar{t}$ (semileptonic) processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.

Representative fit distribution in the same flavour leptons signal region for the tt2L analysis: each bin of such distribution, starting from the red arrow, corresponds to a single SR included in the fit. 'FNP' includes the contribution from fake/non-prompt lepton background arising from jets (mainly $\pi/K$, heavy-flavour hadron decays and photon conversion) misidentified as leptons, estimated in a purely data-driven way. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.

More…

Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the $W$-boson mass in ${\sqrt{s}=13\,}$TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 031, 2023.
Inspire Record 2157951 DOI 10.17182/hepdata.134068

A search for the electroweak production of pairs of charged sleptons or charginos decaying into two-lepton final states with missing transverse momentum is presented. Two simplified models of $R$-parity-conserving supersymmetry are considered: direct pair-production of sleptons ($\tilde{\ell}\tilde{\ell}$), with each decaying into a charged lepton and a $\tilde{\chi}_1^0$ neutralino, and direct pair-production of the lightest charginos $(\tilde{\chi}_1^\pm\tilde{\chi}_1^\mp)$, with each decaying into a $W$-boson and a $\tilde{\chi}_1^0$. The lightest neutralino ($\tilde{\chi}_1^0$) is assumed to be the lightest supersymmetric particle (LSP). The analyses target the experimentally challenging mass regions where $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and $m(\tilde{\chi}_1^\pm)-m(\tilde{\chi}_1^0)$ are close to the $W$-boson mass (`moderately compressed' regions). The search uses 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider. No significant excesses over the expected background are observed. Exclusion limits on the simplified models under study are reported in the ($\tilde{\ell},\tilde{\chi}_1^0$) and ($\tilde{\chi}_1^\pm,\tilde{\chi}_1^0$) mass planes at 95% confidence level (CL). Sleptons with masses up to 150 GeV are excluded at 95% CL for the case of a mass-splitting between sleptons and the LSP of 50 GeV. Chargino masses up to 140 GeV are excluded at 95% CL for the case of a mass-splitting between the chargino and the LSP down to about 100 GeV.

176 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <b>Title: </b><em>Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the $W$ boson mass in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector</em> <b>Paper website:</b> <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2019-02/">SUSY-2019-02</a> <b>Exclusion contours</b> <ul><li><b>Sleptons:</b> <a href=?table=excl_comb_obs_nominal>Combined Observed Nominal</a> <a href=?table=excl_comb_obs_up>Combined Observed Up</a> <a href=?table=excl_comb_obs_down>Combined Observed Down</a> <a href=?table=excl_comb_exp_nominal>Combined Expected Nominal</a> <a href=?table=excl_comb_exp_up>Combined Expected Up</a> <a href=?table=excl_comb_exp_down>Combined Expected Down</a> <a href=?table=excl_comb_obs_nominal_dM>Combined Observed Nominal $(\Delta m)$</a> <a href=?table=excl_comb_obs_up_dM>Combined Observed Up $(\Delta m)$</a> <a href=?table=excl_comb_obs_down_dM>Combined Observed Down $(\Delta m)$</a> <a href=?table=excl_comb_exp_nominal_dM>Combined Expected Nominal $(\Delta m)$</a> <a href=?table=excl_comb_exp_up_dM>Combined Expected Up $(\Delta m)$</a> <a href=?table=excl_comb_exp_down_dM>Combined Expected Down $(\Delta m)$</a> <a href=?table=excl_ee_obs_nominal>$\tilde{e}_\mathrm{L,R}$ Observed Nominal</a> <a href=?table=excl_ee_exp_nominal>$\tilde{e}_\mathrm{L,R}$ Expected Nominal</a> <a href=?table=excl_eLeL_obs_nominal>$\tilde{e}_\mathrm{L}$ Observed Nominal</a> <a href=?table=excl_eLeL_exp_nominal>$\tilde{e}_\mathrm{L}$ Expected Nominal</a> <a href=?table=excl_eReR_obs_nominal>$\tilde{e}_\mathrm{R}$ Observed Nominal</a> <a href=?table=excl_eReR_exp_nominal>$\tilde{e}_\mathrm{R}$ Expected Nominal</a> <a href=?table=excl_ee_obs_nominal_dM>$\tilde{e}_\mathrm{L,R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_ee_exp_nominal_dM>$\tilde{e}_\mathrm{L,R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_eLeL_obs_nominal_dM>$\tilde{e}_\mathrm{L}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_eLeL_exp_nominal_dM>$\tilde{e}_\mathrm{L}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_eReR_obs_nominal_dM>$\tilde{e}_\mathrm{R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_eReR_exp_nominal_dM>$\tilde{e}_\mathrm{R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mm_obs_nominal>$\tilde{\mu}_\mathrm{L,R}$ Observed Nominal</a> <a href=?table=excl_mm_exp_nominal>$\tilde{\mu}_\mathrm{L,R}$ Expected Nominal</a> <a href=?table=excl_mLmL_obs_nominal>$\tilde{\mu}_\mathrm{L}$ Observed Nominal</a> <a href=?table=excl_mLmL_exp_nominal>$\tilde{\mu}_\mathrm{L}$ Expected Nominal</a> <a href=?table=excl_mRmR_obs_nominal>$\tilde{\mu}_\mathrm{R}$ Observed Nominal</a> <a href=?table=excl_mRmR_exp_nominal>$\tilde{\mu}_\mathrm{R}$ Expected Nominal</a> <a href=?table=excl_mm_obs_nominal_dM>$\tilde{\mu}_\mathrm{L,R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mm_exp_nominal_dM>$\tilde{\mu}_\mathrm{L,R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mLmL_obs_nominal_dM>$\tilde{\mu}_\mathrm{L}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mLmL_exp_nominal_dM>$\tilde{\mu}_\mathrm{L}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mRmR_obs_nominal_dM>$\tilde{\mu}_\mathrm{R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mRmR_exp_nominal_dM>$\tilde{\mu}_\mathrm{R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_comb_obs_nominal_SR0j>Combined Observed Nominal SR-0j</a> <a href=?table=excl_comb_exp_nominal_SR0j>Combined Expected Nominal SR-0j</a> <a href=?table=excl_comb_obs_nominal_SR1j>Combined Observed Nominal SR-1j</a> <a href=?table=excl_comb_exp_nominal_SR1j>Combined Expected Nominal SR-1j</a> <li><b>Charginos:</b> <a href=?table=excl_c1c1_obs_nominal>Observed Nominal</a> <a href=?table=excl_c1c1_obs_up>Observed Up</a> <a href=?table=excl_c1c1_obs_down>Observed Down</a> <a href=?table=excl_c1c1_exp_nominal>Expected Nominal</a> <a href=?table=excl_c1c1_exp_nominal>Expected Up</a> <a href=?table=excl_c1c1_exp_nominal>Expected Down</a> <a href=?table=excl_c1c1_obs_nominal_dM>Observed Nominal $(\Delta m)$</a> <a href=?table=excl_c1c1_obs_up_dM>Observed Up $(\Delta m)$</a> <a href=?table=excl_c1c1_obs_down_dM>Observed Down $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Nominal $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Up $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Down $(\Delta m)$</a> </ul> <b>Upper Limits</b> <ul><li><b>Sleptons:</b> <a href=?table=UL_slep>ULs</a> <li><b>Charginos:</b> <a href=?table=UL_c1c1>ULs</a> </ul> <b>Pull Plots</b> <ul><li><b>Sleptons:</b> <a href=?table=pullplot_slep>SRs summary plot</a> <li><b>Charginos:</b> <a href=?table=pullplot_c1c1>SRs summary plot</a> </ul> <b>Cutflows</b> <ul><li><b>Sleptons:</b> <a href=?table=Cutflow_slep_SR0j>Towards SR-0J</a> <a href=?table=Cutflow_slep_SR1j>Towards SR-1J</a> <li><b>Charginos:</b> <a href=?table=Cutflow_SRs>Towards SRs</a> </ul> <b>Acceptance and Efficiencies</b> <ul><li><b>Sleptons:</b> <a href=?table=Acceptance_SR0j_MT2_100_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_100_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_110_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_110_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_120_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_120_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_130_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_130_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_100_105>SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_100_105>SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_105_110>SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_105_110>SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_110_115>SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_110_115>SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_115_120>SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_115_120>SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_120_125>SR-0J $m_{\mathrm{T2}}^{100} \in[120,125)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_125_130>SR-0J $m_{\mathrm{T2}}^{100} \in[125,130)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_130_140>SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_130_140>SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_140_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_140_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_100_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_100_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_110_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_110_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_120_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_120_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_130_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_130_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_100_105>SR-1j $m_{\mathrm{T2}}^{100} \in[100,105)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_100_105>SR-1j $m_{\mathrm{T2}}^{100} \in[100,105)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_105_110>SR-1j $m_{\mathrm{T2}}^{100} \in[105,110)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_105_110>SR-1j $m_{\mathrm{T2}}^{100} \in[105,110)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_110_115>SR-1j $m_{\mathrm{T2}}^{100} \in[110,115)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_110_115>SR-1j $m_{\mathrm{T2}}^{100} \in[110,115)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_115_120>SR-1j $m_{\mathrm{T2}}^{100} \in[115,120)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_115_120>SR-1j $m_{\mathrm{T2}}^{100} \in[115,120)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_120_125>SR-1j $m_{\mathrm{T2}}^{100} \in[120,125)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_125_130>SR-1j $m_{\mathrm{T2}}^{100} \in[125,130)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_130_140>SR-1j $m_{\mathrm{T2}}^{100} \in[130,140)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_130_140>SR-1j $m_{\mathrm{T2}}^{100} \in[130,140)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_140_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_140_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Efficiency</a> <li><b>Charginos:</b> <a href=?table=Acceptance_SR_DF_81_1_SF_77_1>SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_1_SF_77_1>SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ Efficiency</a> <a href=?table=Acceptance_SR_DF_81_1>SR-DF BDT-signal$\in(0.81,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_1>SR-DF BDT-signal$\in(0.81,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_82_1>SR-DF BDT-signal$\in(0.82,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_82_1>SR-DF BDT-signal$\in(0.82,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_83_1>SR-DF BDT-signal$\in(0.83,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_83_1>SR-DF BDT-signal$\in(0.83,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_84_1>SR-DF BDT-signal$\in(0.84,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_84_1>SR-DF BDT-signal$\in(0.84,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_85_1>SR-DF BDT-signal$\in(0.85,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_85_1>SR-DF BDT-signal$\in(0.85,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_81_8125>SR-DF BDT-signal$\in(0.81,8125]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_8125>SR-DF BDT-signal$\in(0.81,8125]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8125_815>SR-DF BDT-signal$\in(0.8125,815]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8125_815>SR-DF BDT-signal$\in(0.8125,815]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_815_8175>SR-DF BDT-signal$\in(0.815,8175]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_815_8175>SR-DF BDT-signal$\in(0.815,8175]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8175_82>SR-DF BDT-signal$\in(0.8175,82]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8175_82>SR-DF BDT-signal$\in(0.8175,82]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_82_8225>SR-DF BDT-signal$\in(0.82,8225]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_82_8225>SR-DF BDT-signal$\in(0.82,8225]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8225_825>SR-DF BDT-signal$\in(0.8225,825]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8225_825>SR-DF BDT-signal$\in(0.8225,825]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_825_8275>SR-DF BDT-signal$\in(0.825,8275]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_825_8275>SR-DF BDT-signal$\in(0.825,8275]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8275_83>SR-DF BDT-signal$\in(0.8275,83]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8275_83>SR-DF BDT-signal$\in(0.8275,83]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_83_8325>SR-DF BDT-signal$\in(0.83,8325]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_83_8325>SR-DF BDT-signal$\in(0.83,8325]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8325_835>SR-DF BDT-signal$\in(0.8325,835]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8325_835>SR-DF BDT-signal$\in(0.8325,835]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_835_8375>SR-DF BDT-signal$\in(0.835,8375]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_835_8375>SR-DF BDT-signal$\in(0.835,8375]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8375_84>SR-DF BDT-signal$\in(0.8375,84]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8375_84>SR-DF BDT-signal$\in(0.8375,84]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_84_845>SR-DF BDT-signal$\in(0.85,845]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_84_845>SR-DF BDT-signal$\in(0.85,845]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_845_85>SR-DF BDT-signal$\in(0.845,85]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_845_85>SR-DF BDT-signal$\in(0.845,85]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_85_86>SR-DF BDT-signal$\in(0.85,86]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_85_86>SR-DF BDT-signal$\in(0.85,86]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_86_1>SR-DF BDT-signal$\in(0.86,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_86_1>SR-DF BDT-signal$\in(0.86,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_77_1>SR-SF BDT-signal$\in(0.77,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_77_1>SR-SF BDT-signal$\in(0.77,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_78_1>SR-SF BDT-signal$\in(0.78,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_78_1>SR-SF BDT-signal$\in(0.78,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_79_1>SR-SF BDT-signal$\in(0.79,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_79_1>SR-SF BDT-signal$\in(0.79,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_80_1>SR-SF BDT-signal$\in(0.80,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_80_1>SR-SF BDT-signal$\in(0.80,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_77_775>SR-SF BDT-signal$\in(0.77,0.775]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_77_775>SR-SF BDT-signal$\in(0.77,0.775]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_775_78>SR-SF BDT-signal$\in(0.775,0.78]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_775_78>SR-SF BDT-signal$\in(0.775,0.78]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_78_785>SR-SF BDT-signal$\in(0.78,0.785]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_78_785>SR-SF BDT-signal$\in(0.78,0.785]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_785_79>SR-SF BDT-signal$\in(0.785,0.79]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_785_79>SR-SF BDT-signal$\in(0.785,0.79]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_79_795>SR-SF BDT-signal$\in(0.79,0.795]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_79_795>SR-SF BDT-signal$\in(0.79,0.795]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_795_80>SR-SF BDT-signal$\in(0.795,0.80]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_795_80>SR-SF BDT-signal$\in(0.795,0.80]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_80_81>SR-SF BDT-signal$\in(0.80,0.81]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_80_81>SR-SF BDT-signal$\in(0.80,0.81]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_81_1>SR-SF BDT-signal$\in(0.81,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_81_1>SR-SF BDT-signal$\in(0.81,1]$ Efficiency</a></ul> <b>Truth Code snippets</b>, <b>SLHA</b> and <b>machine learning</b> files are available under "Resources" (purple button on the left)

The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.

The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.

More…

Search for new phenomena in final states with photons, jets and missing transverse momentum in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 021, 2023.
Inspire Record 2094882 DOI 10.17182/hepdata.115570

A search for new phenomena has been performed in final states with at least one isolated high-momentum photon, jets and missing transverse momentum in proton--proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. The data, collected by the ATLAS experiment at the CERN LHC, correspond to an integrated luminosity of 139 $fb^{-1}$. The experimental results are interpreted in a supersymmetric model in which pair-produced gluinos decay into neutralinos, which in turn decay into a gravitino, at least one photon, and jets. No significant deviations from the predictions of the Standard Model are observed. Upper limits are set on the visible cross section due to physics beyond the Standard Model, and lower limits are set on the masses of the gluinos and neutralinos, all at 95% confidence level. Visible cross sections greater than 0.022 fb are excluded and pair-produced gluinos with masses up to 2200 GeV are excluded for most of the NLSP masses investigated.

33 data tables

The observed and expected (post-fit) yields in the control and validation regions. The lower panel shows the difference in standard deviations between the observed and expected yields, considering both the systematic and statistical uncertainties on the background expectation.

Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.

Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.

More…

Search for heavy particles in the $b$-tagged dijet mass distribution with additional $b$-tagged jets in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 105 (2022) 012001, 2022.
Inspire Record 1909506 DOI 10.17182/hepdata.111056

A search optimized for new heavy particles decaying to two $b$-quarks and produced in association with additional $b$-quarks is reported. The sensitivity is improved by $b$-tagging at least one lower-$p_{\rm{T}}$ jet in addition to the two highest-$p_{\rm{T}}$ jets. The data used in this search correspond to an integrated luminosity of 103 $\text{fb}^{-1}$ collected with a dedicated trijet trigger during the 2017 and 2018 $\sqrt{s} = 13$ TeV proton-proton collision runs with the ATLAS detector at the LHC. The search looks for resonant peaks in the $b$-tagged dijet invariant mass spectrum over a smoothly falling background. The background is estimated with an innovative data-driven method based on orthonormal functions. The observed $b$-tagged dijet invariant mass spectrum is compatible with the background-only hypothesis. Upper limits at 95% confidence level on a heavy vector-boson production cross section times branching ratio to a pair of $b$-quarks are derived.

4 data tables

Background estimate from the FD method with N=3 and data in the SR.

The observed (solid) and expected (dashed) 95% CL upper limits on the production of $Z' \to b\bar{b}$ in association with b-quarks.

Acceptance and Acceptance times efficiency for the LUV Z' model.

More…

Search for new phenomena in $pp$ collisions in final states with tau leptons, $b$-jets, and missing transverse momentum with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 104 (2021) 112005, 2021.
Inspire Record 1907601 DOI 10.17182/hepdata.105998

A search for new phenomena in final states with hadronically decaying tau leptons, $b$-jets, and missing transverse momentum is presented. The analyzed dataset comprises $pp$~collision data at a center-of-mass energy of $\sqrt s = 13$ TeV with an integrated luminosity of 139/fb, delivered by the Large Hadron Collider and recorded with the ATLAS detector from 2015 to 2018. The observed data are compatible with the expected Standard Model background. The results are interpreted in simplified models for two different scenarios. The first model is based on supersymmetry and considers pair production of top squarks, each of which decays into a $b$-quark, a neutrino and a tau slepton. Each tau slepton in turn decays into a tau lepton and a nearly massless gravitino. Within this model, top-squark masses up to 1.4 TeV can be excluded at the 95% confidence level over a wide range of tau-slepton masses. The second model considers pair production of leptoquarks with decays into third-generation leptons and quarks. Depending on the branching fraction into charged leptons, leptoquarks with masses up to around 1.25 TeV can be excluded at the 95% confidence level for the case of scalar leptoquarks and up to 1.8 TeV (1.5 TeV) for vector leptoquarks in a Yang--Mills (minimal-coupling) scenario. In addition, model-independent upper limits are set on the cross section of processes beyond the Standard Model.

89 data tables

Relative systematic uncertainties in the estimated number of background events in the signal regions. In the lower part of the table, a breakdown of the total uncertainty into different categories is given. For the multi-bin SR, the breakdown refers to the integral over all three $p_{\text{T}}(\tau)$ bins. As the individual uncertainties are correlated, they do not add in quadrature to equal the total background uncertainty.

Distributions of $m_{\text{T}2}(\tau_{1},\tau_{2})$ in the di-tau SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.

Distributions of $E_{\text{T}}^{\text{miss}}$ in the di-tau SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.

More…

Version 2
Search for chargino--neutralino pair production in final states with three leptons and missing transverse momentum in $\sqrt{s} = 13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 81 (2021) 1118, 2021.
Inspire Record 1866951 DOI 10.17182/hepdata.95751

A search for chargino$-$neutralino pair production in three-lepton final states with missing transverse momentum is presented. The study is based on a dataset of $\sqrt{s} = 13$ TeV $pp$ collisions recorded with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 139 fb$^{-1}$. No significant excess relative to the Standard Model predictions is found in data. The results are interpreted in simplified models of supersymmetry, and statistically combined with results from a previous ATLAS search for compressed spectra in two-lepton final states. Various scenarios for the production and decay of charginos ($\tilde\chi^\pm_1$) and neutralinos ($\tilde\chi^0_2$) are considered. For pure higgsino $\tilde\chi^\pm_1\tilde\chi^0_2$ pair-production scenarios, exclusion limits at 95% confidence level are set on $\tilde\chi^0_2$ masses up to 210 GeV. Limits are also set for pure wino $\tilde\chi^\pm_1\tilde\chi^0_2$ pair production, on $\tilde\chi^0_2$ masses up to 640 GeV for decays via on-shell $W$ and $Z$ bosons, up to 300 GeV for decays via off-shell $W$ and $Z$ bosons, and up to 190 GeV for decays via $W$ and Standard Model Higgs bosons.

264 data tables

This is the HEPData space for the ATLAS SUSY EWK three-lepton search. The full resolution figures can be found at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2019-09/ The full statistical likelihoods have been provided for this analysis. They can be downloaded by clicking on the purple 'Resources' button above and selecting the 'Common Resources' category. <b>Region yields:</b> <ul display="inline-block"> <li><a href="?table=Tab%2012%20Onshell%20WZ%20Signal%20Region%20Yields%20Table">Tab 12 Onshell WZ Signal Region Yields Table</a> <li><a href="?table=Tab%2013%20Onshell%20Wh%20Signal%20Region%20Yields%20Table">Tab 13 Onshell Wh Signal Region Yields Table</a> <li><a href="?table=Tab%2014%20Offshell%20low-$E_{T}^{miss}$%20Signal%20Region%20Yields%20Table">Tab 14 Offshell low-$E_{T}^{miss}$ Signal Region Yields Table</a> <li><a href="?table=Tab%2015%20Offshell%20high-$E_{T}^{miss}$%20Signal%20Region%20Yields%20Table">Tab 15 Offshell high-$E_{T}^{miss}$ Signal Region Yields Table</a> <li><a href="?table=Tab%2020%20RJR%20Signal%20Region%20Yields%20Table">Tab 20 RJR Signal Region Yields Table</a> <li><a href="?table=Fig%204%20Onshell%20Control%20and%20Validation%20Region%20Yields">Fig 4 Onshell Control and Validation Region Yields</a> <li><a href="?table=Fig%208%20Offshell%20Control%20and%20Validation%20Region%20Yields">Fig 8 Offshell Control and Validation Region Yields</a> <li><a href="?table=Fig%2010%20Onshell%20WZ%20Signal%20Region%20Yields">Fig 10 Onshell WZ Signal Region Yields</a> <li><a href="?table=Fig%2011%20Onshell%20Wh%20Signal%20Region%20Yields">Fig 11 Onshell Wh Signal Region Yields</a> <li><a href="?table=Fig%2012%20Offshell%20Signal%20Region%20Yields">Fig 12 Offshell Signal Region Yields</a> <li><a href="?table=Fig%2018%20RJR%20Control%20and%20Validation%20Region%20Yields">Fig 18 RJR Control and Validation Region Yields</a> </ul> <b>Exclusion contours:</b> <ul display="inline-block"> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Obs">Fig 16a WZ Exclusion: Wino-bino(+), Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Obs_Up">Fig 16a WZ Exclusion: Wino-bino(+), Obs_Up</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Obs_Down">Fig 16a WZ Exclusion: Wino-bino(+), Obs_Down</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Exp">Fig 16a WZ Exclusion: Wino-bino(+), Exp</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Exp_Up">Fig 16a WZ Exclusion: Wino-bino(+), Exp_Up</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Exp_Down">Fig 16a WZ Exclusion: Wino-bino(+), Exp_Down</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20compressed_Obs">Fig 16a WZ Exclusion: Wino-bino(+), compressed_Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20compressed_Exp">Fig 16a WZ Exclusion: Wino-bino(+), compressed_Exp</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20offshell_Obs">Fig 16a WZ Exclusion: Wino-bino(+), offshell_Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20offshell_Exp">Fig 16a WZ Exclusion: Wino-bino(+), offshell_Exp</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20onshell_Obs">Fig 16a WZ Exclusion: Wino-bino(+), onshell_Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20onshell_Exp">Fig 16a WZ Exclusion: Wino-bino(+), onshell_Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Obs_Up">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Obs_Up</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Obs_Down">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Obs_Down</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Exp_Up">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Exp_Up</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Exp_Down">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Exp_Down</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20compressed_Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), compressed_Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20compressed_Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), compressed_Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20offshell_Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), offshell_Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20offshell_Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), offshell_Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20onshell_Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), onshell_Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20onshell_Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), onshell_Exp</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Obs">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Obs</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Obs_Up">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Obs_Up</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Obs_Down">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Obs_Down</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Exp">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Exp</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Exp_Up">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Exp_Up</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Exp_Down">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Exp_Down</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20compressed_Obs">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), compressed_Obs</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20compressed_Exp">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), compressed_Exp</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20offshell_Obs">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), offshell_Obs</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20offshell_Exp">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), offshell_Exp</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Obs">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Obs</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Obs_Up">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Obs_Up</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Obs_Down">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Obs_Down</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Exp">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Exp</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Exp_Up">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Exp_Up</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Exp_Down">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Exp_Down</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20compressed_Obs">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), compressed_Obs</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20compressed_Exp">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), compressed_Exp</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20offshell_Obs">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), offshell_Obs</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20offshell_Exp">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), offshell_Exp</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Obs">Fig 17 Wh Exclusion, Obs</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Obs_Up">Fig 17 Wh Exclusion, Obs_Up</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Obs_Down">Fig 17 Wh Exclusion, Obs_Down</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Exp">Fig 17 Wh Exclusion, Exp</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Exp_Up">Fig 17 Wh Exclusion, Exp_Up</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Exp_Down">Fig 17 Wh Exclusion, Exp_Down</a> </ul> <b>Upper limits:</b> <ul display="inline-block"> <li><a href="?table=AuxFig%208a%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8a WZ Excl. Upper Limit Obs. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208b%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8b WZ Excl. Upper Limit Exp. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208c%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8c WZ Excl. Upper Limit Obs. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208d%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8d WZ Excl. Upper Limit Exp. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208e%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Wino-bino(-)%20($\Delta%20m$)">AuxFig 8e WZ Excl. Upper Limit Obs. Wino-bino(-) ($\Delta m$)</a> <li><a href="?table=AuxFig%208f%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Wino-bino(-)%20($\Delta%20m$)">AuxFig 8f WZ Excl. Upper Limit Exp. Wino-bino(-) ($\Delta m$)</a> <li><a href="?table=AuxFig%208g%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Higgsino%20($\Delta%20m$)">AuxFig 8g WZ Excl. Upper Limit Obs. Higgsino ($\Delta m$)</a> <li><a href="?table=AuxFig%208h%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Higgsino%20($\Delta%20m$)">AuxFig 8h WZ Excl. Upper Limit Exp. Higgsino ($\Delta m$)</a> <li><a href="?table=AuxFig%209a%20Wh%20Excl.%20Upper%20Limit%20Obs.">AuxFig 9a Wh Excl. Upper Limit Obs.</a> <li><a href="?table=AuxFig%209b%20Wh%20Excl.%20Upper%20Limit%20Exp.">AuxFig 9b Wh Excl. Upper Limit Exp.</a> </ul> <b>Model-independent discovery fits:</b> <ul display="inline-block"> <li><a href="?table=Tab%2018%20Onshell%20Discovery%20Fit%20Table">Tab 18 Onshell Discovery Fit Table</a> <li><a href="?table=Tab%2019%20Offshell%20Discovery%20Fit%20Table">Tab 19 Offshell Discovery Fit Table</a> <li><a href="?table=Tab%2021%20RJR%20Discovery%20Fit%20Table">Tab 21 RJR Discovery Fit Table</a> </ul> <b>Kinematic distributions:</b> <ul display="inline-block"> <li><a href="?table=Fig%2013a%20SR$_{DFOS}^{Wh}$-1%20($\Delta%20R_{OS,%20near}$)">Fig 13a SR$_{DFOS}^{Wh}$-1 ($\Delta R_{OS, near}$)</a> <li><a href="?table=Fig%2013b%20SR$_{DFOS}^{Wh}$-2%20(3rd%20Lep.%20$p_{T}$)">Fig 13b SR$_{DFOS}^{Wh}$-2 (3rd Lep. $p_{T}$)</a> <li><a href="?table=Fig%2013c%20SR$_{0j}^{WZ}$%20($E_{T}^{miss}$)">Fig 13c SR$_{0j}^{WZ}$ ($E_{T}^{miss}$)</a> <li><a href="?table=Fig%2013d%20SR$_{0j}^{WZ}$%20($m_{T}$)">Fig 13d SR$_{0j}^{WZ}$ ($m_{T}$)</a> <li><a href="?table=Fig%2014a%20SR$^{offWZ}_{LowETmiss}$-0j%20($m_{T}^{minmll}$)">Fig 14a SR$^{offWZ}_{LowETmiss}$-0j ($m_{T}^{minmll}$)</a> <li><a href="?table=Fig%2014b%20SR$^{offWZ}_{LowETmiss}$-nj%20($m_{T}^{minmll}$)">Fig 14b SR$^{offWZ}_{LowETmiss}$-nj ($m_{T}^{minmll}$)</a> <li><a href="?table=Fig%2014c%20SR$^{offWZ}_{HighETmiss}$-0j%20($m_{T}^{minmll}$)">Fig 14c SR$^{offWZ}_{HighETmiss}$-0j ($m_{T}^{minmll}$)</a> <li><a href="?table=Fig%2014d%20SR$^{offWZ}_{HighETmiss}$-nj%20($p_T^l%20\div%20E_T^{miss}$)">Fig 14d SR$^{offWZ}_{HighETmiss}$-nj ($p_T^l \div E_T^{miss}$)</a> <li><a href="?table=Fig%2020a%20RJR%20SR3$\ell$-Low%20($p_{T}^{\ell%201}$)">Fig 20a RJR SR3$\ell$-Low ($p_{T}^{\ell 1}$)</a> <li><a href="?table=Fig%2020b%20RJR%20SR3$\ell$-Low%20($H_{3,1}^{PP}$)">Fig 20b RJR SR3$\ell$-Low ($H_{3,1}^{PP}$)</a> <li><a href="?table=Fig%2020c%20RJR%20SR3$\ell$-ISR%20($p_{T~ISR}^{CM}$)">Fig 20c RJR SR3$\ell$-ISR ($p_{T~ISR}^{CM}$)</a> <li><a href="?table=Fig%2020d%20RJR%20SR3$\ell$-ISR%20($R_{ISR}$)">Fig 20d RJR SR3$\ell$-ISR ($R_{ISR}$)</a> </ul> <b>Cutflows:</b> <ul display="inline-block"> <li><a href="?table=AuxTab%205%20Cutflow:%20Onshell%20WZ">AuxTab 5 Cutflow: Onshell WZ</a> <li><a href="?table=AuxTab%206%20Cutflow:%20Onshell%20Wh">AuxTab 6 Cutflow: Onshell Wh</a> <li><a href="?table=AuxTab%207%20Cutflow:%20Offshell%20Wino-bino(%2b)%20(250,235)">AuxTab 7 Cutflow: Offshell Wino-bino(+) (250,235)</a> <li><a href="?table=AuxTab%208%20Cutflow:%20Offshell%20Wino-bino(%2b)%20(125,85)">AuxTab 8 Cutflow: Offshell Wino-bino(+) (125,85)</a> <li><a href="?table=AuxTab%209%20Cutflow:%20Offshell%20Wino-bino(%2b)%20(250,170)">AuxTab 9 Cutflow: Offshell Wino-bino(+) (250,170)</a> <li><a href="?table=AuxTab%2010%20Cutflow:%20Offshell%20Wino-bino(-)%20(250,235)">AuxTab 10 Cutflow: Offshell Wino-bino(-) (250,235)</a> <li><a href="?table=AuxTab%2011%20Cutflow:%20Offshell%20Wino-bino(-)%20(125,85)">AuxTab 11 Cutflow: Offshell Wino-bino(-) (125,85)</a> <li><a href="?table=AuxTab%2012%20Cutflow:%20Offshell%20Wino-bino(-)%20(250,170)">AuxTab 12 Cutflow: Offshell Wino-bino(-) (250,170)</a> <li><a href="?table=AuxTab%2013%20Cutflow:%20Offshell%20Higgsino%20(120,100)">AuxTab 13 Cutflow: Offshell Higgsino (120,100)</a> <li><a href="?table=AuxTab%2014%20Cutflow:%20Offshell%20Higgsino%20(100,40)">AuxTab 14 Cutflow: Offshell Higgsino (100,40)</a> <li><a href="?table=AuxTab%2015%20Cutflow:%20Offshell%20Higgsino%20(185,125)">AuxTab 15 Cutflow: Offshell Higgsino (185,125)</a> </ul> <b>Acceptances and Efficiencies:</b> <ul display="inline-block"> <li><a href="?table=AuxFig%2010a%20Acc:%20Onshell%20SR$_{0j}^{WZ}$">AuxFig 10a Acc: Onshell SR$_{0j}^{WZ}$</a> <li><a href="?table=AuxFig%2010b%20Eff:%20Onshell%20SR$_{0j}^{WZ}$">AuxFig 10b Eff: Onshell SR$_{0j}^{WZ}$</a> <li><a href="?table=AuxFig%2010c%20Acc:%20Onshell%20SR$_{nj}^{WZ}$">AuxFig 10c Acc: Onshell SR$_{nj}^{WZ}$</a> <li><a href="?table=AuxFig%2010d%20Eff:%20Onshell%20SR$_{nj}^{WZ}$">AuxFig 10d Eff: Onshell SR$_{nj}^{WZ}$</a> <li><a href="?table=AuxFig%2011a%20Acc:%20Onshell%20SR$_{low-m_{ll}-0j}^{Wh}$">AuxFig 11a Acc: Onshell SR$_{low-m_{ll}-0j}^{Wh}$</a> <li><a href="?table=AuxFig%2011b%20Eff:%20Onshell%20SR$_{low-m_{ll}-0j}^{Wh}$">AuxFig 11b Eff: Onshell SR$_{low-m_{ll}-0j}^{Wh}$</a> <li><a href="?table=AuxFig%2011c%20Acc:%20Onshell%20SR$_{low-m_{ll}-nj}^{Wh}$">AuxFig 11c Acc: Onshell SR$_{low-m_{ll}-nj}^{Wh}$</a> <li><a href="?table=AuxFig%2011d%20Eff:%20Onshell%20SR$_{low-m_{ll}-nj}^{Wh}$">AuxFig 11d Eff: Onshell SR$_{low-m_{ll}-nj}^{Wh}$</a> <li><a href="?table=AuxFig%2011e%20Acc:%20Onshell%20SR$_{DFOS}^{Wh}$">AuxFig 11e Acc: Onshell SR$_{DFOS}^{Wh}$</a> <li><a href="?table=AuxFig%2011f%20Eff:%20Onshell%20SR$_{DFOS}^{Wh}$">AuxFig 11f Eff: Onshell SR$_{DFOS}^{Wh}$</a> <li><a href="?table=AuxFig%2012a%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 12a Acc: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2012b%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 12b Eff: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2012c%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 12c Acc: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2012d%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 12d Eff: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2012e%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 12e Acc: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2012f%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 12f Eff: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2012g%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 12g Acc: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2012h%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 12h Eff: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2013a%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 13a Acc: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2013b%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 13b Eff: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2013c%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 13c Acc: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2013d%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 13d Eff: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2013e%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 13e Acc: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2013f%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 13f Eff: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2013g%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 13g Acc: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2013h%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 13h Eff: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2014a%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 14a Acc: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2014b%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 14b Eff: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2014c%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 14c Acc: Off. Higgsino SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2014d%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 14d Eff: Off. Higgsino SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2014e%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 14e Acc: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2014f%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 14f Eff: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2014g%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 14g Acc: Off. Higgsino SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2014h%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 14h Eff: Off. Higgsino SR$^{offWZ}_{highETmiss}$-nj</a> </ul>

This is the HEPData space for the ATLAS SUSY EWK three-lepton search. The full resolution figures can be found at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2019-09/ The full statistical likelihoods have been provided for this analysis. They can be downloaded by clicking on the purple 'Resources' button above and selecting the 'Common Resources' category. <b>Region yields:</b> <ul display="inline-block"> <li><a href="?table=Tab%2012%20Onshell%20WZ%20Signal%20Region%20Yields%20Table">Tab 12 Onshell WZ Signal Region Yields Table</a> <li><a href="?table=Tab%2013%20Onshell%20Wh%20Signal%20Region%20Yields%20Table">Tab 13 Onshell Wh Signal Region Yields Table</a> <li><a href="?table=Tab%2014%20Offshell%20low-$E_{T}^{miss}$%20Signal%20Region%20Yields%20Table">Tab 14 Offshell low-$E_{T}^{miss}$ Signal Region Yields Table</a> <li><a href="?table=Tab%2015%20Offshell%20high-$E_{T}^{miss}$%20Signal%20Region%20Yields%20Table">Tab 15 Offshell high-$E_{T}^{miss}$ Signal Region Yields Table</a> <li><a href="?table=Tab%2020%20RJR%20Signal%20Region%20Yields%20Table">Tab 20 RJR Signal Region Yields Table</a> <li><a href="?table=Fig%204%20Onshell%20Control%20and%20Validation%20Region%20Yields">Fig 4 Onshell Control and Validation Region Yields</a> <li><a href="?table=Fig%208%20Offshell%20Control%20and%20Validation%20Region%20Yields">Fig 8 Offshell Control and Validation Region Yields</a> <li><a href="?table=Fig%2010%20Onshell%20WZ%20Signal%20Region%20Yields">Fig 10 Onshell WZ Signal Region Yields</a> <li><a href="?table=Fig%2011%20Onshell%20Wh%20Signal%20Region%20Yields">Fig 11 Onshell Wh Signal Region Yields</a> <li><a href="?table=Fig%2012%20Offshell%20Signal%20Region%20Yields">Fig 12 Offshell Signal Region Yields</a> <li><a href="?table=Fig%2018%20RJR%20Control%20and%20Validation%20Region%20Yields">Fig 18 RJR Control and Validation Region Yields</a> </ul> <b>Exclusion contours:</b> <ul display="inline-block"> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Obs">Fig 16a WZ Exclusion: Wino-bino(+), Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Obs_Up">Fig 16a WZ Exclusion: Wino-bino(+), Obs_Up</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Obs_Down">Fig 16a WZ Exclusion: Wino-bino(+), Obs_Down</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Exp">Fig 16a WZ Exclusion: Wino-bino(+), Exp</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Exp_Up">Fig 16a WZ Exclusion: Wino-bino(+), Exp_Up</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Exp_Down">Fig 16a WZ Exclusion: Wino-bino(+), Exp_Down</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20compressed_Obs">Fig 16a WZ Exclusion: Wino-bino(+), compressed_Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20compressed_Exp">Fig 16a WZ Exclusion: Wino-bino(+), compressed_Exp</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20offshell_Obs">Fig 16a WZ Exclusion: Wino-bino(+), offshell_Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20offshell_Exp">Fig 16a WZ Exclusion: Wino-bino(+), offshell_Exp</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20onshell_Obs">Fig 16a WZ Exclusion: Wino-bino(+), onshell_Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20onshell_Exp">Fig 16a WZ Exclusion: Wino-bino(+), onshell_Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Obs_Up">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Obs_Up</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Obs_Down">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Obs_Down</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Exp_Up">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Exp_Up</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Exp_Down">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Exp_Down</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20compressed_Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), compressed_Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20compressed_Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), compressed_Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20offshell_Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), offshell_Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20offshell_Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), offshell_Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20onshell_Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), onshell_Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20onshell_Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), onshell_Exp</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Obs">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Obs</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Obs_Up">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Obs_Up</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Obs_Down">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Obs_Down</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Exp">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Exp</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Exp_Up">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Exp_Up</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Exp_Down">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Exp_Down</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20compressed_Obs">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), compressed_Obs</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20compressed_Exp">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), compressed_Exp</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20offshell_Obs">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), offshell_Obs</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20offshell_Exp">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), offshell_Exp</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Obs">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Obs</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Obs_Up">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Obs_Up</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Obs_Down">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Obs_Down</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Exp">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Exp</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Exp_Up">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Exp_Up</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Exp_Down">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Exp_Down</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20compressed_Obs">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), compressed_Obs</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20compressed_Exp">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), compressed_Exp</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20offshell_Obs">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), offshell_Obs</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20offshell_Exp">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), offshell_Exp</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Obs">Fig 17 Wh Exclusion, Obs</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Obs_Up">Fig 17 Wh Exclusion, Obs_Up</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Obs_Down">Fig 17 Wh Exclusion, Obs_Down</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Exp">Fig 17 Wh Exclusion, Exp</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Exp_Up">Fig 17 Wh Exclusion, Exp_Up</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Exp_Down">Fig 17 Wh Exclusion, Exp_Down</a> </ul> <b>Upper limits:</b> <ul display="inline-block"> <li><a href="?table=AuxFig%208a%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8a WZ Excl. Upper Limit Obs. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208b%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8b WZ Excl. Upper Limit Exp. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208c%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8c WZ Excl. Upper Limit Obs. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208d%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8d WZ Excl. Upper Limit Exp. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208e%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Wino-bino(-)%20($\Delta%20m$)">AuxFig 8e WZ Excl. Upper Limit Obs. Wino-bino(-) ($\Delta m$)</a> <li><a href="?table=AuxFig%208f%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Wino-bino(-)%20($\Delta%20m$)">AuxFig 8f WZ Excl. Upper Limit Exp. Wino-bino(-) ($\Delta m$)</a> <li><a href="?table=AuxFig%208g%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Higgsino%20($\Delta%20m$)">AuxFig 8g WZ Excl. Upper Limit Obs. Higgsino ($\Delta m$)</a> <li><a href="?table=AuxFig%208h%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Higgsino%20($\Delta%20m$)">AuxFig 8h WZ Excl. Upper Limit Exp. Higgsino ($\Delta m$)</a> <li><a href="?table=AuxFig%209a%20Wh%20Excl.%20Upper%20Limit%20Obs.">AuxFig 9a Wh Excl. Upper Limit Obs.</a> <li><a href="?table=AuxFig%209b%20Wh%20Excl.%20Upper%20Limit%20Exp.">AuxFig 9b Wh Excl. Upper Limit Exp.</a> </ul> <b>Model-independent discovery fits:</b> <ul display="inline-block"> <li><a href="?table=Tab%2018%20Onshell%20Discovery%20Fit%20Table">Tab 18 Onshell Discovery Fit Table</a> <li><a href="?table=Tab%2019%20Offshell%20Discovery%20Fit%20Table">Tab 19 Offshell Discovery Fit Table</a> <li><a href="?table=Tab%2021%20RJR%20Discovery%20Fit%20Table">Tab 21 RJR Discovery Fit Table</a> </ul> <b>Kinematic distributions:</b> <ul display="inline-block"> <li><a href="?table=Fig%2013a%20SR$_{DFOS}^{Wh}$-1%20($\Delta%20R_{OS,%20near}$)">Fig 13a SR$_{DFOS}^{Wh}$-1 ($\Delta R_{OS, near}$)</a> <li><a href="?table=Fig%2013b%20SR$_{DFOS}^{Wh}$-2%20(3rd%20Lep.%20$p_{T}$)">Fig 13b SR$_{DFOS}^{Wh}$-2 (3rd Lep. $p_{T}$)</a> <li><a href="?table=Fig%2013c%20SR$_{0j}^{WZ}$%20($E_{T}^{miss}$)">Fig 13c SR$_{0j}^{WZ}$ ($E_{T}^{miss}$)</a> <li><a href="?table=Fig%2013d%20SR$_{0j}^{WZ}$%20($m_{T}$)">Fig 13d SR$_{0j}^{WZ}$ ($m_{T}$)</a> <li><a href="?table=Fig%2014a%20SR$^{offWZ}_{LowETmiss}$-0j%20($m_{T}^{minmll}$)">Fig 14a SR$^{offWZ}_{LowETmiss}$-0j ($m_{T}^{minmll}$)</a> <li><a href="?table=Fig%2014b%20SR$^{offWZ}_{LowETmiss}$-nj%20($m_{T}^{minmll}$)">Fig 14b SR$^{offWZ}_{LowETmiss}$-nj ($m_{T}^{minmll}$)</a> <li><a href="?table=Fig%2014c%20SR$^{offWZ}_{HighETmiss}$-0j%20($m_{T}^{minmll}$)">Fig 14c SR$^{offWZ}_{HighETmiss}$-0j ($m_{T}^{minmll}$)</a> <li><a href="?table=Fig%2014d%20SR$^{offWZ}_{HighETmiss}$-nj%20($p_T^l%20\div%20E_T^{miss}$)">Fig 14d SR$^{offWZ}_{HighETmiss}$-nj ($p_T^l \div E_T^{miss}$)</a> <li><a href="?table=Fig%2020a%20RJR%20SR3$\ell$-Low%20($p_{T}^{\ell%201}$)">Fig 20a RJR SR3$\ell$-Low ($p_{T}^{\ell 1}$)</a> <li><a href="?table=Fig%2020b%20RJR%20SR3$\ell$-Low%20($H_{3,1}^{PP}$)">Fig 20b RJR SR3$\ell$-Low ($H_{3,1}^{PP}$)</a> <li><a href="?table=Fig%2020c%20RJR%20SR3$\ell$-ISR%20($p_{T~ISR}^{CM}$)">Fig 20c RJR SR3$\ell$-ISR ($p_{T~ISR}^{CM}$)</a> <li><a href="?table=Fig%2020d%20RJR%20SR3$\ell$-ISR%20($R_{ISR}$)">Fig 20d RJR SR3$\ell$-ISR ($R_{ISR}$)</a> </ul> <b>Cutflows:</b> <ul display="inline-block"> <li><a href="?table=AuxTab%205%20Cutflow:%20Onshell%20WZ">AuxTab 5 Cutflow: Onshell WZ</a> <li><a href="?table=AuxTab%206%20Cutflow:%20Onshell%20Wh">AuxTab 6 Cutflow: Onshell Wh</a> <li><a href="?table=AuxTab%207%20Cutflow:%20Offshell%20Wino-bino(%2b)%20(250,235)">AuxTab 7 Cutflow: Offshell Wino-bino(+) (250,235)</a> <li><a href="?table=AuxTab%208%20Cutflow:%20Offshell%20Wino-bino(%2b)%20(125,85)">AuxTab 8 Cutflow: Offshell Wino-bino(+) (125,85)</a> <li><a href="?table=AuxTab%209%20Cutflow:%20Offshell%20Wino-bino(%2b)%20(250,170)">AuxTab 9 Cutflow: Offshell Wino-bino(+) (250,170)</a> <li><a href="?table=AuxTab%2010%20Cutflow:%20Offshell%20Wino-bino(-)%20(250,235)">AuxTab 10 Cutflow: Offshell Wino-bino(-) (250,235)</a> <li><a href="?table=AuxTab%2011%20Cutflow:%20Offshell%20Wino-bino(-)%20(125,85)">AuxTab 11 Cutflow: Offshell Wino-bino(-) (125,85)</a> <li><a href="?table=AuxTab%2012%20Cutflow:%20Offshell%20Wino-bino(-)%20(250,170)">AuxTab 12 Cutflow: Offshell Wino-bino(-) (250,170)</a> <li><a href="?table=AuxTab%2013%20Cutflow:%20Offshell%20Higgsino%20(120,100)">AuxTab 13 Cutflow: Offshell Higgsino (120,100)</a> <li><a href="?table=AuxTab%2014%20Cutflow:%20Offshell%20Higgsino%20(100,40)">AuxTab 14 Cutflow: Offshell Higgsino (100,40)</a> <li><a href="?table=AuxTab%2015%20Cutflow:%20Offshell%20Higgsino%20(185,125)">AuxTab 15 Cutflow: Offshell Higgsino (185,125)</a> </ul> <b>Acceptances and Efficiencies:</b> <ul display="inline-block"> <li><a href="?table=AuxFig%2010a%20Acc:%20Onshell%20SR$_{0j}^{WZ}$">AuxFig 10a Acc: Onshell SR$_{0j}^{WZ}$</a> <li><a href="?table=AuxFig%2010b%20Eff:%20Onshell%20SR$_{0j}^{WZ}$">AuxFig 10b Eff: Onshell SR$_{0j}^{WZ}$</a> <li><a href="?table=AuxFig%2010c%20Acc:%20Onshell%20SR$_{nj}^{WZ}$">AuxFig 10c Acc: Onshell SR$_{nj}^{WZ}$</a> <li><a href="?table=AuxFig%2010d%20Eff:%20Onshell%20SR$_{nj}^{WZ}$">AuxFig 10d Eff: Onshell SR$_{nj}^{WZ}$</a> <li><a href="?table=AuxFig%2011a%20Acc:%20Onshell%20SR$_{low-m_{ll}-0j}^{Wh}$">AuxFig 11a Acc: Onshell SR$_{low-m_{ll}-0j}^{Wh}$</a> <li><a href="?table=AuxFig%2011b%20Eff:%20Onshell%20SR$_{low-m_{ll}-0j}^{Wh}$">AuxFig 11b Eff: Onshell SR$_{low-m_{ll}-0j}^{Wh}$</a> <li><a href="?table=AuxFig%2011c%20Acc:%20Onshell%20SR$_{low-m_{ll}-nj}^{Wh}$">AuxFig 11c Acc: Onshell SR$_{low-m_{ll}-nj}^{Wh}$</a> <li><a href="?table=AuxFig%2011d%20Eff:%20Onshell%20SR$_{low-m_{ll}-nj}^{Wh}$">AuxFig 11d Eff: Onshell SR$_{low-m_{ll}-nj}^{Wh}$</a> <li><a href="?table=AuxFig%2011e%20Acc:%20Onshell%20SR$_{DFOS}^{Wh}$">AuxFig 11e Acc: Onshell SR$_{DFOS}^{Wh}$</a> <li><a href="?table=AuxFig%2011f%20Eff:%20Onshell%20SR$_{DFOS}^{Wh}$">AuxFig 11f Eff: Onshell SR$_{DFOS}^{Wh}$</a> <li><a href="?table=AuxFig%2012a%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 12a Acc: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2012b%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 12b Eff: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2012c%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 12c Acc: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2012d%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 12d Eff: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2012e%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 12e Acc: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2012f%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 12f Eff: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2012g%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 12g Acc: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2012h%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 12h Eff: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2013a%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 13a Acc: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2013b%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 13b Eff: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2013c%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 13c Acc: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2013d%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 13d Eff: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2013e%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 13e Acc: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2013f%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 13f Eff: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2013g%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 13g Acc: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2013h%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 13h Eff: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2014a%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 14a Acc: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2014b%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 14b Eff: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2014c%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 14c Acc: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2014d%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 14d Eff: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2014e%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 14e Acc: Off. Higgsino SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2014f%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 14f Eff: Off. Higgsino SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2014g%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 14g Acc: Off. Higgsino SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2014h%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 14h Eff: Off. Higgsino SR$^{offWZ}_{highETmiss}$-nj</a> </ul>

Comparison of the observed data and expected SM background yields in the CRs (pre-fit) and VRs (post-fit) of the onshell $W\!Z$ and $W\!h$ selections. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the relative difference between the observed data and expected yields for the CRs and the significance of the difference for the VRs, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.

More…

Search for new phenomena in events with two opposite-charge leptons, jets and missing transverse momentum in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 04 (2021) 165, 2021.
Inspire Record 1844425 DOI 10.17182/hepdata.98627

The results of a search for direct pair production of top squarks and for dark matter in events with two opposite-charge leptons (electrons or muons), jets and missing transverse momentum are reported, using 139 fb$^{-1}$ of integrated luminosity from proton-proton collisions at $\sqrt{s} = 13$ TeV, collected by the ATLAS detector at the Large Hadron Collider during Run 2 (2015-2018). This search considers the pair production of top squarks and is sensitive across a wide range of mass differences between the top squark and the lightest neutralino. Additionally, spin-0 mediator dark-matter models are considered, in which the mediator is produced in association with a pair of top quarks. The mediator subsequently decays to a pair of dark-matter particles. No significant excess of events is observed above the Standard Model background, and limits are set at 95% confidence level. The results exclude top squark masses up to about 1 TeV, and masses of the lightest neutralino up to about 500 GeV. Limits on dark-matter production are set for scalar (pseudoscalar) mediator masses up to about 250 (300) GeV.

196 data tables

Two-body selection. Distributions of $m_{T2}$ in $SR^{2-body}_{110,\infty}$ for (a) different-flavour and (b) same-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference dark-matter signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction.

Two-body selection. Distributions of $m_{T2}$ in $SR^{2-body}_{110,\infty}$ for (a) different-flavour and (b) same-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference dark-matter signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction.

Three-body selection. Distributions of $M_{\Delta}^R$ in (a,b) $SR_{W}^{3-body}$ and (c,d) $SR_{T}^{3-body}$ for (left) same-flavour and (right) different-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.

More…

Search for dark matter produced in association with a dark Higgs boson decaying into $W^\pm W^\mp$ or $ZZ$ in fully hadronic final states from $\sqrt{s}=13$ TeV $pp$ collisions recorded with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 126 (2021) 121802, 2021.
Inspire Record 1822529 DOI 10.17182/hepdata.97191

Several extensions of the Standard Model predict the production of dark matter particles at the LHC. An uncharted signature of dark matter particles produced in association with $VV=W^\pm W^\mp$ or $ZZ$ pairs from a decay of a dark Higgs boson $s$ is searched for using 139 fb$^{-1}$ of $pp$ collisions recorded by the ATLAS detector at a center-of-mass energy of 13 TeV. The $s\to V(q\bar q)V(q\bar q)$ decays are reconstructed with a novel technique aimed at resolving the dense topology from boosted $VV$ pairs using jets in the calorimeter and tracking information. Dark Higgs scenarios with $m_s > 160$ GeV are excluded.

13 data tables

Data overlaid on SM background post-fit yields stacked in each SR and CR category and E<sub>T</sub><sup>miss</sup> bin with the maximum-likelihood estimators set to the conditional values of the CR-only fit, and propagated to SR and CRs. Pre-fit uncertainties cover differences between the data and pre-fit background prediction.

Dominant sources of uncertainty for three dark Higgs scenarios after the fit to Asimov data generated from the expected values of the maximum-likelihood estimators including predicted signals with m<sub>Z'</sub> = 1 TeV and m<sub>s</sub> of (a) 160 GeV, (b) 235 GeV, and (c) 310 GeV. The uncertainty in the fitted signal yield relative to the theory prediction is presented. Total is the quadrature sum of statistical and total systematic uncertainties, which consider correlations.

The ratios (&mu;) of the 95&#37; C.L. upper limits on the combined s&rarr; W<sup>&plusmn;</sup>W<sup>&#8723;</sup> and s&rarr; ZZ cross section to simplified model expectations for the m<sub>Z'</sub>=0.5 TeV scenario, for various m<sub>s</sub> hypotheses. The observed limits (solid line) are consistent with the expectation under the SM-only hypothesis (dashed line) within uncertainties (filled band), except for a small excess for m<sub>s</sub>=160 GeV, discussed in the text.

More…

Version 2
Reconstruction and identification of boosted di-$\tau$ systems in a search for Higgs boson pairs using 13 TeV proton$-$proton collision data in ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 11 (2020) 163, 2020.
Inspire Record 1809175 DOI 10.17182/hepdata.95432

In this paper, a new technique for reconstructing and identifying hadronically decaying $\tau^+\tau^-$ pairs with a large Lorentz boost, referred to as the di-$\tau$ tagger, is developed and used for the first time in the ATLAS experiment at the Large Hadron Collider. A benchmark di-$\tau$ tagging selection is employed in the search for resonant Higgs boson pair production, where one Higgs boson decays into a boosted $b\bar{b}$ pair and the other into a boosted $\tau^+\tau^-$ pair, with two hadronically decaying $\tau$-leptons in the final state. Using 139 fb$^{-1}$ of proton$-$proton collision data recorded at a centre-of-mass energy of 13 TeV, the efficiency of the di-$\tau$ tagger is determined and the background with quark- or gluon-initiated jets misidentified as di-$\tau$ objects is estimated. The search for a heavy, narrow, scalar resonance produced via gluon$-$gluon fusion and decaying into two Higgs bosons is carried out in the mass range 1$-$3 TeV using the same dataset. No deviations from the Standard Model predictions are observed, and 95% confidence-level exclusion limits are set on this model.

8 data tables

Signal acceptance times selection efficiency as a function of the resonance mass, at various stages of the event selection. From top to bottom: an event pre-selection (trigger, object definitions and $E_{T}^{miss}>10$ GeV) is performed first; the requirements on the di-$\tau$ object and large-$R$ jet detailed in the text are then applied; finally, the $HH$ SR definition must be satisfied.

Signal acceptance times selection efficiency as a function of the resonance mass, at various stages of the event selection. From top to bottom: an event pre-selection (trigger, object definitions and $E_{T}^{miss}>10$ GeV) is performed first; the requirements on the di-$\tau$ object and large-$R$ jet detailed in the text are then applied; finally, the $HH$ SR definition must be satisfied.

Distribution of $m^{vis}_{HH}$ after applying all the event selection that define the $HH$ SR, except the requirement on $m^{vis}_{HH}$. The background labelled as "Others" contains $W$+jets, diboson, $t\bar{t}$ and single-top-quark processes. The $X\rightarrow HH \rightarrow b\bar{b}\tau^{+}\tau^{-}$ signal is overlaid for two resonance mass hypotheses with a cross-section set to the expected limit, while all backgrounds are pre-fit. The first and the last bins contains the under-flow and over-flow bin entries, respectively. The hatched bands represent combined statistical and systematic uncertainties.

More…

Version 2
Search for Higgs boson decays into two new low-mass spin-0 particles in the 4$b$ channel with the ATLAS detector using $pp$ collisions at $\sqrt{s}= 13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 102 (2020) 112006, 2020.
Inspire Record 1797642 DOI 10.17182/hepdata.94383

This paper describes a search for beyond the Standard Model decays of the Higgs boson into a pair of new spin-0 particles subsequently decaying into $b$-quark pairs, $H \rightarrow aa \rightarrow (b\bar{b})(b\bar{b})$, using proton-proton collision data collected by the ATLAS detector at the Large Hadron Collider at center-of-mass energy $\sqrt{s}=13$ TeV. This search focuses on the regime where the decay products are collimated and in the range $15 \leq m_a \leq 30$ GeV and is complementary to a previous search in the same final state targeting the regime where the decay products are well separated and in the range $20 \leq m_a \leq 60$ GeV. A novel strategy for the identification of the $a \rightarrow b\bar{b}$ decays is deployed to enhance the efficiency for topologies with small separation angles. The search is performed with 36 fb$^{-1}$ of integrated luminosity collected in 2015 and 2016 and sets upper limits on the production cross-section of $H \rightarrow aa \rightarrow (b\bar{b})(b\bar{b})$, where the Higgs boson is produced in association with a $Z$ boson.

10 data tables

Summary of the 95% CL upper limits on $\sigma_{ZH} BR(H\rightarrow aa \rightarrow (b\bar{b})(b\bar{b}))$. Both observed and expected limits are listed. In the case of the expected limits, one- and two-standard-deviation uncertainty bands are also listed.

Summary of the 95% CL upper limits on $\sigma_{ZH} BR(H\rightarrow aa \rightarrow (b\bar{b})(b\bar{b}))$. Both observed and expected limits are listed. In the case of the expected limits, one- and two-standard-deviation uncertainty bands are also listed.

Summary of the observed 95% CL upper limits on $\sigma_{ZH} BR(H\rightarrow aa \rightarrow (b\bar{b})(b\bar{b}))$ for the resolved analysis.

More…

Search for $t\bar{t}$ resonances in fully hadronic final states in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 10 (2020) 061, 2020.
Inspire Record 1795076 DOI 10.17182/hepdata.94415

This paper presents a search for new heavy particles decaying into a pair of top quarks using 139 fb$^{-1}$ of proton--proton collision data recorded at a centre-of-mass energy of $\sqrt{s}=13$ TeV with the ATLAS detector at the Large Hadron Collider. The search is performed using events consistent with pair production of high-transverse-momentum top quarks and their subsequent decays into the fully hadronic final states. The analysis is optimized for resonances decaying into a $t\bar{t}$ pair with mass above 1.4 TeV, exploiting a dedicated multivariate technique with jet substructure to identify hadronically decaying top quarks using large-radius jets and evaluating the background expectation from data. No significant deviation from the background prediction is observed. Limits are set on the production cross-section times branching fraction for the new $Z'$ boson in a topcolor-assisted-technicolor model. The $Z'$ boson masses below 3.9 and 4.7 TeV are excluded at 95% confidence level for the decay widths of 1% and 3%, respectively.

6 data tables

Acceptance and acceptance times selection efficiency as a function of $m^{gen}_{t\bar{t}}$ in SR$1b$. The acceptance is measured as the fraction of events with two leading truth-contained large-$R$ jets, both satisfying the kinematic requirements, but not containing generator-level electrons or muons, as described in the paper. The acceptance $\times$ efficiency is calculated with respect to the full analysis selections including top- and $b$-tagging requirements on the two leading large-$R$ jets. The $m^{gen}_{t\bar{t}}$ is calculated from the momenta of top and anti-top quarks at the generator level before final-state radiation. The branching fractions of the $t \bar{t}$ into all possible final states are included in the acceptance calculation.

Acceptance and acceptance times selection efficiency as a function of $m^{gen}_{t\bar{t}}$ in SR$2b$. The acceptance is measured as the fraction of events with two leading truth-contained large-$R$ jets, both satisfying the kinematic requirements, but not containing generator-level electrons or muons, as described in the paper. The acceptance $\times$ efficiency is calculated with respect to the full analysis selections including top- and $b$-tagging requirements on the two leading large-$R$ jets. The $m^{gen}_{t\bar{t}}$ is calculated from the momenta of top and anti-top quarks at the generator level before final-state radiation. The branching fractions of the $t \bar{t}$ into all possible final states are included in the acceptance calculation.

Observed $m_{t\bar{t}}^{reco}$ distributions in data for SR$1b$, shown together with the result of the fit with the three-shape-parameter function. The error bars indicate the effect of the fit parameter uncertainty on the background prediction. The bin width of the distributions is chosen to be the same as that used in the background parameterization.

More…

Version 2
Search for a scalar partner of the top quark in the all-hadronic $t\bar{t}$ plus missing transverse momentum final state at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 737, 2020.
Inspire Record 1793461 DOI 10.17182/hepdata.93906

A search for direct pair production of scalar partners of the top quark (top squarks or scalar third-generation up-type leptoquarks) in the all-hadronic $t\bar{t}$ plus missing transverse momentum final state is presented. The analysis of 139 fb$^{-1}$ of ${\sqrt{s}=13}$ TeV proton-proton collision data collected using the ATLAS detector at the LHC yields no significant excess over the Standard Model background expectation. To interpret the results, a supersymmetric model is used where the top squark decays via $\tilde{t} \to t^{(*)} \tilde{\chi}^0_1$, with $t^{(*)}$ denoting an on-shell (off-shell) top quark and $\tilde{\chi}^0_1$ the lightest neutralino. Three specific event selections are optimised for the following scenarios. In the scenario where $m_{\tilde{t}}> m_t+m_{\tilde{\chi}^0_1}$, top squark masses are excluded in the range 400-1250 GeV for $\tilde{\chi}^0_1$ masses below $200$ GeV at 95 % confidence level. In the situation where $m_{\tilde{t}}\sim m_t+m_{\tilde{\chi}^0_1}$, top squark masses in the range 300-630 GeV are excluded, while in the case where $m_{\tilde{t}}< m_W+m_b+m_{\tilde{\chi}^0_1}$ (with $m_{\tilde{t}}-m_{\tilde{\chi}^0_1}\ge 5$ GeV), considered for the first time in an ATLAS all-hadronic search, top squark masses in the range 300-660 GeV are excluded. Limits are also set for scalar third-generation up-type leptoquarks, excluding leptoquarks with masses below $1240$ GeV when considering only leptoquark decays into a top quark and a neutrino.

118 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=stop_obs">Stop exclusion contour (Obs.)</a> <li><a href="?table=stop_obs_down">Stop exclusion contour (Obs. Down)</a> <li><a href="?table=stop_obs_up">Stop exclusion contour (Obs. Up)</a> <li><a href="?table=stop_exp">Stop exclusion contour (Exp.)</a> <li><a href="?table=stop_exp_down">Stop exclusion contour (Exp. Down)</a> <li><a href="?table=stop_exp_up">Stop exclusion contour (Exp. Up)</a> <li><a href="?table=LQ3u_obs">LQ3u exclusion contour (Obs.)</a> <li><a href="?table=LQ3u_obs_down">LQ3u exclusion contour (Obs. Down)</a> <li><a href="?table=LQ3u_obs_up">LQ3u exclusion contour (Obs. Up)</a> <li><a href="?table=LQ3u_exp">LQ3u exclusion contour (Exp.)</a> <li><a href="?table=LQ3u_exp_down">LQ3u exclusion contour (Exp. Down)</a> <li><a href="?table=LQ3u_exp_up">LQ3u exclusion contour (Exp. Up)</a> </ul> <b>Upper limits:</b> <ul> <li><a href="?table=stop_xSecUpperLimit_obs">stop_xSecUpperLimit_obs</a> <li><a href="?table=stop_xSecUpperLimit_exp">stop_xSecUpperLimit_exp</a> <li><a href="?table=LQ3u_xSecUpperLimit_obs">LQ3u_xSecUpperLimit_obs</a> <li><a href="?table=LQ3u_xSecUpperLimit_exp">LQ3u_xSecUpperLimit_exp</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=SRATW_metsigST">SRATW_metsigST</a> <li><a href="?table=SRBTT_m_1fatjet_kt12">SRBTT_m_1fatjet_kt12</a> <li><a href="?table=SRC_RISR">SRC_RISR</a> <li><a href="?table=SRD0_htSig">SRD0_htSig</a> <li><a href="?table=SRD1_htSig">SRD1_htSig</a> <li><a href="?table=SRD2_htSig">SRD2_htSig</a> </ul> <b>Cut flows:</b> <ul> <li><a href="?table=cutflow_SRATT">cutflow_SRATT</a> <li><a href="?table=cutflow_SRATW">cutflow_SRATW</a> <li><a href="?table=cutflow_SRAT0">cutflow_SRAT0</a> <li><a href="?table=cutflow_SRB">cutflow_SRB</a> <li><a href="?table=cutflow_SRC">cutflow_SRC</a> <li><a href="?table=cutflow_SRD0">cutflow_SRD0</a> <li><a href="?table=cutflow_SRD1">cutflow_SRD1</a> <li><a href="?table=cutflow_SRD2">cutflow_SRD2</a> </ul> <b>Acceptance and efficiencies:</b> As explained in <a href="https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults#summary_of_auxiliary_material">the twiki</a>. <ul> <li> <b>SRATT:</b> <a href="?table=Acc_SRATT">Acc_SRATT</a> <a href="?table=Eff_SRATT">Eff_SRATT</a> <li> <b>SRATW:</b> <a href="?table=Acc_SRATW">Acc_SRATW</a> <a href="?table=Eff_SRATW">Eff_SRATW</a> <li> <b>SRAT0:</b> <a href="?table=Acc_SRAT0">Acc_SRAT0</a> <a href="?table=Eff_SRAT0">Eff_SRAT0</a> <li> <b>SRBTT:</b> <a href="?table=Acc_SRBTT">Acc_SRBTT</a> <a href="?table=Eff_SRBTT">Eff_SRBTT</a> <li> <b>SRBTW:</b> <a href="?table=Acc_SRBTW">Acc_SRBTW</a> <a href="?table=Eff_SRBTW">Eff_SRBTW</a> <li> <b>SRBT0:</b> <a href="?table=Acc_SRBT0">Acc_SRBT0</a> <a href="?table=Eff_SRBT0">Eff_SRBT0</a> <li> <b>SRC1:</b> <a href="?table=Acc_SRC1">Acc_SRC1</a> <a href="?table=Eff_SRC1">Eff_SRC1</a> <li> <b>SRC2:</b> <a href="?table=Acc_SRC2">Acc_SRC2</a> <a href="?table=Eff_SRC2">Eff_SRC2</a> <li> <b>SRC3:</b> <a href="?table=Acc_SRC3">Acc_SRC3</a> <a href="?table=Eff_SRC3">Eff_SRC3</a> <li> <b>SRC4:</b> <a href="?table=Acc_SRC4">Acc_SRC4</a> <a href="?table=Eff_SRC4">Eff_SRC4</a> <li> <b>SRC5:</b> <a href="?table=Acc_SRC5">Acc_SRC5</a> <a href="?table=Eff_SRC5">Eff_SRC5</a> <li> <b>SRD0:</b> <a href="?table=Acc_SRD0">Acc_SRD0</a> <a href="?table=Eff_SRD0">Eff_SRD0</a> <li> <b>SRD1:</b> <a href="?table=Acc_SRD1">Acc_SRD1</a> <a href="?table=Eff_SRD1">Eff_SRD1</a> <li> <b>SRD2:</b> <a href="?table=Acc_SRD2">Acc_SRD2</a> <a href="?table=Eff_SRD2">Eff_SRD2</a> </ul> <b>Truth Code snippets</b> and <b>SLHA</a> files are available under "Resources" (purple button on the left)

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=stop_obs">Stop exclusion contour (Obs.)</a> <li><a href="?table=stop_obs_down">Stop exclusion contour (Obs. Down)</a> <li><a href="?table=stop_obs_up">Stop exclusion contour (Obs. Up)</a> <li><a href="?table=stop_exp">Stop exclusion contour (Exp.)</a> <li><a href="?table=stop_exp_down">Stop exclusion contour (Exp. Down)</a> <li><a href="?table=stop_exp_up">Stop exclusion contour (Exp. Up)</a> <li><a href="?table=LQ3u_obs">LQ3u exclusion contour (Obs.)</a> <li><a href="?table=LQ3u_obs_down">LQ3u exclusion contour (Obs. Down)</a> <li><a href="?table=LQ3u_obs_up">LQ3u exclusion contour (Obs. Up)</a> <li><a href="?table=LQ3u_exp">LQ3u exclusion contour (Exp.)</a> <li><a href="?table=LQ3u_exp_down">LQ3u exclusion contour (Exp. Down)</a> <li><a href="?table=LQ3u_exp_up">LQ3u exclusion contour (Exp. Up)</a> </ul> <b>Upper limits:</b> <ul> <li><a href="?table=stop_xSecUpperLimit_obs">stop_xSecUpperLimit_obs</a> <li><a href="?table=stop_xSecUpperLimit_exp">stop_xSecUpperLimit_exp</a> <li><a href="?table=LQ3u_xSecUpperLimit_obs">LQ3u_xSecUpperLimit_obs</a> <li><a href="?table=LQ3u_xSecUpperLimit_exp">LQ3u_xSecUpperLimit_exp</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=SRATW_metsigST">SRATW_metsigST</a> <li><a href="?table=SRBTT_m_1fatjet_kt12">SRBTT_m_1fatjet_kt12</a> <li><a href="?table=SRC_RISR">SRC_RISR</a> <li><a href="?table=SRD0_htSig">SRD0_htSig</a> <li><a href="?table=SRD1_htSig">SRD1_htSig</a> <li><a href="?table=SRD2_htSig">SRD2_htSig</a> </ul> <b>Cut flows:</b> <ul> <li><a href="?table=cutflow_SRATT">cutflow_SRATT</a> <li><a href="?table=cutflow_SRATW">cutflow_SRATW</a> <li><a href="?table=cutflow_SRAT0">cutflow_SRAT0</a> <li><a href="?table=cutflow_SRB">cutflow_SRB</a> <li><a href="?table=cutflow_SRC">cutflow_SRC</a> <li><a href="?table=cutflow_SRD0">cutflow_SRD0</a> <li><a href="?table=cutflow_SRD1">cutflow_SRD1</a> <li><a href="?table=cutflow_SRD2">cutflow_SRD2</a> </ul> <b>Acceptance and efficiencies:</b> As explained in <a href="https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults#summary_of_auxiliary_material">the twiki</a>. <ul> <li> <b>SRATT:</b> <a href="?table=Acc_SRATT">Acc_SRATT</a> <a href="?table=Eff_SRATT">Eff_SRATT</a> <li> <b>SRATW:</b> <a href="?table=Acc_SRATW">Acc_SRATW</a> <a href="?table=Eff_SRATW">Eff_SRATW</a> <li> <b>SRAT0:</b> <a href="?table=Acc_SRAT0">Acc_SRAT0</a> <a href="?table=Eff_SRAT0">Eff_SRAT0</a> <li> <b>SRBTT:</b> <a href="?table=Acc_SRBTT">Acc_SRBTT</a> <a href="?table=Eff_SRBTT">Eff_SRBTT</a> <li> <b>SRBTW:</b> <a href="?table=Acc_SRBTW">Acc_SRBTW</a> <a href="?table=Eff_SRBTW">Eff_SRBTW</a> <li> <b>SRBT0:</b> <a href="?table=Acc_SRBT0">Acc_SRBT0</a> <a href="?table=Eff_SRBT0">Eff_SRBT0</a> <li> <b>SRC1:</b> <a href="?table=Acc_SRC1">Acc_SRC1</a> <a href="?table=Eff_SRC1">Eff_SRC1</a> <li> <b>SRC2:</b> <a href="?table=Acc_SRC2">Acc_SRC2</a> <a href="?table=Eff_SRC2">Eff_SRC2</a> <li> <b>SRC3:</b> <a href="?table=Acc_SRC3">Acc_SRC3</a> <a href="?table=Eff_SRC3">Eff_SRC3</a> <li> <b>SRC4:</b> <a href="?table=Acc_SRC4">Acc_SRC4</a> <a href="?table=Eff_SRC4">Eff_SRC4</a> <li> <b>SRC5:</b> <a href="?table=Acc_SRC5">Acc_SRC5</a> <a href="?table=Eff_SRC5">Eff_SRC5</a> <li> <b>SRD0:</b> <a href="?table=Acc_SRD0">Acc_SRD0</a> <a href="?table=Eff_SRD0">Eff_SRD0</a> <li> <b>SRD1:</b> <a href="?table=Acc_SRD1">Acc_SRD1</a> <a href="?table=Eff_SRD1">Eff_SRD1</a> <li> <b>SRD2:</b> <a href="?table=Acc_SRD2">Acc_SRD2</a> <a href="?table=Eff_SRD2">Eff_SRD2</a> </ul> <b>Truth Code snippets</b> and <b>SLHA</a> files are available under "Resources" (purple button on the left)

The observed exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contours are excluded.

More…

Version 2
Search for long-lived, massive particles in events with a displaced vertex and a muon with large impact parameter in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 102 (2020) 032006, 2020.
Inspire Record 1788448 DOI 10.17182/hepdata.91760

A search for long-lived particles decaying into hadrons and at least one muon is presented. The analysis selects events that pass a muon or missing-transverse-momentum trigger and contain a displaced muon track and a displaced vertex. The analyzed dataset of proton-proton collisions at $\sqrt{s} = 13$ TeV was collected with the ATLAS detector and corresponds to 136 fb$^{-1}$. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particle decays that occur in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are presented as limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and interpreted as exclusion limits in scenarios with pair-production of long-lived top squarks that decay via a small $R$-parity-violating coupling into a quark and a muon. Top squarks with masses up to 1.7 TeV are excluded for a lifetime of 0.1 ns, and masses below 1.3 TeV are excluded for lifetimes between 0.01 ns and 30 ns.

44 data tables

Vertex selection acceptance for the $\tilde{t}$ $R$-hadron benchmark model as a function of the transverse decay distance $r_{DV}$.

Vertex selection acceptance for the $\tilde{t}$ $R$-hadron benchmark model as a function of the transverse decay distance $r_{DV}$.

Vertex selection efficiency for the $\tilde{t}$ $R$-hadron benchmark model as a function of the transverse decay distance $r_{DV}$.

More…

Version 4
Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 125 (2020) 051801, 2020.
Inspire Record 1782650 DOI 10.17182/hepdata.93071

A search for heavy neutral Higgs bosons is performed using the LHC Run 2 data, corresponding to an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. The search for heavy resonances is performed over the mass range 0.2-2.5 TeV for the $\tau^+\tau^-$ decay with at least one $\tau$-lepton decaying into final states with hadrons. The data are in good agreement with the background prediction of the Standard Model. In the $M_{h}^{125}$ scenario of the Minimal Supersymmetric Standard Model, values of $\tan\beta>8$ and $\tan\beta>21$ are excluded at the 95% confidence level for neutral Higgs boson masses of 1.0 TeV and 1.5 TeV, respectively, where $\tan\beta$ is the ratio of the vacuum expectation values of the two Higgs doublets.

216 data tables

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.

More…

Version 2
Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in $\sqrt{s}$ = 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 101 (2020) 072001, 2020.
Inspire Record 1771533 DOI 10.17182/hepdata.91127

A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell $W$ and $Z$ bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of $\sqrt{s}$ = 13 TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb$^{-1}$. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015-2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full dataset are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV.

58 data tables

Distributions in SR-low of the data and post-fit background prediction for m<sub>T</sub>. The SR-low event selections are applied for each distribution except for the variable shown, where the selection is indicated by a red arrow. The normalization factor for the WZ background is derived from the background-only estimation described in Section 7. The expected distribution for a benchmark signal model is included for comparison. The first (last) bin includes underflow (overflow). The "Top-quark like" category contains the tt&#772;, Wt, and WW processes while the "Others" category contains backgrounds from triboson production and processes that include a Higgs boson, 3 or more tops, and tops produced in association with W or Z bosons. The bottom panel shows the ratio of the data to the post-fit background prediction. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.

Distributions in SR-low of the data and post-fit background prediction for m<sub>T</sub>. The SR-low event selections are applied for each distribution except for the variable shown, where the selection is indicated by a red arrow. The normalization factor for the WZ background is derived from the background-only estimation described in Section 7. The expected distribution for a benchmark signal model is included for comparison. The first (last) bin includes underflow (overflow). The "Top-quark like" category contains the tt&#772;, Wt, and WW processes while the "Others" category contains backgrounds from triboson production and processes that include a Higgs boson, 3 or more tops, and tops produced in association with W or Z bosons. The bottom panel shows the ratio of the data to the post-fit background prediction. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.

Distributions in SR-low of the data and post-fit background prediction for H<sup>boost</sup>. The SR-low event selections are applied for each distribution except for the variable shown, where the selection is indicated by a red arrow. The normalization factor for the WZ background is derived from the background-only estimation described in Section 7. The expected distribution for a benchmark signal model is included for comparison. The first (last) bin includes underflow (overflow). The "Top-quark like" category contains the tt&#772;, Wt, and WW processes while the "Others" category contains backgrounds from triboson production and processes that include a Higgs boson, 3 or more tops, and tops produced in association with W or Z bosons. The bottom panel shows the ratio of the data to the post-fit background prediction. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.

More…

Search for new resonances in mass distributions of jet pairs using 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 03 (2020) 145, 2020.
Inspire Record 1759712 DOI 10.17182/hepdata.91126

A search for new resonances decaying into a pair of jets is reported using the dataset of proton-proton collisions recorded at $\sqrt{s}=13$ TeV with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to an integrated luminosity of 139 fb$^{-1}$. The distribution of the invariant mass of the two leading jets is examined for local excesses above a data-derived estimate of the Standard Model background. In addition to an inclusive dijet search, events with jets identified as containing $b$-hadrons are examined specifically. No significant excess of events above the smoothly falling background spectra is observed. The results are used to set cross-section upper limits at 95% confidence level on a range of new physics scenarios. Model-independent limits on Gaussian-shaped signals are also reported. The analysis looking at jets containing $b$-hadrons benefits from improvements in the jet flavour identification at high transverse momentum, which increases its sensitivity relative to the previous analysis beyond that expected from the higher integrated luminosity.

24 data tables

The probability of an event to pass the b-tagging requirement after the rest of the event selection, shown as a function of the resonance mass and for the 1b and 2b analysis categories.

Dijet invariant mass distribution for the inclusive category with |y*| < 0.6.

Dijet invariant mass distribution for the inclusive category with |y*| < 1.2.

More…

Version 4
Search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson decaying into two $b$-jets in (pp) collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 691, 2020.
Inspire Record 1755298 DOI 10.17182/hepdata.90607

The results of a search for electroweakino pair production $pp \rightarrow \tilde\chi^\pm_1 \tilde\chi^0_2$ in which the chargino ($\tilde\chi^\pm_1$) decays into a $W$ boson and the lightest neutralino ($\tilde\chi^0_1$), while the heavier neutralino ($\tilde\chi^0_2$) decays into the Standard Model 125 GeV Higgs boson and a second $\tilde\chi^0_1$ are presented. The signal selection requires a pair of $b$-tagged jets consistent with those from a Higgs boson decay, and either an electron or a muon from the $W$ boson decay, together with missing transverse momentum from the corresponding neutrino and the stable neutralinos. The analysis is based on data corresponding to 139 $\mathrm{fb}^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collisions provided by the Large Hadron Collider and recorded by the ATLAS detector. No statistically significant evidence of an excess of events above the Standard Model expectation is found. Limits are set on the direct production of the electroweakinos in simplified models, assuming pure wino cross-sections. Masses of $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ up to 740 GeV are excluded at 95% confidence level for a massless $\tilde{\chi}^{0}_{1}$.

212 data tables

The post-fit $m_{CT}$ distribution is shown in the validation region VR-onLM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.

The post-fit $m_{CT}$ distribution is shown in the validation region VR-onLM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.

The post-fit $m_{CT}$ distribution is shown in the validation region VR-onLM after all the selection requirements are applied other than the $m_{CT}$ cut. The stacked histograms show the expected SM backgrounds. The hatched bands represent the sum in quadrature of systematic and statistical uncertainties of the total SM background. The red line with arrow indicates the $m_{CT}$ cut used in SR selection. The first and the last bin include the underflow and overflow events (where present), respectively.

More…

Version 4
Search for squarks and gluinos in final states with same-sign leptons and jets using 139 fb$^{-1}$ of data collected with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 06 (2020) 046, 2020.
Inspire Record 1754675 DOI 10.17182/hepdata.91214

A search for supersymmetric partners of gluons and quarks is presented, involving signatures with jets and either two isolated leptons (electrons or muons) with the same electric charge, or at least three isolated leptons. A data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to a total integrated luminosity of 139 fb$^{-1}$, is used for the search. No significant excess over the Standard Model expectation is observed. The results are interpreted in simplified supersymmetric models featuring both R-parity conservation and R-parity violation, raising the exclusion limits beyond those of previous ATLAS searches to 1600 GeV for gluino masses and 750 GeV for bottom and top squark masses in these scenarios.

120 data tables

Observed 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g \to q \bar{q}^{'} \tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_2^0$ and $ \tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0$.

Observed 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g \to q \bar{q}^{'} \tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_2^0$ and $ \tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0$.

Observed 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g \to q \bar{q}^{'} \tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_2^0$ and $ \tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0$.

More…

Version 4
Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in $\sqrt{s}=13$ TeV $pp$ collisions using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 123, 2020.
Inspire Record 1750597 DOI 10.17182/hepdata.89413

A search for the electroweak production of charginos and sleptons decaying into final states with two electrons or muons is presented. The analysis is based on 139 fb$^{-1}$ of proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider at $\sqrt{s}=13$ TeV. Three $R$-parity-conserving scenarios where the lightest neutralino is the lightest supersymmetric particle are considered: the production of chargino pairs with decays via either $W$ bosons or sleptons, and the direct production of slepton pairs. The analysis is optimised for the first of these scenarios, but the results are also interpreted in the others. No significant deviations from the Standard Model expectations are observed and limits at 95 % confidence level are set on the masses of relevant supersymmetric particles in each of the scenarios. For a massless lightest neutralino, masses up to 420 GeV are excluded for the production of the lightest-chargino pairs assuming $W$-boson-mediated decays and up to 1 TeV for slepton-mediated decays, whereas for slepton-pair production masses up to 700 GeV are excluded assuming three generations of mass-degenerate sleptons.

616 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Background Fit results:</b> <ul> <li><a href="89413?version=1&table=Backgroundfit1">CRs</a> <li><a href="89413?version=1&table=Backgroundfit2">VRs</a> <li><a href="89413?version=1&table=Backgroundfit5">inclusive DF-0J SRs</a> <li><a href="89413?version=1&table=Backgroundfit6">inclusive DF-1J SRs</a> <li><a href="89413?version=1&table=Backgroundfit3">inclusive SF-0J SRs</a> <li><a href="89413?version=1&table=Backgroundfit4">inclusive SF-1J SRs</a> </ul> <b>Kinematic distributions in VRs:</b> <ul> <li><a href="89413?version=1&table=VRkinematics1">$m_{T2}$ in VR-top-low</a> <li><a href="89413?version=1&table=VRkinematics2">$m_{T2}$ in VR-top-high</a> <li><a href="89413?version=1&table=VRkinematics3">$E_T^{miss}$ in VR-WW-0J</a> <li><a href="89413?version=1&table=VRkinematics4">$E_T^{miss}$ in VR-WW-1J</a> <li><a href="89413?version=1&table=VRkinematics5">$E_T^{miss}$ sig in VR-VZ</a> <li><a href="89413?version=1&table=VRkinematics6">$E_T^{miss}$ sig in VR-top-WW</a> </ul> <b>Kinematic distributions in SRs:</b> <ul> <li><a href="89413?version=1&table=SRkinematics1">$m_{T2}$ in SR-SF-0J</a> <li><a href="89413?version=1&table=SRkinematics2">$m_{T2}$ in SR-SF-1J</a> <li><a href="89413?version=1&table=SRkinematics3">$m_{T2}$ in SR-DF-0J</a> <li><a href="89413?version=1&table=SRkinematics4">$m_{T2}$ in SR-DF-1J</a> </ul> <b>Systematic uncertaities:</b> <ul> <li><a href="89413?version=1&table=Systematic uncertainties">dominant systematic uncertainties in the inclusive SRs</a> </ul> <b>Exclusion contours:</b> <ul> <li><a href="89413?version=1&table=Exclusioncontour(obs)1">expected exclusion contour direct chargino-pair production via W decay grid</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)1">observed exclusion contour direct chargino-pair production via W decay grid</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)2">expected exclusion contour direct chargino-pair production via slepton decay grid</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)2">observed exclusion contour direct chargino-pair production via slepton decay grid</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)3">expected exclusion contour direct slepton-pair production grid</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)3">observed exclusion contour direct slepton-pair production grid</a> </ul> <br/><br/><b>AUXILIARY MATERIAL</b><br/> <b>Background Fit in binned SRs:</b> <ul> <li><a href="89413?version=1&table=Backgroundfit7">binned DF-0J SRs</a> <li><a href="89413?version=1&table=Backgroundfit8">binned DF-1J SRs</a> <li><a href="89413?version=1&table=Backgroundfit9">binned SF-0J SRs</a> <li><a href="89413?version=1&table=Backgroundfit10">binned SF-1J SRs</a> </ul> <b>Exclusion contours:</b> <ul> <li><a href="89413?version=1&table=Exclusioncontour(obs)4">expected exclusion contour left-handed slepton-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)4">observed exclusion contour left-handed slepton-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)5">expected exclusion contour right-handed slepton-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)5">observed exclusion contour right-handed slepton-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)6">expected exclusion contour selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)6">observed exclusion contour selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)7">expected exclusion contour left-handed selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)7">observed exclusion contour left-handed selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)8">expected exclusion contour right-handed selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)8">observed exclusion contour right-handed selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)9">expected exclusion contour smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)9">observed exclusion contour smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)10">expected exclusion contour left-handed smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)10">observed exclusion contour left-handed smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)11">expected exclusion contour right-handed smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)11">observed exclusion contour right-handed smuon-pair production</a> </ul> <b>Cross section upper limits:</b> <ul> <li><a href="89413?version=1&table=xsecupperlimits1">upper limits on signal cross section for direct chargino-pair production via W decay</a> <li><a href="89413?version=1&table=xsecupperlimits2">upper limits on signal cross section for direct chargino-pair production via slepton decay</a> <li><a href="89413?version=1&table=xsecupperlimits3">upper limits on signal cross section for direct slepton-pair production</a> </ul> <b>Acceptances and Efficiencies for direct chargino-pair production via W decay grid </b> <ul> <li> <b>Acceptance</b> <br/> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[100,inf)forC1C1WWgrid">SR-DF-0J-[100,inf) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[160,inf)forC1C1WWgrid">SR-DF-0J-[160,inf) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[100,120)forC1C1WWgrid">SR-DF-0J-[100,120) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[120,160)forC1C1WWgrid">SR-DF-0J-[120,160) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[100,105)forC1C1WWgrid">SR-DF-0J-[100,105) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[105,110)forC1C1WWgrid">SR-DF-0J-[105,110) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[110,120)forC1C1WWgrid">SR-DF-0J-[110,120) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[120,140)forC1C1WWgrid">SR-DF-0J-[120,140) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[140,160)forC1C1WWgrid">SR-DF-0J-[140,160) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[160,180)forC1C1WWgrid">SR-DF-0J-[160,180) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[180,220)forC1C1WWgrid">SR-DF-0J-[180,220) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[220,260)forC1C1WWgrid">SR-DF-0J-[220,260) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[260,inf)forC1C1WWgrid">SR-DF-0J-[260,inf) </a><br/> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[100,inf)forC1C1WWgrid">SR-DF-1J-[100,inf) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[160,inf)forC1C1WWgrid">SR-DF-1J-[160,inf) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[100,120)forC1C1WWgrid">SR-DF-1J-[100,120) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[120,160)forC1C1WWgrid">SR-DF-1J-[120,160) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[100,105)forC1C1WWgrid">SR-DF-1J-[100,105) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[105,110)forC1C1WWgrid">SR-DF-1J-[105,110) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[110,120)forC1C1WWgrid">SR-DF-1J-[110,120) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[120,140)forC1C1WWgrid">SR-DF-1J-[120,140) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[140,160)forC1C1WWgrid">SR-DF-1J-[140,160) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[160,180)forC1C1WWgrid">SR-DF-1J-[160,180) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[180,220)forC1C1WWgrid">SR-DF-1J-[180,220) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[220,260)forC1C1WWgrid">SR-DF-1J-[220,260) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[260,inf)forC1C1WWgrid">SR-DF-1J-[260,inf) </a><br/> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[100,inf)forC1C1WWgrid">SR-SF-0J-[100,inf) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[160,inf)forC1C1WWgrid">SR-SF-0J-[160,inf) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[100,120)forC1C1WWgrid">SR-SF-0J-[100,120) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[120,160)forC1C1WWgrid">SR-SF-0J-[120,160) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[100,105)forC1C1WWgrid">SR-SF-0J-[100,105) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[105,110)forC1C1WWgrid">SR-SF-0J-[105,110) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[110,120)forC1C1WWgrid">SR-SF-0J-[110,120) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[120,140)forC1C1WWgrid">SR-SF-0J-[120,140) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[140,160)forC1C1WWgrid">SR-SF-0J-[140,160) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[160,180)forC1C1WWgrid">SR-SF-0J-[160,180) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[180,220)forC1C1WWgrid">SR-SF-0J-[180,220) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[220,260)forC1C1WWgrid">SR-SF-0J-[220,260) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[260,inf)forC1C1WWgrid">SR-SF-0J-[260,inf) </a><br/> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[100,inf)forC1C1WWgrid">SR-SF-1J-[100,inf) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[160,inf)forC1C1WWgrid">SR-SF-1J-[160,inf) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[100,120)forC1C1WWgrid">SR-SF-1J-[100,120) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[120,160)forC1C1WWgrid">SR-SF-1J-[120,160) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[100,105)forC1C1WWgrid">SR-SF-1J-[100,105) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[105,110)forC1C1WWgrid">SR-SF-1J-[105,110) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[110,120)forC1C1WWgrid">SR-SF-1J-[110,120) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[120,140)forC1C1WWgrid">SR-SF-1J-[120,140) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[140,160)forC1C1WWgrid">SR-SF-1J-[140,160) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[160,180)forC1C1WWgrid">SR-SF-1J-[160,180) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[180,220)forC1C1WWgrid">SR-SF-1J-[180,220) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[220,260)forC1C1WWgrid">SR-SF-1J-[220,260) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[260,inf)forC1C1WWgrid">SR-SF-1J-[260,inf) </a><br/> <li> <b>Efficiency</b> <br/> <a href="89413?version=1&table=EfficiencySR-DF-0J-[100,inf)forC1C1WWgrid">SR-DF-0J-[100,inf) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[160,inf)forC1C1WWgrid">SR-DF-0J-[160,inf) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[100,120)forC1C1WWgrid">SR-DF-0J-[100,120) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[120,160)forC1C1WWgrid">SR-DF-0J-[120,160) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[100,105)forC1C1WWgrid">SR-DF-0J-[100,105) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[105,110)forC1C1WWgrid">SR-DF-0J-[105,110) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[110,120)forC1C1WWgrid">SR-DF-0J-[110,120) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[120,140)forC1C1WWgrid">SR-DF-0J-[120,140) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[140,160)forC1C1WWgrid">SR-DF-0J-[140,160) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[160,180)forC1C1WWgrid">SR-DF-0J-[160,180) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[180,220)forC1C1WWgrid">SR-DF-0J-[180,220) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[220,260)forC1C1WWgrid">SR-DF-0J-[220,260) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[260,inf)forC1C1WWgrid">SR-DF-0J-[260,inf) </a><br/> <a href="89413?version=1&table=EfficiencySR-DF-1J-[100,inf)forC1C1WWgrid">SR-DF-1J-[100,inf) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[160,inf)forC1C1WWgrid">SR-DF-1J-[160,inf) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[100,120)forC1C1WWgrid">SR-DF-1J-[100,120) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[120,160)forC1C1WWgrid">SR-DF-1J-[120,160) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[100,105)forC1C1WWgrid">SR-DF-1J-[100,105) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[105,110)forC1C1WWgrid">SR-DF-1J-[105,110) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[110,120)forC1C1WWgrid">SR-DF-1J-[110,120) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[120,140)forC1C1WWgrid">SR-DF-1J-[120,140) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[140,160)forC1C1WWgrid">SR-DF-1J-[140,160) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[160,180)forC1C1WWgrid">SR-DF-1J-[160,180) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[180,220)forC1C1WWgrid">SR-DF-1J-[180,220) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[220,260)forC1C1WWgrid">SR-DF-1J-[220,260) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[260,inf)forC1C1WWgrid">SR-DF-1J-[260,inf) </a><br/> <a href="89413?version=1&table=EfficiencySR-SF-0J-[100,inf)forC1C1WWgrid">SR-SF-0J-[100,inf) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[160,inf)forC1C1WWgrid">SR-SF-0J-[160,inf) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[100,120)forC1C1WWgrid">SR-SF-0J-[100,120) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[120,160)forC1C1WWgrid">SR-SF-0J-[120,160) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[100,105)forC1C1WWgrid">SR-SF-0J-[100,105) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[105,110)forC1C1WWgrid">SR-SF-0J-[105,110) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[110,120)forC1C1WWgrid">SR-SF-0J-[110,120) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[120,140)forC1C1WWgrid">SR-SF-0J-[120,140) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[140,160)forC1C1WWgrid">SR-SF-0J-[140,160) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[160,180)forC1C1WWgrid">SR-SF-0J-[160,180) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[180,220)forC1C1WWgrid">SR-SF-0J-[180,220) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[220,260)forC1C1WWgrid">SR-SF-0J-[220,260) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[260,inf)forC1C1WWgrid">SR-SF-0J-[260,inf) </a><br/> <a href="89413?version=1&table=EfficiencySR-SF-1J-[100,inf)forC1C1WWgrid">SR-SF-1J-[100,inf) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[160,inf)forC1C1WWgrid">SR-SF-1J-[160,inf) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[100,120)forC1C1WWgrid">SR-SF-1J-[100,120) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[120,160)forC1C1WWgrid">SR-SF-1J-[120,160) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[100,105)forC1C1WWgrid">SR-SF-1J-[100,105) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[105,110)forC1C1WWgrid">SR-SF-1J-[105,110) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[110,120)forC1C1WWgrid">SR-SF-1J-[110,120) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[120,140)forC1C1WWgrid">SR-SF-1J-[120,140) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[140,160)forC1C1WWgrid">SR-SF-1J-[140,160) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[160,180)forC1C1WWgrid">SR-SF-1J-[160,180) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[180,220)forC1C1WWgrid">SR-SF-1J-[180,220) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[220,260)forC1C1WWgrid">SR-SF-1J-[220,260) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[260,inf)forC1C1WWgrid">SR-SF-1J-[260,inf) </a><br/> </ul> <b>Cutflow:</b> <ul> <li><a href="89413?version=1&table=Cutflow1">Cutflow for direct chargino-pair production via W decay $m(\tilde{\chi}^{\pm}_1,\tilde{\chi}^{0}_1)=(300,50) GeV$</a> <li><a href="89413?version=1&table=Cutflow1">Cutflow for direct chargino-pair production via slepton decay $m(\tilde{\chi}^{\pm}_1,\tilde{l},\tilde{\chi}^{0}_1)=(600,300,1) GeV$</a> <li><a href="89413?version=1&table=Cutflow1">Cutflow for direct slepton-pair production $m(\tilde{l},\tilde{\chi}^{0}_1)=(400,200) GeV$</a> </ul> <b>Truth Code snippets</b> are available under "Resources" (purple button on the left)

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Background Fit results:</b> <ul> <li><a href="89413?version=1&table=Backgroundfit1">CRs</a> <li><a href="89413?version=1&table=Backgroundfit2">VRs</a> <li><a href="89413?version=1&table=Backgroundfit5">inclusive DF-0J SRs</a> <li><a href="89413?version=1&table=Backgroundfit6">inclusive DF-1J SRs</a> <li><a href="89413?version=1&table=Backgroundfit3">inclusive SF-0J SRs</a> <li><a href="89413?version=1&table=Backgroundfit4">inclusive SF-1J SRs</a> </ul> <b>Kinematic distributions in VRs:</b> <ul> <li><a href="89413?version=1&table=VRkinematics1">$m_{T2}$ in VR-top-low</a> <li><a href="89413?version=1&table=VRkinematics2">$m_{T2}$ in VR-top-high</a> <li><a href="89413?version=1&table=VRkinematics3">$E_T^{miss}$ in VR-WW-0J</a> <li><a href="89413?version=1&table=VRkinematics4">$E_T^{miss}$ in VR-WW-1J</a> <li><a href="89413?version=1&table=VRkinematics5">$E_T^{miss}$ sig in VR-VZ</a> <li><a href="89413?version=1&table=VRkinematics6">$E_T^{miss}$ sig in VR-top-WW</a> </ul> <b>Kinematic distributions in SRs:</b> <ul> <li><a href="89413?version=1&table=SRkinematics1">$m_{T2}$ in SR-SF-0J</a> <li><a href="89413?version=1&table=SRkinematics2">$m_{T2}$ in SR-SF-1J</a> <li><a href="89413?version=1&table=SRkinematics3">$m_{T2}$ in SR-DF-0J</a> <li><a href="89413?version=1&table=SRkinematics4">$m_{T2}$ in SR-DF-1J</a> </ul> <b>Systematic uncertaities:</b> <ul> <li><a href="89413?version=1&table=Systematic uncertainties">dominant systematic uncertainties in the inclusive SRs</a> </ul> <b>Exclusion contours:</b> <ul> <li><a href="89413?version=1&table=Exclusioncontour(obs)1">expected exclusion contour direct chargino-pair production via W decay grid</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)1">observed exclusion contour direct chargino-pair production via W decay grid</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)2">expected exclusion contour direct chargino-pair production via slepton decay grid</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)2">observed exclusion contour direct chargino-pair production via slepton decay grid</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)3">expected exclusion contour direct slepton-pair production grid</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)3">observed exclusion contour direct slepton-pair production grid</a> </ul> <br/><br/><b>AUXILIARY MATERIAL</b><br/> <b>Background Fit in binned SRs:</b> <ul> <li><a href="89413?version=1&table=Backgroundfit7">binned DF-0J SRs</a> <li><a href="89413?version=1&table=Backgroundfit8">binned DF-1J SRs</a> <li><a href="89413?version=1&table=Backgroundfit9">binned SF-0J SRs</a> <li><a href="89413?version=1&table=Backgroundfit10">binned SF-1J SRs</a> </ul> <b>Exclusion contours:</b> <ul> <li><a href="89413?version=1&table=Exclusioncontour(obs)4">expected exclusion contour left-handed slepton-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)4">observed exclusion contour left-handed slepton-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)5">expected exclusion contour right-handed slepton-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)5">observed exclusion contour right-handed slepton-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)6">expected exclusion contour selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)6">observed exclusion contour selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)7">expected exclusion contour left-handed selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)7">observed exclusion contour left-handed selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)8">expected exclusion contour right-handed selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)8">observed exclusion contour right-handed selectron-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)9">expected exclusion contour smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)9">observed exclusion contour smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)10">expected exclusion contour left-handed smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)10">observed exclusion contour left-handed smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(obs)11">expected exclusion contour right-handed smuon-pair production</a> <li><a href="89413?version=1&table=Exclusioncontour(exp)11">observed exclusion contour right-handed smuon-pair production</a> </ul> <b>Cross section upper limits:</b> <ul> <li><a href="89413?version=1&table=xsecupperlimits1">upper limits on signal cross section for direct chargino-pair production via W decay</a> <li><a href="89413?version=1&table=xsecupperlimits2">upper limits on signal cross section for direct chargino-pair production via slepton decay</a> <li><a href="89413?version=1&table=xsecupperlimits3">upper limits on signal cross section for direct slepton-pair production</a> </ul> <b>Acceptances and Efficiencies for direct chargino-pair production via W decay grid </b> <ul> <li> <b>Acceptance</b> <br/> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[100,inf)forC1C1WWgrid">SR-DF-0J-[100,inf) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[160,inf)forC1C1WWgrid">SR-DF-0J-[160,inf) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[100,120)forC1C1WWgrid">SR-DF-0J-[100,120) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[120,160)forC1C1WWgrid">SR-DF-0J-[120,160) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[100,105)forC1C1WWgrid">SR-DF-0J-[100,105) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[105,110)forC1C1WWgrid">SR-DF-0J-[105,110) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[110,120)forC1C1WWgrid">SR-DF-0J-[110,120) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[120,140)forC1C1WWgrid">SR-DF-0J-[120,140) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[140,160)forC1C1WWgrid">SR-DF-0J-[140,160) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[160,180)forC1C1WWgrid">SR-DF-0J-[160,180) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[180,220)forC1C1WWgrid">SR-DF-0J-[180,220) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[220,260)forC1C1WWgrid">SR-DF-0J-[220,260) </a> <a href="89413?version=1&table=AcceptanceSR-DF-0J-[260,inf)forC1C1WWgrid">SR-DF-0J-[260,inf) </a><br/> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[100,inf)forC1C1WWgrid">SR-DF-1J-[100,inf) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[160,inf)forC1C1WWgrid">SR-DF-1J-[160,inf) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[100,120)forC1C1WWgrid">SR-DF-1J-[100,120) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[120,160)forC1C1WWgrid">SR-DF-1J-[120,160) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[100,105)forC1C1WWgrid">SR-DF-1J-[100,105) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[105,110)forC1C1WWgrid">SR-DF-1J-[105,110) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[110,120)forC1C1WWgrid">SR-DF-1J-[110,120) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[120,140)forC1C1WWgrid">SR-DF-1J-[120,140) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[140,160)forC1C1WWgrid">SR-DF-1J-[140,160) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[160,180)forC1C1WWgrid">SR-DF-1J-[160,180) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[180,220)forC1C1WWgrid">SR-DF-1J-[180,220) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[220,260)forC1C1WWgrid">SR-DF-1J-[220,260) </a> <a href="89413?version=1&table=AcceptanceSR-DF-1J-[260,inf)forC1C1WWgrid">SR-DF-1J-[260,inf) </a><br/> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[100,inf)forC1C1WWgrid">SR-SF-0J-[100,inf) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[160,inf)forC1C1WWgrid">SR-SF-0J-[160,inf) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[100,120)forC1C1WWgrid">SR-SF-0J-[100,120) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[120,160)forC1C1WWgrid">SR-SF-0J-[120,160) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[100,105)forC1C1WWgrid">SR-SF-0J-[100,105) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[105,110)forC1C1WWgrid">SR-SF-0J-[105,110) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[110,120)forC1C1WWgrid">SR-SF-0J-[110,120) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[120,140)forC1C1WWgrid">SR-SF-0J-[120,140) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[140,160)forC1C1WWgrid">SR-SF-0J-[140,160) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[160,180)forC1C1WWgrid">SR-SF-0J-[160,180) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[180,220)forC1C1WWgrid">SR-SF-0J-[180,220) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[220,260)forC1C1WWgrid">SR-SF-0J-[220,260) </a> <a href="89413?version=1&table=AcceptanceSR-SF-0J-[260,inf)forC1C1WWgrid">SR-SF-0J-[260,inf) </a><br/> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[100,inf)forC1C1WWgrid">SR-SF-1J-[100,inf) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[160,inf)forC1C1WWgrid">SR-SF-1J-[160,inf) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[100,120)forC1C1WWgrid">SR-SF-1J-[100,120) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[120,160)forC1C1WWgrid">SR-SF-1J-[120,160) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[100,105)forC1C1WWgrid">SR-SF-1J-[100,105) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[105,110)forC1C1WWgrid">SR-SF-1J-[105,110) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[110,120)forC1C1WWgrid">SR-SF-1J-[110,120) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[120,140)forC1C1WWgrid">SR-SF-1J-[120,140) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[140,160)forC1C1WWgrid">SR-SF-1J-[140,160) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[160,180)forC1C1WWgrid">SR-SF-1J-[160,180) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[180,220)forC1C1WWgrid">SR-SF-1J-[180,220) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[220,260)forC1C1WWgrid">SR-SF-1J-[220,260) </a> <a href="89413?version=1&table=AcceptanceSR-SF-1J-[260,inf)forC1C1WWgrid">SR-SF-1J-[260,inf) </a><br/> <li> <b>Efficiency</b> <br/> <a href="89413?version=1&table=EfficiencySR-DF-0J-[100,inf)forC1C1WWgrid">SR-DF-0J-[100,inf) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[160,inf)forC1C1WWgrid">SR-DF-0J-[160,inf) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[100,120)forC1C1WWgrid">SR-DF-0J-[100,120) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[120,160)forC1C1WWgrid">SR-DF-0J-[120,160) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[100,105)forC1C1WWgrid">SR-DF-0J-[100,105) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[105,110)forC1C1WWgrid">SR-DF-0J-[105,110) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[110,120)forC1C1WWgrid">SR-DF-0J-[110,120) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[120,140)forC1C1WWgrid">SR-DF-0J-[120,140) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[140,160)forC1C1WWgrid">SR-DF-0J-[140,160) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[160,180)forC1C1WWgrid">SR-DF-0J-[160,180) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[180,220)forC1C1WWgrid">SR-DF-0J-[180,220) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[220,260)forC1C1WWgrid">SR-DF-0J-[220,260) </a> <a href="89413?version=1&table=EfficiencySR-DF-0J-[260,inf)forC1C1WWgrid">SR-DF-0J-[260,inf) </a><br/> <a href="89413?version=1&table=EfficiencySR-DF-1J-[100,inf)forC1C1WWgrid">SR-DF-1J-[100,inf) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[160,inf)forC1C1WWgrid">SR-DF-1J-[160,inf) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[100,120)forC1C1WWgrid">SR-DF-1J-[100,120) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[120,160)forC1C1WWgrid">SR-DF-1J-[120,160) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[100,105)forC1C1WWgrid">SR-DF-1J-[100,105) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[105,110)forC1C1WWgrid">SR-DF-1J-[105,110) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[110,120)forC1C1WWgrid">SR-DF-1J-[110,120) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[120,140)forC1C1WWgrid">SR-DF-1J-[120,140) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[140,160)forC1C1WWgrid">SR-DF-1J-[140,160) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[160,180)forC1C1WWgrid">SR-DF-1J-[160,180) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[180,220)forC1C1WWgrid">SR-DF-1J-[180,220) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[220,260)forC1C1WWgrid">SR-DF-1J-[220,260) </a> <a href="89413?version=1&table=EfficiencySR-DF-1J-[260,inf)forC1C1WWgrid">SR-DF-1J-[260,inf) </a><br/> <a href="89413?version=1&table=EfficiencySR-SF-0J-[100,inf)forC1C1WWgrid">SR-SF-0J-[100,inf) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[160,inf)forC1C1WWgrid">SR-SF-0J-[160,inf) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[100,120)forC1C1WWgrid">SR-SF-0J-[100,120) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[120,160)forC1C1WWgrid">SR-SF-0J-[120,160) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[100,105)forC1C1WWgrid">SR-SF-0J-[100,105) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[105,110)forC1C1WWgrid">SR-SF-0J-[105,110) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[110,120)forC1C1WWgrid">SR-SF-0J-[110,120) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[120,140)forC1C1WWgrid">SR-SF-0J-[120,140) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[140,160)forC1C1WWgrid">SR-SF-0J-[140,160) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[160,180)forC1C1WWgrid">SR-SF-0J-[160,180) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[180,220)forC1C1WWgrid">SR-SF-0J-[180,220) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[220,260)forC1C1WWgrid">SR-SF-0J-[220,260) </a> <a href="89413?version=1&table=EfficiencySR-SF-0J-[260,inf)forC1C1WWgrid">SR-SF-0J-[260,inf) </a><br/> <a href="89413?version=1&table=EfficiencySR-SF-1J-[100,inf)forC1C1WWgrid">SR-SF-1J-[100,inf) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[160,inf)forC1C1WWgrid">SR-SF-1J-[160,inf) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[100,120)forC1C1WWgrid">SR-SF-1J-[100,120) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[120,160)forC1C1WWgrid">SR-SF-1J-[120,160) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[100,105)forC1C1WWgrid">SR-SF-1J-[100,105) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[105,110)forC1C1WWgrid">SR-SF-1J-[105,110) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[110,120)forC1C1WWgrid">SR-SF-1J-[110,120) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[120,140)forC1C1WWgrid">SR-SF-1J-[120,140) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[140,160)forC1C1WWgrid">SR-SF-1J-[140,160) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[160,180)forC1C1WWgrid">SR-SF-1J-[160,180) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[180,220)forC1C1WWgrid">SR-SF-1J-[180,220) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[220,260)forC1C1WWgrid">SR-SF-1J-[220,260) </a> <a href="89413?version=1&table=EfficiencySR-SF-1J-[260,inf)forC1C1WWgrid">SR-SF-1J-[260,inf) </a><br/> </ul> <b>Cutflow:</b> <ul> <li><a href="89413?version=1&table=Cutflow1">Cutflow for direct chargino-pair production via W decay $m(\tilde{\chi}^{\pm}_1,\tilde{\chi}^{0}_1)=(300,50) GeV$</a> <li><a href="89413?version=1&table=Cutflow1">Cutflow for direct chargino-pair production via slepton decay $m(\tilde{\chi}^{\pm}_1,\tilde{l},\tilde{\chi}^{0}_1)=(600,300,1) GeV$</a> <li><a href="89413?version=1&table=Cutflow1">Cutflow for direct slepton-pair production $m(\tilde{l},\tilde{\chi}^{0}_1)=(400,200) GeV$</a> </ul> <b>SimpleAnalysis framework implementation</b> of the search SRs is available under "Resources" (purple button on the left)

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Background Fit results:</b> <ul> <li><a href="89413?version=3&table=Background fit 1">CRs</a> <li><a href="89413?version=3&table=Background fit 2">VRs</a> <li><a href="89413?version=3&table=Background fit 5">inclusive DF-0J SRs</a> <li><a href="89413?version=3&table=Background fit 6">inclusive DF-1J SRs</a> <li><a href="89413?version=3&table=Background fit 3">inclusive SF-0J SRs</a> <li><a href="89413?version=3&table=Background fit 4">inclusive SF-1J SRs</a> </ul> <b>Kinematic distributions in VRs:</b> <ul> <li><a href="89413?version=3&table=VR kinematics 1">$m_{T2}$ in VR-top-low</a> <li><a href="89413?version=3&table=VR kinematics 2">$m_{T2}$ in VR-top-high</a> <li><a href="89413?version=3&table=VR kinematics 3">$E_T^{miss}$ in VR-WW-0J</a> <li><a href="89413?version=3&table=VR kinematics 4">$E_T^{miss}$ in VR-WW-1J</a> <li><a href="89413?version=3&table=VR kinematics 5">$E_T^{miss}$ sig in VR-VZ</a> <li><a href="89413?version=3&table=VR kinematics 6">$E_T^{miss}$ sig in VR-top-WW</a> </ul> <b>Kinematic distributions in SRs:</b> <ul> <li><a href="89413?version=3&table=SR kinematics 1">$m_{T2}$ in SR-SF-0J</a> <li><a href="89413?version=3&table=SR kinematics 2">$m_{T2}$ in SR-SF-1J</a> <li><a href="89413?version=3&table=SR kinematics 3">$m_{T2}$ in SR-DF-0J</a> <li><a href="89413?version=3&table=SR kinematics 4">$m_{T2}$ in SR-DF-1J</a> </ul> <b>Systematic uncertaities:</b> <ul> <li><a href="89413?version=3&table=Systematic uncertainties">dominant systematic uncertainties in the inclusive SRs</a> </ul> <b>Exclusion contours:</b> <ul> <li><a href="89413?version=3&table=Exclusion contour (exp) 1">expected exclusion contour direct chargino-pair production via W decay grid</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 1">observed exclusion contour direct chargino-pair production via W decay grid</a> <li><a href="89413?version=3&table=Exclusion contour (exp) 2">expected exclusion contour direct chargino-pair production via slepton decay grid</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 2">observed exclusion contour direct chargino-pair production via slepton decay grid</a> <li><a href="89413?version=3&table=Exclusion contour (exp) 3">expected exclusion contour direct slepton-pair production grid</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 3">observed exclusion contour direct slepton-pair production grid</a> </ul> <br/><br/><b>AUXILIARY MATERIAL</b><br/> <b>Background Fit in binned SRs:</b> <ul> <li><a href="89413?version=3&table=Background fit 7">binned DF-0J SRs</a> <li><a href="89413?version=3&table=Background fit 8">binned DF-1J SRs</a> <li><a href="89413?version=3&table=Background fit 9">binned SF-0J SRs</a> <li><a href="89413?version=3&table=Background fit 10">binned SF-1J SRs</a> </ul> <b>Exclusion contours:</b> <ul> <li><a href="89413?version=3&table=Exclusion contour (exp) 4">expected exclusion contour left-handed slepton-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 4">observed exclusion contour left-handed slepton-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (exp) 5">expected exclusion contour right-handed slepton-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 5">observed exclusion contour right-handed slepton-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (exp) 6">expected exclusion contour selectron-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 6">observed exclusion contour selectron-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (exp) 7">expected exclusion contour left-handed selectron-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 7">observed exclusion contour left-handed selectron-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (exp) 8">expected exclusion contour right-handed selectron-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 8">observed exclusion contour right-handed selectron-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (exp) 9">expected exclusion contour smuon-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 9">observed exclusion contour smuon-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (exp) 10">expected exclusion contour left-handed smuon-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 10">observed exclusion contour left-handed smuon-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (exp) 11">expected exclusion contour right-handed smuon-pair production</a> <li><a href="89413?version=3&table=Exclusion contour (obs) 11">observed exclusion contour right-handed smuon-pair production</a> </ul> <b>Cross section upper limits:</b> <ul> <li><a href="89413?version=3&table=xsec upper limits 1">upper limits on signal cross section for direct chargino-pair production via W decay</a> <li><a href="89413?version=3&table=xsec upper limits 2">upper limits on signal cross section for direct chargino-pair production via slepton decay</a> <li><a href="89413?version=3&table=xsec upper limits 3">upper limits on signal cross section for direct slepton-pair production</a> </ul> <b>Acceptances and Efficiencies for direct chargino-pair production via W decay grid </b> <ul> <li> <b>Acceptance</b> <br/> <a href="89413?version=3&table=Acceptance SR-DF-0J-[100,inf) for C1C1WW grid">SR-DF-0J-[100,inf) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[160,inf) for C1C1WW grid">SR-DF-0J-[160,inf) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[100,120) for C1C1WW grid">SR-DF-0J-[100,120) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[120,160) for C1C1WW grid">SR-DF-0J-[120,160) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[100,105) for C1C1WW grid">SR-DF-0J-[100,105) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[105,110) for C1C1WW grid">SR-DF-0J-[105,110) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[110,120) for C1C1WW grid">SR-DF-0J-[110,120) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[120,140) for C1C1WW grid">SR-DF-0J-[120,140) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[140,160) for C1C1WW grid">SR-DF-0J-[140,160) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[160,180) for C1C1WW grid">SR-DF-0J-[160,180) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[180,220) for C1C1WW grid">SR-DF-0J-[180,220) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[220,260) for C1C1WW grid">SR-DF-0J-[220,260) </a> <a href="89413?version=3&table=Acceptance SR-DF-0J-[260,inf) for C1C1WW grid">SR-DF-0J-[260,inf) </a><br/> <a href="89413?version=3&table=Acceptance SR-DF-1J-[100,inf) for C1C1WW grid">SR-DF-1J-[100,inf) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[160,inf) for C1C1WW grid">SR-DF-1J-[160,inf) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[100,120) for C1C1WW grid">SR-DF-1J-[100,120) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[120,160) for C1C1WW grid">SR-DF-1J-[120,160) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[100,105) for C1C1WW grid">SR-DF-1J-[100,105) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[105,110) for C1C1WW grid">SR-DF-1J-[105,110) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[110,120) for C1C1WW grid">SR-DF-1J-[110,120) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[120,140) for C1C1WW grid">SR-DF-1J-[120,140) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[140,160) for C1C1WW grid">SR-DF-1J-[140,160) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[160,180) for C1C1WW grid">SR-DF-1J-[160,180) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[180,220) for C1C1WW grid">SR-DF-1J-[180,220) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[220,260) for C1C1WW grid">SR-DF-1J-[220,260) </a> <a href="89413?version=3&table=Acceptance SR-DF-1J-[260,inf) for C1C1WW grid">SR-DF-1J-[260,inf) </a><br/> <a href="89413?version=3&table=Acceptance SR-SF-0J-[100,inf) for C1C1WW grid">SR-SF-0J-[100,inf) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[160,inf) for C1C1WW grid">SR-SF-0J-[160,inf) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[100,120) for C1C1WW grid">SR-SF-0J-[100,120) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[120,160) for C1C1WW grid">SR-SF-0J-[120,160) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[100,105) for C1C1WW grid">SR-SF-0J-[100,105) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[105,110) for C1C1WW grid">SR-SF-0J-[105,110) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[110,120) for C1C1WW grid">SR-SF-0J-[110,120) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[120,140) for C1C1WW grid">SR-SF-0J-[120,140) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[140,160) for C1C1WW grid">SR-SF-0J-[140,160) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[160,180) for C1C1WW grid">SR-SF-0J-[160,180) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[180,220) for C1C1WW grid">SR-SF-0J-[180,220) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[220,260) for C1C1WW grid">SR-SF-0J-[220,260) </a> <a href="89413?version=3&table=Acceptance SR-SF-0J-[260,inf) for C1C1WW grid">SR-SF-0J-[260,inf) </a><br/> <a href="89413?version=3&table=Acceptance SR-SF-1J-[100,inf) for C1C1WW grid">SR-SF-1J-[100,inf) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[160,inf) for C1C1WW grid">SR-SF-1J-[160,inf) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[100,120) for C1C1WW grid">SR-SF-1J-[100,120) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[120,160) for C1C1WW grid">SR-SF-1J-[120,160) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[100,105) for C1C1WW grid">SR-SF-1J-[100,105) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[105,110) for C1C1WW grid">SR-SF-1J-[105,110) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[110,120) for C1C1WW grid">SR-SF-1J-[110,120) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[120,140) for C1C1WW grid">SR-SF-1J-[120,140) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[140,160) for C1C1WW grid">SR-SF-1J-[140,160) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[160,180) for C1C1WW grid">SR-SF-1J-[160,180) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[180,220) for C1C1WW grid">SR-SF-1J-[180,220) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[220,260) for C1C1WW grid">SR-SF-1J-[220,260) </a> <a href="89413?version=3&table=Acceptance SR-SF-1J-[260,inf) for C1C1WW grid">SR-SF-1J-[260,inf) </a><br/> <li> <b>Efficiency</b> <br/> <a href="89413?version=3&table=Efficiency SR-DF-0J-[100,inf) for C1C1WW grid">SR-DF-0J-[100,inf) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[160,inf) for C1C1WW grid">SR-DF-0J-[160,inf) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[100,120) for C1C1WW grid">SR-DF-0J-[100,120) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[120,160) for C1C1WW grid">SR-DF-0J-[120,160) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[100,105) for C1C1WW grid">SR-DF-0J-[100,105) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[105,110) for C1C1WW grid">SR-DF-0J-[105,110) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[110,120) for C1C1WW grid">SR-DF-0J-[110,120) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[120,140) for C1C1WW grid">SR-DF-0J-[120,140) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[140,160) for C1C1WW grid">SR-DF-0J-[140,160) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[160,180) for C1C1WW grid">SR-DF-0J-[160,180) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[180,220) for C1C1WW grid">SR-DF-0J-[180,220) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[220,260) for C1C1WW grid">SR-DF-0J-[220,260) </a> <a href="89413?version=3&table=Efficiency SR-DF-0J-[260,inf) for C1C1WW grid">SR-DF-0J-[260,inf) </a><br/> <a href="89413?version=3&table=Efficiency SR-DF-1J-[100,inf) for C1C1WW grid">SR-DF-1J-[100,inf) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[160,inf) for C1C1WW grid">SR-DF-1J-[160,inf) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[100,120) for C1C1WW grid">SR-DF-1J-[100,120) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[120,160) for C1C1WW grid">SR-DF-1J-[120,160) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[100,105) for C1C1WW grid">SR-DF-1J-[100,105) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[105,110) for C1C1WW grid">SR-DF-1J-[105,110) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[110,120) for C1C1WW grid">SR-DF-1J-[110,120) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[120,140) for C1C1WW grid">SR-DF-1J-[120,140) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[140,160) for C1C1WW grid">SR-DF-1J-[140,160) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[160,180) for C1C1WW grid">SR-DF-1J-[160,180) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[180,220) for C1C1WW grid">SR-DF-1J-[180,220) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[220,260) for C1C1WW grid">SR-DF-1J-[220,260) </a> <a href="89413?version=3&table=Efficiency SR-DF-1J-[260,inf) for C1C1WW grid">SR-DF-1J-[260,inf) </a><br/> <a href="89413?version=3&table=Efficiency SR-SF-0J-[100,inf) for C1C1WW grid">SR-SF-0J-[100,inf) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[160,inf) for C1C1WW grid">SR-SF-0J-[160,inf) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[100,120) for C1C1WW grid">SR-SF-0J-[100,120) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[120,160) for C1C1WW grid">SR-SF-0J-[120,160) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[100,105) for C1C1WW grid">SR-SF-0J-[100,105) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[105,110) for C1C1WW grid">SR-SF-0J-[105,110) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[110,120) for C1C1WW grid">SR-SF-0J-[110,120) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[120,140) for C1C1WW grid">SR-SF-0J-[120,140) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[140,160) for C1C1WW grid">SR-SF-0J-[140,160) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[160,180) for C1C1WW grid">SR-SF-0J-[160,180) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[180,220) for C1C1WW grid">SR-SF-0J-[180,220) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[220,260) for C1C1WW grid">SR-SF-0J-[220,260) </a> <a href="89413?version=3&table=Efficiency SR-SF-0J-[260,inf) for C1C1WW grid">SR-SF-0J-[260,inf) </a><br/> <a href="89413?version=3&table=Efficiency SR-SF-1J-[100,inf) for C1C1WW grid">SR-SF-1J-[100,inf) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[160,inf) for C1C1WW grid">SR-SF-1J-[160,inf) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[100,120) for C1C1WW grid">SR-SF-1J-[100,120) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[120,160) for C1C1WW grid">SR-SF-1J-[120,160) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[100,105) for C1C1WW grid">SR-SF-1J-[100,105) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[105,110) for C1C1WW grid">SR-SF-1J-[105,110) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[110,120) for C1C1WW grid">SR-SF-1J-[110,120) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[120,140) for C1C1WW grid">SR-SF-1J-[120,140) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[140,160) for C1C1WW grid">SR-SF-1J-[140,160) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[160,180) for C1C1WW grid">SR-SF-1J-[160,180) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[180,220) for C1C1WW grid">SR-SF-1J-[180,220) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[220,260) for C1C1WW grid">SR-SF-1J-[220,260) </a> <a href="89413?version=3&table=Efficiency SR-SF-1J-[260,inf) for C1C1WW grid">SR-SF-1J-[260,inf) </a><br/> </ul> <b>Cutflow:</b> <ul> <li><a href="89413?version=3&table=Cutflow 1">Cutflow for direct chargino-pair production via W decay $m(\tilde{\chi}^{\pm}_1,\tilde{\chi}^{0}_1)=(300,50) GeV$</a> <li><a href="89413?version=3&table=Cutflow 2">Cutflow for direct chargino-pair production via slepton decay $m(\tilde{\chi}^{\pm}_1,\tilde{l},\tilde{\chi}^{0}_1)=(600,300,1) GeV$</a> <li><a href="89413?version=3&table=Cutflow 3">Cutflow for direct slepton-pair production $m(\tilde{l},\tilde{\chi}^{0}_1)=(400,200) GeV$</a> </ul> <b>SimpleAnalysis framework implementation</b> of the search SRs is available under "Resources" (purple button on the left)

More…

Search for displaced vertices of oppositely charged leptons from decays of long-lived particles in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 801 (2020) 135114, 2020.
Inspire Record 1745920 DOI 10.17182/hepdata.90606

A search for long-lived particles decaying into an oppositely charged lepton pair, $\mu\mu$, $ee$, or $e\mu$, is presented using 32.8 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s}=13$ TeV by the ATLAS detector at the LHC. Candidate leptons are required to form a vertex, within the inner tracking volume of ATLAS, displaced from the primary $pp$ interaction region. No lepton pairs with an invariant mass greater than 12 GeV are observed, consistent with the background expectations derived from data. The detection efficiencies for generic resonances with lifetimes ($c\tau$) of 100-1000 mm decaying into a dilepton pair with masses between 0.1-1.0 TeV are presented as a function of $p_T$ and decay radius of the resonances to allow the extraction of upper limits on the cross sections for theoretical models. The result is also interpreted in a supersymmetric model in which the lightest neutralino, produced via squark-antisquark production, decays into $\ell^{+}\ell^{'-}\nu$ ($\ell, \ell^{'} = e$, $\mu$) with a finite lifetime due to the presence of R-parity violating couplings. Cross-section limits are presented for specific squark and neutralino masses. For a 700 GeV squark, neutralinos with masses of 50-500 GeV and mean proper lifetimes corresponding to $c\tau$ values between 1 mm to 6 m are excluded. For a 1.6 TeV squark, $c\tau$ values between 3 mm to 1 m are excluded for 1.3 TeV neutralinos.

65 data tables

<h1>Overview of reinterpretation material</h1><p><b>Important note:</b> A detailed explanation of the reinterpretation material can be found <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2017-04/hepdata_info.pdf">here</a>.<br/>Please read this stand-alone document before reinterpreting the search.</p><h2>Parameterized detection efficiencies</h2><p>RPV SUSY model: Tables <a href="90606?version=1&table=Table27">27</a> to <a href="90606?version=1&table=Table44">44</a><br/>Z' toy model: Tables <a href="90606?version=1&table=Table45">45</a> to <a href="90606?version=1&table=Table59">59</a></p><h2>Further material for the RPV SUSY model</h2><p>Acceptances: Tables <a href="90606?version=1&table=Table18">18</a> (ee), <a href="90606?version=1&table=Table19">19</a> (emu) and <a href="90606?version=1&table=Table20">20</a> (mumu)<br/>Detection efficiencies: Tables <a href="90606?version=1&table=Table21">21</a> (ee), <a href="90606?version=1&table=Table22">22</a> (emu) and <a href="90606?version=1&table=Table23">23</a> (mumu)<br/>Overall signal efficiencies: Tables <a href="90606?version=1&table=Table24">24</a> (ee), <a href="90606?version=1&table=Table25">25</a> (emu) and <a href="90606?version=1&table=Table26">26</a> (mumu)</p><h2>Further material for the Z' toy model</h2><p>Acceptances, detection efficiencies and overall signal efficiencies: Tables <a href="90606?version=1&table=Table60">60</a> (mZ' = 100 GeV) to <a href="90606?version=1&table=Table64">64</a> (mZ' = 1000 GeV)</p>

dRcos distribution of dimuon pairs (scaled) and dimuon vertices in the cosmic rays control region. The distribution of all dimuon pairs is scaled to the DV distribution.

Dependence of the overall signal efficiency on the transverse decay radius Rxy of the long-lived Z' for Z' -> ee. The error bars indicate the total uncertainties.

More…

Version 2
Search for heavy charged long-lived particles in the ATLAS detector in 31.6 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 092007, 2019.
Inspire Record 1718558 DOI 10.17182/hepdata.86565

A search for heavy charged long-lived particles is performed using a data sample of 36.1 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the Large Hadron Collider. The search is based on observables related to ionization energy loss and time of flight, which are sensitive to the velocity of heavy charged particles traveling significantly slower than the speed of light. Multiple search strategies for a wide range of lifetimes, corresponding to path lengths of a few meters, are defined as model-independently as possible, by referencing several representative physics cases that yield long-lived particles within supersymmetric models, such as gluinos/squarks ($R$-hadrons), charginos and staus. No significant deviations from the expected Standard Model background are observed. Upper limits at 95% confidence level are provided on the production cross sections of long-lived $R$-hadrons as well as directly pair-produced staus and charginos. These results translate into lower limits on the masses of long-lived gluino, sbottom and stop $R$-hadrons, as well as staus and charginos of 2000 GeV, 1250 GeV, 1340 GeV, 430 GeV and 1090 GeV, respectively.

60 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Lower mass requirement for signal regions.</b> <ul> <li><a href="86565?version=1&table=Table1">Gluinos and squarks</a></li> <li><a href="86565?version=1&table=Table2">Staus and charginos</a></li> </ul> <b>Discovery regions:</b> <ul> <li><a href="86565?version=1&table=Table3">Yields</a></li> <li><a href="86565?version=1&table=Table6">p0-values and limits</a></li> </ul> <b>Signal yield tables:</b> <ul> <li><a href="86565?version=1&table=Table4">MS-agnostic R-hadron search</a></li> <li><a href="86565?version=1&table=Table5">Full-detector R-hadron search</a></li> <li><a href="86565?version=1&table=Table7">MS-agnostic search for metastable gluino R-hadrons</a></li> <li><a href="86565?version=1&table=Table8">Full-detector direct-stau search</a></li> <li><a href="86565?version=1&table=Table9">Full-detector chargino search</a></li> </ul> <b>Limits:</b> <ul> <li><a href="86565?version=1&table=Table10">Gluino R-hadron search</a></li> <li><a href="86565?version=1&table=Table11">Sbottom R-hadron search</a></li> <li><a href="86565?version=1&table=Table12">Stop R-hadron search</a></li> <li><a href="86565?version=1&table=Table13">Stau search</a></li> <li><a href="86565?version=1&table=Table14">Chargino search</a></li> <li><a href="86565?version=1&table=Table15">Meta-stable gluino R-hadron search</a></li> <li><a href="86565?version=1&table=Table17">Meta-stable gluino R-hadron search</a></li> </ul> <b>Acceptance and efficiency:</b> <ul> <li><a href="86565?version=1&table=Table16">MS-agnostic R-hadron search</a></li> </ul> <b>Truth quantities:</b> <ul> <li><a href="86565?version=1&table=Table18">Flavor composition of 800 GeV stop R-hadrons simulated using the generic model</a></li> <li><a href="86565?version=1&table=Table19">Flavor composition of 800 GeV anti-stop R-hadrons simulated using the generic model</a></li> <li><a href="86565?version=1&table=Table20">Flavor composition of 800 GeV stop R-hadrons simulated using the Regge model</a></li> <li><a href="86565?version=1&table=Table21">Flavor composition of 800 GeV anti-stop R-hadrons simulated using the Regge model</a></li> </ul> <b>Reinterpretation material:</b> <ul> <li><a href="86565?version=1&table=Table22">ETmiss trigger efficiency as function of true ETmiss</a></li> <li><a href="86565?version=1&table=Table23">Single-muon trigger efficiency as function of |eta| and beta</a></li> <li><a href="86565?version=1&table=Table24">Candidate reconstruction efficiency for ID+Calo selection</a></li> <li><a href="86565?version=1&table=Table25">Candidate reconstruction efficiency for loose selection</a></li> <li><a href="86565?version=1&table=Table26">Efficiency for a loose candidate to be promoted to a tight candidate</a></li> <li><a href="86565?version=1&table=Table27">Resolution and average of reconstructed dE/dx mass for a given simulated mass for ID+calo candidates</a></li> <li><a href="86565?version=1&table=Table28">Resolution and average of reconstructed ToF mass for a given simulated mass for ID+calo candidates</a></li> <li><a href="86565?version=1&table=Table29">Resolution and average of reconstructed ToF mass for a given simulated mass for FullDet candidates</a></li> </ul> <p><b>Pseudo-code snippets</b> and <b>example SLHA setups</b> are available in the "Resources" linked on the left, and more detailed reinterpretation material is available at <a href="http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-32/hepdata_info.pdf">http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-32/hepdata_info.pdf</a>.</p>

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Lower mass requirement for signal regions.</b> <ul> <li><a href="86565?version=1&table=Table1">Gluinos and squarks</a></li> <li><a href="86565?version=1&table=Table2">Staus and charginos</a></li> </ul> <b>Discovery regions:</b> <ul> <li><a href="86565?version=1&table=Table3">Yields</a></li> <li><a href="86565?version=1&table=Table6">p0-values and limits</a></li> </ul> <b>Signal yield tables:</b> <ul> <li><a href="86565?version=1&table=Table4">MS-agnostic R-hadron search</a></li> <li><a href="86565?version=1&table=Table5">Full-detector R-hadron search</a></li> <li><a href="86565?version=1&table=Table7">MS-agnostic search for metastable gluino R-hadrons</a></li> <li><a href="86565?version=1&table=Table8">Full-detector direct-stau search</a></li> <li><a href="86565?version=1&table=Table9">Full-detector chargino search</a></li> </ul> <b>Limits:</b> <ul> <li><a href="86565?version=1&table=Table10">Gluino R-hadron search</a></li> <li><a href="86565?version=1&table=Table11">Sbottom R-hadron search</a></li> <li><a href="86565?version=1&table=Table12">Stop R-hadron search</a></li> <li><a href="86565?version=1&table=Table13">Stau search</a></li> <li><a href="86565?version=1&table=Table14">Chargino search</a></li> <li><a href="86565?version=1&table=Table15">Meta-stable gluino R-hadron search</a></li> <li><a href="86565?version=1&table=Table17">Meta-stable gluino R-hadron search</a></li> </ul> <b>Acceptance and efficiency:</b> <ul> <li><a href="86565?version=1&table=Table16">MS-agnostic R-hadron search</a></li> </ul> <b>Truth quantities:</b> <ul> <li><a href="86565?version=1&table=Table18">Flavor composition of 800 GeV stop R-hadrons simulated using the generic model</a></li> <li><a href="86565?version=1&table=Table19">Flavor composition of 800 GeV anti-stop R-hadrons simulated using the generic model</a></li> <li><a href="86565?version=1&table=Table20">Flavor composition of 800 GeV stop R-hadrons simulated using the Regge model</a></li> <li><a href="86565?version=1&table=Table21">Flavor composition of 800 GeV anti-stop R-hadrons simulated using the Regge model</a></li> </ul> <b>Reinterpretation material:</b> <ul> <li><a href="86565?version=1&table=Table22">ETmiss trigger efficiency as function of true ETmiss</a></li> <li><a href="86565?version=1&table=Table23">Single-muon trigger efficiency as function of |eta| and beta</a></li> <li><a href="86565?version=1&table=Table24">Candidate reconstruction efficiency for ID+Calo selection</a></li> <li><a href="86565?version=1&table=Table25">Candidate reconstruction efficiency for loose selection</a></li> <li><a href="86565?version=1&table=Table26">Efficiency for a loose candidate to be promoted to a tight candidate</a></li> <li><a href="86565?version=1&table=Table27">Resolution and average of reconstructed dE/dx mass for a given simulated mass for ID+calo candidates</a></li> <li><a href="86565?version=1&table=Table28">Resolution and average of reconstructed ToF mass for a given simulated mass for ID+calo candidates</a></li> <li><a href="86565?version=1&table=Table29">Resolution and average of reconstructed ToF mass for a given simulated mass for FullDet candidates</a></li> </ul> <p><b>Pseudo-code snippets</b> and <b>example SLHA setups</b> are available in the "Resources" linked on the left, and more detailed reinterpretation material is available at <a href="http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-32/hepdata_info.pdf">http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-32/hepdata_info.pdf</a>.</p>

Lower mass requirement for signal regions.

More…

Search for resonances in the mass distribution of jet pairs with one or two jets identified as $b$-jets in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 98 (2018) 032016, 2018.
Inspire Record 1674532 DOI 10.17182/hepdata.83179

A search for new resonances decaying into jets containing b-hadrons in $pp$ collisions with the ATLAS detector at the LHC is presented in the dijet mass range from 0.57 TeV to 7 TeV. The dataset corresponds to an integrated luminosity of up to 36.1 fb$^{-1}$ collected in 2015 and 2016 at $\sqrt{s} = 13$ TeV. No evidence of a significant excess of events above the smooth background shape is found. Upper cross-section limits and lower limits on the corresponding signal mass parameters for several types of signal hypotheses are provided at 95% CL. In addition, 95% CL upper limits are set on the cross-sections for new processes that would produce Gaussian-shaped signals in the di-b-jet mass distributions.

26 data tables

The per-event b-tagging efficiencies after the event selection, as a function of the reconstructed invariant mass, for both single b-tagged and double b-tagged categories. The efficiencies are shown for simulated event samples corresponding to seven different b and Z' resonance masses in the high-mass region.

The per-event b-tagging efficiencies after the event selection, as a function of the reconstructed invariant mass, for double b-tagged category. The efficiencies are shown for simulated event samples corresponding to four different Z' resonance masses in the low-mass region. The efficiencies of identifying an event with two b-jets at trigger level only (Online) and when requiring offline confirmation (Online+offline) are shown.

Dijet mass spectra after the background only fit with the background prediction in the inclusive 1-b-tag high-mass region.

More…

Version 2
Search for long-lived, massive particles in events with displaced vertices and missing transverse momentum in $\sqrt{s}$ = 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 97 (2018) 052012, 2018.
Inspire Record 1630632 DOI 10.17182/hepdata.78697

A search for long-lived, massive particles predicted by many theories beyond the Standard Model is presented. The search targets final states with large missing transverse momentum and at least one high-mass displaced vertex with five or more tracks, and uses 32.8 fb$^{-1}$ of $\sqrt{s}$ = 13 TeV $pp$ collision data collected by the ATLAS detector at the LHC. The observed yield is consistent with the expected background. The results are used to extract 95\% CL exclusion limits on the production of long-lived gluinos with masses up to 2.37 TeV and lifetimes of $\mathcal{O}(10^{-2})$-$\mathcal{O}(10)$ ns in a simplified model inspired by Split Supersymmetry.

72 data tables

Vertex reconstruction efficiency as a function of radial position $R$ with and without the special LRT processing for one $R$-hadron signal sample with $m_{\tilde{g}} = 1.2$ TeV, $m_{\tilde{\chi}_{1}^{0}} = 100$ GeV and $\tau_{\tilde{g}} = 1$ ns. The efficiency is defined as the probability for a true LLP decay to be matched with a reconstructed DV fulfilling the vertex preselection criteria in events with a reconstructed primary vertex.

Vertex reconstruction efficiency as a function of radial position $R$ for two $R$-hadron signal samples with $m_{\tilde{g}} = 1.2$ TeV, $\tau_{\tilde{g}} = 1$ ns and different neutralino masses. The efficiency is defined as the probability for a true LLP decay to be matched with a reconstructed DV fulfilling the vertex preselection criteria in events with a reconstructed primary vertex.

Fractions of selected events for several signal MC samples with a gluino lifetime $\tau = 1$ ns, illustrating how $\mathcal{A}\times\varepsilon$ varies with the model parameters.

More…

Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2018) 055, 2018.
Inspire Record 1624690 DOI 10.17182/hepdata.78402

A search for heavy neutral Higgs bosons and $Z^{\prime}$ bosons is performed using a data sample corresponding to an integrated luminosity of 36.1 fb$^{-1}$ from proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded by the ATLAS detector at the LHC during 2015 and 2016. The heavy resonance is assumed to decay to $\tau^+\tau^-$ with at least one tau lepton decaying to final states with hadrons and a neutrino. The search is performed in the mass range of 0.2-2.25 TeV for Higgs bosons and 0.2-4.0 TeV for $Z^{\prime}$ bosons. The data are in good agreement with the background predicted by the Standard Model. The results are interpreted in benchmark scenarios. In the context of the hMSSM scenario, the data exclude $\tan\beta > 1.0$ for $m_A$ = 0.25 TeV and $\tan\beta > 42$ for $m_A$ = 1.5 TeV at the 95% confidence level. For the Sequential Standard Model, $Z^{\prime}_\mathrm{SSM}$ with $m_{Z^{\prime}} < 2.42$ TeV is excluded at 95% confidence level, while $Z^{\prime}_\mathrm{NU}$ with $m_{Z^{\prime}} < 2.25$ TeV is excluded for the non-universal $G(221)$ model that exhibits enhanced couplings to third-generation fermions.

29 data tables

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Despite listing this as an exclusive final state (as there must be no b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. In the paper, the first bin is cut off at 60 GeV for aesthetics but contains underflows down to 50 GeV as in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.

Observed and predicted mTtot distribution in the b-tag category of the 1l1tau_h channel. Despite listing this as an exclusive final state (as there must be at least one b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. In the paper, the first bin is cut off at 60 GeV for aesthetics but contains underflows down to 50 GeV as in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.

Observed and predicted mTtot distribution in the b-veto category of the 2tau_h channel. Despite listing this as an exclusive final state (as there must be no b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.

More…

Search for squarks and gluinos in events with hadronically decaying tau leptons, jets and missing transverse momentum in proton-proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 76 (2016) 683, 2016.
Inspire Record 1477209 DOI 10.17182/hepdata.75330

A search for supersymmetry in events with large missing transverse momentum, jets, and at least one hadronically decaying tau lepton has been performed using 3.2 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV recorded by the ATLAS detector at the Large Hadron Collider in 2015. Two exclusive final states are considered, with either exactly one or at least two tau leptons. No excess over the Standard Model prediction is observed in the data. Results are interpreted in the context of gauge-mediated supersymmetry breaking and a simplified model of gluino pair production with tau-rich cascade decays, substantially improving on previous limits. In the GMSB model considered, supersymmetry-breaking scale ($\Lambda$) values below 92 TeV are excluded at the 95% confidence level, corresponding to gluino masses below 2000 GeV. For large values of $\tan\beta$, values of $\Lambda$ up to 107 TeV and gluino masses up to 2300 GeV are excluded. In the simplified model, gluino masses are excluded up to 1570 GeV for neutralino masses around 100 GeV. Neutralino masses up to 700 GeV are excluded for all gluino masses between 800 GeV and 1500 GeV, while the strongest exclusion of 750 GeV is achieved for gluino masses around 1400 GeV.

32 data tables

mTtau distributions for "extended SR selections" of the 1 tau channel, for the Compressed SR selection without the mTtau > 80 GeV requirement. The last bin includes overflow events. Uncertainties are statistical only. Signal predictions are overlaid for several benchmark models, normalised to their predicted cross sections. For the simplified model, "LM" refers to a low mass splitting, or compressed scenario, with m(gluino)=665 GeV and m(neutralino)=585 GeV; "MM" stands for a medium mass splitting, with m(gluino)=1145 GeV and m(neutralino)=265 GeV; "HM" denotes a high mass splitting scenario, with m(gluino)=1305 GeV and m(neutralino)=105 GeV.

mTtau distributions for "extended SR selections" of the 1 tau channel, for the Medium Mass SR selection without the mTtau > 200 GeV requirement. The last bin includes overflow events. Uncertainties are statistical only. Signal predictions are overlaid for several benchmark models, normalised to their predicted cross sections. For the simplified model, "LM" refers to a low mass splitting, or compressed scenario, with m(gluino)=665 GeV and m(neutralino)=585 GeV; "MM" stands for a medium mass splitting, with m(gluino)=1145 GeV and m(neutralino)=265 GeV; "HM" denotes a high mass splitting scenario, with m(gluino)=1305 GeV and m(neutralino)=105 GeV.

mTtau distributions for "extended SR selections" of the 1 tau channel, for the High Mass SR selection without the mTtau > 200 GeV requirement. The last bin includes overflow events. Uncertainties are statistical only. Signal predictions are overlaid for several benchmark models, normalised to their predicted cross sections. For the simplified model, "LM" refers to a low mass splitting, or compressed scenario, with m(gluino)=665 GeV and m(neutralino)=585 GeV; "MM" stands for a medium mass splitting, with m(gluino)=1145 GeV and m(neutralino)=265 GeV; "HM" denotes a high mass splitting scenario, with m(gluino)=1305 GeV and m(neutralino)=105 GeV.

More…

Search for bottom squark pair production in proton--proton collisions at $\sqrt{s}=$13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 76 (2016) 547, 2016.
Inspire Record 1472822 DOI 10.17182/hepdata.74005

The result of a search for pair production of the supersymmetric partner of the Standard Model bottom quark ($\tilde{b}_1$) is reported. The search uses 3.2 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=$13 TeV collected by the ATLAS experiment at the Large Hadron Collider in 2015. Bottom squarks are searched for in events containing large missing transverse momentum and exactly two jets identified as originating from $b$-quarks. No excess above the expected Standard Model background yield is observed. Exclusion limits at 95% confidence level on the mass of the bottom squark are derived in phenomenological supersymmetric $R$-parity-conserving models in which the $\tilde{b}_1$ is the lightest squark and is assumed to decay exclusively via $\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$, where $\tilde{\chi}_1^0$ is the lightest neutralino. The limits significantly extend previous results; bottom squark masses up to 800 (840) GeV are excluded for the $\tilde{\chi}_1^0$ mass below 360 (100) GeV whilst differences in mass above 100 GeV between the $\tilde{b}_1$ and the $\tilde{\chi}_1^0$ are excluded up to a $\tilde{b}_1$ mass of 500 GeV.

37 data tables

Expected exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario.

Observed exclusion limit at 95% CL in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane for the sbottom pair production scenario.

Signal region (SR) providing the best expected sensitivity in the $m(\tilde b_1)$-$m(\tilde\chi^0_1)$ plane.

More…

Search for heavy long-lived charged $R$-hadrons with the ATLAS detector in 3.2 fb$^{-1}$ of proton--proton collision data at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 760 (2016) 647-665, 2016.
Inspire Record 1470936 DOI 10.17182/hepdata.73717

A search for heavy long-lived charged $R$-hadrons is reported using a data sample corresponding to 3.2$^{-1}$ of proton--proton collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the Large Hadron Collider at CERN. The search is based on observables related to large ionisation losses and slow propagation velocities, which are signatures of heavy charged particles travelling significantly slower than the speed of light. No significant deviations from the expected background are observed. Upper limits at 95% confidence level are provided on the production cross section of long-lived $R$-hadrons in the mass range from 600 GeV to 2000 GeV and gluino, bottom and top squark masses are excluded up to 1580 GeV, 805 GeV and 890 GeV, respectively.

18 data tables

Distributions of beta for data and simulation after a Zmumu selection. The values given for the mean and width are taken from Gaussian functions matched to data and simulation.

Data (black dots) and background estimates (red solid line) for m_beta for the gluino R-hadron search (1000 GeV). The green shaded band illustrates the statistical uncertainty of the background estimate. The blue dashed lines illustrate the expected signal (on top of background) for the given R-hadron mass hypothesis. The black dashed vertical lines at 500 GeV show the mass selection and the last bin includes all entries/masses above.

Data (black dots) and background estimates (red solid line) for m_betagamma for the gluino R-hadron search (1000 GeV). The green shaded band illustrates the statistical uncertainty of the background estimate. The blue dashed lines illustrate the expected signal (on top of background) for the given R-hadron mass hypothesis. The black dashed vertical lines at 500 GeV show the mass selection and the last bin includes all entries/masses above.

More…

Search for top squarks in final states with one isolated lepton, jets, and missing transverse momentum in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 94 (2016) 052009, 2016.
Inspire Record 1469069 DOI 10.17182/hepdata.74125

The results of a search for the stop, the supersymmetric partner of the top quark, in final states with one isolated electron or muon, jets, and missing transverse momentum are reported. The search uses the 2015 LHC $pp$ collision data at a center-of-mass energy of $\sqrt{s}=13$ TeV recorded by the ATLAS detector and corresponding to an integrated luminosity of 3.2 fb${}^{-1}$. The analysis targets two types of signal models: gluino-mediated pair production of stops with a nearly mass-degenerate stop and neutralino; and direct pair production of stops, decaying to the top quark and the lightest neutralino. The experimental signature in both signal scenarios is similar to that of a top quark pair produced in association with large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits on gluino and stop masses are set at 95% confidence level. The results extend the LHC Run-1 exclusion limit on the gluino mass up to 1460 GeV in the gluino-mediated scenario in the high gluino and low stop mass region, and add an excluded stop mass region from 745 to 780 GeV for the direct stop model with a massless lightest neutralino. The results are also reinterpreted to set exclusion limits in a model of vector-like top quarks.

60 data tables

Comparison of data with estimated backgrounds in the $am_\text{T2}$ distribution with the STCR1 event selection except for the requirement on $am_\text{T2}$. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.

Comparison of data with estimated backgrounds in the $b$-tagged jet multiplicity with the STCR1 event selection except for the requirement on the $b$-tagged jet multiplicity. Furthermore, the $\Delta R(b_1,b_2)$ requirement is dropped. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.

Comparison of data with estimated backgrounds in the $\Delta R(b_1,b_2)$ distribution with the STCR1 event selection except for the requirement on $\Delta R(b_1,b_2)$. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.

More…

Search for gluinos in events with an isolated lepton, jets and missing transverse momentum at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 565, 2016.
Inspire Record 1458952 DOI 10.17182/hepdata.73806

The results of a search for gluinos in final states with an isolated electron or muon, multiple jets and large missing transverse momentum using proton--proton collision data at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV are presented. The dataset used was recorded in 2015 by the ATLAS experiment at the Large Hadron Collider and corresponds to an integrated luminosity of 3.2 fb$^{-1}$. Six signal selections are defined that best exploit the signal characteristics. The data agree with the Standard Model background expectation in all six signal selections, and the largest deviation is a 2.1 standard deviation excess. The results are interpreted in a simplified model where pair-produced gluinos decay via the lightest chargino to the lightest neutralino. In this model, gluinos are excluded up to masses of approximately 1.6 TeV depending on the mass spectrum of the simplified model, thus surpassing the limits of previous searches.

89 data tables

The distribution of the missing transverse momentum is shown in hard-lepton 6-jet ttbar control regions after normalising the ttbar and W+jets background processes in the simultaneous fit.

The distribution of the missing transverse momentum is shown in hard-lepton 6-jet W+jets control regions after normalising the ttbar and W+jets background processes in the simultaneous fit.

The distribution of the missing transverse momentum is shown in soft-lepton 2-jet ttbar control regions after normalising the ttbar and W+jets background processes in the simultaneous fit.

More…

Search for supersymmetry at $\sqrt{s}=13$ TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 259, 2016.
Inspire Record 1424844 DOI 10.17182/hepdata.72792

A search for strongly produced supersymmetric particles is conducted using signatures involving multiple energetic jets and either two isolated leptons ($e$ or $\mu$) with the same electric charge or at least three isolated leptons. The search also utilises $b$-tagged jets, missing transverse momentum and other observables to extend its sensitivity. The analysis uses a data sample of proton-proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 corresponding to a total integrated luminosity of 3.2 fb$^{-1}$. No significant excess over the Standard Model expectation is observed. The results are interpreted in several simplified supersymmetric models and extend the exclusion limits from previous searches. In the context of exclusive production and simplified decay modes, gluino masses are excluded at 95% confidence level up to 1.1-1.3 TeV for light neutralinos (depending on the decay channel), and bottom squark masses are also excluded up to 540 GeV. In the former scenarios, neutralino masses are also excluded up to 550-850 GeV for gluino masses around 1 TeV.

24 data tables

Missing transverse momentum distribution after SR0b3j selection, beside the $E_\mathrm{T}^\mathrm{miss}$ requirement. The results in the signal region correspond to the last inclusive bin. The systematic uncertainties include theory uncertainties for the backgrounds with prompt SS/3L and the full systematic uncertainties for data-driven backgrounds. For illustration the distribution for a benchmark SUSY scenario ($pp\to \tilde g\tilde g$, $\tilde g\to qq(\tilde\ell\ell/\tilde\nu\nu)$, $m_{\tilde g}=1.3$ TeV, $m_{\tilde\chi_1^0}=0.5$ TeV) is also shown.

Missing transverse momentum distribution after SR0b5j selection, beside the $E_\mathrm{T}^\mathrm{miss}$ requirement. The results in the signal region correspond to the last inclusive bin. The systematic uncertainties include theory uncertainties for the backgrounds with prompt SS/3L and the full systematic uncertainties for data-driven backgrounds. For illustration the distribution for a benchmark SUSY scenario ($pp\to \tilde g\tilde g$, $\tilde g\to qqWZ\tilde\chi_1^0$, $m_{\tilde g}=1.1$ TeV, $m_{\tilde\chi_1^0}=0.4$ TeV) is also shown.

Missing transverse momentum distribution after SR1b selection, beside the $E_\mathrm{T}^\mathrm{miss}$ requirement. The results in the signal region correspond to the last inclusive bin. The systematic uncertainties include theory uncertainties for the backgrounds with prompt SS/3L and the full systematic uncertainties for data-driven backgrounds. For illustration the distribution for a benchmark SUSY scenario ($pp\to \tilde b_1\tilde b_1^*$, $\tilde b_1\to tW\tilde\chi_1^0$, $m_{\tilde b_1}=600$ GeV, $m_{\tilde\chi_1^0}=50$ GeV) is also shown.

More…

Search for new phenomena in final states with large jet multiplicities and missing transverse momentum with ATLAS using $\sqrt{s} =13$ TeV proton--proton collisions

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 757 (2016) 334-355, 2016.
Inspire Record 1422615 DOI 10.17182/hepdata.71987

Results are reported of a search for new phenomena, such as supersymmetric particle production, that could be observed in high-energy proton--proton collisions. Events with large numbers of jets, together with missing transverse momentum from unobserved particles, are selected. The data analysed were recorded by the ATLAS experiment during 2015 using the 13 TeV centre-of-mass proton--proton collisions at the Large Hadron Collider, and correspond to an integrated luminosity of 3.2 fb$^{-1}$. The search selected events with various jet multiplicities from $\ge 7$ to $\ge 10$ jets, and with various $b$-jet multiplicity requirements to enhance sensitivity. No excess above Standard Model expectations is observed. The results are interpreted within two supersymmetry models, where gluino masses up to 1400 GeV are excluded at 95% confidence level, significantly extending previous limits.

70 data tables

$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in validation region 7ej50 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.

$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in validation region 6ej80 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.

$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 10j50 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.

More…

Summary of the searches for squarks and gluinos using $\sqrt{s}$ = 8 TeV pp collisions with the ATLAS experiment at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 10 (2015) 054, 2015.
Inspire Record 1383884 DOI 10.17182/hepdata.69241

A summary is presented of ATLAS searches for gluinos and first- and second-generation squarks in final states containing jets and missing transverse momentum, with or without leptons or b-jets, in the $\sqrt{s}$ = 8 TeV data set collected at the Large Hadron Collider in 2012. This paper reports the results of new interpretations and statistical combinations of previously published analyses, as well as a new analysis. Since no significant excess of events over the Standard Model expectation is observed, the data are used to set limits in a variety of models. In all the considered simplified models that assume R-parity conservation, the limit on the gluino mass exceeds 1150 GeV at 95% confidence level, for an LSP mass smaller than 100 GeV. Furthermore, exclusion limits are set for left-handed squarks in a phenomenological MSSM model, a minimal Supergravity/Constrained MSSM model, R-parity-violation scenarios, a minimal gauge-mediated supersymmetry breaking model, a natural gauge mediation model, a non-universal Higgs mass model with gaugino mediation and a minimal model of universal extra dimensions.

30 data tables

Acceptance for the loose channel of the Razor analysis for the direct squark-squark model.

Acceptance times efficiency for the loose channel of the Razor analysis for the direct squark-squark model.

Acceptance for the tight channel of the Razor analysis for the direct squark-squark model.

More…

Measurement of exclusive $\gamma\gamma\rightarrow \ell^+\ell^-$ production in proton-proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 749 (2015) 242-261, 2015.
Inspire Record 1377585 DOI 10.17182/hepdata.69286

This Letter reports a measurement of the exclusive $\gamma\gamma\rightarrow \ell^+\ell^- (\ell=e, \mu)$ cross-section in proton-proton collisions at a centre-of-mass energy of 7 TeV by the ATLAS experiment at the LHC, based on an integrated luminosity of $4.6$ fb$^{-1}$. For the electron or muon pairs satisfying exclusive selection criteria, a fit to the dilepton acoplanarity distribution is used to extract the fiducial cross-sections. The cross-section in the electron channel is determined to be $\sigma_{\gamma\gamma\rightarrow e^+e^-}^{\mathrm{excl.}} = 0.428 \pm 0.035 (\mathrm{stat.}) \pm 0.018 (\mathrm{syst.})$ pb for a phase-space region with invariant mass of the electron pairs greater than 24 GeV, in which both electrons have transverse momentum $p_\mathrm{T}>12$ GeV and pseudorapidity $|\eta|<2.4$. For muon pairs with invariant mass greater than 20 GeV, muon transverse momentum $p_\mathrm{T}>10$ GeV and pseudorapidity $|\eta|<2.4$, the cross-section is determined to be $\sigma_{\gamma\gamma\rightarrow \mu^+\mu^- }^{\mathrm{excl.}} = 0.628 \pm 0.032 (\mathrm{stat.}) \pm 0.021 (\mathrm{syst.})$ pb. When proton absorptive effects due to the finite size of the proton are taken into account in the theory calculation, the measured cross-sections are found to be consistent with the theory prediction.

10 data tables

Fiducial cross-section SIG for the exclusive e+ e- and mu+ mu- production.

Ratios of the number of observed to the number of expected events based on the MC predictions (R) for the exclusive e+ e- and mu+ mu- production.

Detector response matrix (PROB) for the acoplanarity variable (ACO) for e+ e- channel (empty bins are not reported).

More…

Search for metastable heavy charged particles with large ionisation energy loss in $pp$ collisions at $\sqrt{s}$ = 8 TeV using the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 407, 2015.
Inspire Record 1376482 DOI 10.17182/hepdata.68640

Many extensions of the Standard Model predict the existence of charged heavy long-lived particles, such as $R$-hadrons or charginos. These particles, if produced at the Large Hadron Collider, should be moving non-relativistically and are therefore identifiable through the measurement of an anomalously large specific energy loss in the ATLAS pixel detector. Measuring heavy long-lived particles through their track parameters in the vicinity of the interaction vertex provides sensitivity to metastable particles with lifetimes from 0.6 ns to 30 ns. A search for such particles with the ATLAS detector at the Large Hadron Collider is presented, based on a data sample corresponding to an integrated luminosity of 18.4 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}$ = 8 TeV. No significant deviation from the Standard Model background expectation is observed, and lifetime-dependent upper limits on $R$-hadrons and chargino production are set. Gluino $R$-hadrons with 10 ns lifetime and masses up to 1185 GeV are excluded at 95$\%$ confidence level, and so are charginos with 15 ns lifetime and masses up to 482 GeV.

80 data tables

Ratio of the reconstructed mass, computed as the most probable value of a fit to a Landau distribution convolved with a Gaussian, to the generated mass, as a function of the generated mass for stable gluino R-hadrons, along with the half-width at half maximum of the reconstructed mass distribution normalised to the generated mass.

Efficiency for the calorimetric MET>80 GeV trigger as a function of the stable R-hadron mass.

Efficiency for the calorimetric MET>80 GeV trigger as a function of the metastable R-hadron mass. The R-hadron decays to g/qq plus neutralino of mass 100 GeV with a lifetime of 1 ns.

More…

Search for massive, long-lived particles using multitrack displaced vertices or displaced lepton pairs in pp collisions at $\sqrt{s}$ = 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 92 (2015) 072004, 2015.
Inspire Record 1362183 DOI 10.17182/hepdata.68777

Many extensions of the Standard Model posit the existence of heavy particles with long lifetimes. This article presents the results of a search for events containing at least one long-lived particle that decays at a significant distance from its production point into two leptons or into five or more charged particles. This analysis uses a data sample of proton-proton collisions at $\sqrt{s}$ = 8 TeV corresponding to an integrated luminosity of 20.3 fb$^{-1}$ collected in 2012 by the ATLAS detector operating at the Large Hadron Collider. No events are observed in any of the signal regions, and limits are set on model parameters within supersymmetric scenarios involving R-parity violation, split supersymmetry, and gauge mediation. In some of the search channels, the trigger and search strategy are based only on the decay products of individual long-lived particles, irrespective of the rest of the event. In these cases, the provided limits can easily be reinterpreted in different scenarios.

51 data tables

Vertex-level efficiency as a function of the vertex radial position for an RPV SUSY model of squark production with $\tilde{q}\to q[\tilde{\chi}_1^0\to\mu qq]$, where $m(\tilde{q}) = 700$ GeV, $m(\tilde{\chi}_1^0) = 494$ GeV and $c\tau(\tilde{\chi}_1^0)$ = 175 mm. This result is also represented in Figure 3b and Auxiliary Figure 1.

Vertex-level efficiency as a function of the vertex radial position for an RPV SUSY model of squark production with $\tilde{q}\to q[\tilde{\chi}_1^0\to\mu qq]$, where $m(\tilde{q}) = 700$ GeV, $m(\tilde{\chi}_1^0) = 108$ GeV and $c\tau(\tilde{\chi}_1^0)$ = 101 mm.

Vertex-level efficiency as a function of the vertex radial position for an RPV SUSY model of squark production with $\tilde{q}\to q[\tilde{\chi}_1^0\to\mu qb]$, where $m(\tilde{q}) = 700$ GeV, $m(\tilde{\chi}_1^0) = 494$ GeV and $c\tau(\tilde{\chi}_1^0)$ = 175 mm. The other SUSY model point in the figure is tabulated in http://hepdata.cedar.ac.uk/view/ins1362183/d1.

More…

Search for low-scale gravity signatures in multi-jet final states with the ATLAS detector at $\sqrt{s} = 8$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 07 (2015) 032, 2015.
Inspire Record 1357199 DOI 10.17182/hepdata.67127

We search for evidence of physics beyond the Standard Model in the production of final states with multiple high transverse momentum jets, using 20.3 fb$^{-1}$ of proton-proton collision data recorded by the ATLAS detector at $\sqrt{s} = 8$ TeV. No excess of events beyond Standard Model expectations is observed, and upper limits on the visible cross-section for non-Standard Model production of multi-jet final states are set. Using a wide variety of models for black hole and string ball production and decay, the limit on the cross-section times acceptance is as low as 0.16 fb at the 95% CL for a minimum scalar sum of jet transverse momentum in the event of about 4.3 TeV. Using models for black hole and string ball production and decay, exclusion contours are determined as a function of the production mass threshold and the gravity scale. These limits can be interpreted in terms of lower-mass limits on black hole and string ball production that range from 4.6 to 6.2 TeV.

13 data tables

Number of data events (20.3 fb$^{-1}$), number of predicted events from the fit, statistical uncertainty on the fit, systematic uncertainty on the choice of control region, and on the choice of fit function versus inclusive $H_{\textrm{T}}^{\textrm{min}}$ lower bin edge for inclusive jet multiplicity $N_{\textrm{Jet}} \geq 3$. The total uncertainty is obtained by adding the three uncertainties linearly.

Number of data events (20.3 fb$^{-1}$), number of predicted events from the fit, statistical uncertainty on the fit, systematic uncertainty on the choice of control region, and on the choice of fit function versus inclusive $H_{\textrm{T}}^{\textrm{min}}$ lower bin edge for inclusive jet multiplicity $N_{\textrm{Jet}} \geq 4$. The total uncertainty is obtained by adding the three uncertainties linearly.

Number of data events (20.3 fb$^{-1}$), number of predicted events from the fit, statistical uncertainty on the fit, systematic uncertainty on the choice of control region, and on the choice of fit function versus inclusive $H_{\textrm{T}}^{\textrm{min}}$ lower bin edge for inclusive jet multiplicity $N_{\textrm{Jet}} \geq 5$. The total uncertainty is obtained by adding the three uncertainties linearly.

More…

Search for supersymmetry in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in $\sqrt{s}=8$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 318, 2015.
Inspire Record 1351762 DOI 10.17182/hepdata.67921

Two searches for supersymmetric particles in final states containing a same-flavour opposite-sign lepton pair, jets and large missing transverse momentum are presented. The proton-proton collision data used in these searches were collected at a centre-of-mass energy $\sqrt{s}=8$ TeV by the ATLAS detector at the Large Hadron Collider and corresponds to an integrated luminosity of 20.3 fb$^{-1}$. Two leptonic production mechanisms are considered: decays of squarks and gluinos with $Z$ bosons in the final state, resulting in a peak in the dilepton invariant mass distribution around the $Z$-boson mass; and decays of neutralinos (e.g. $\tilde{\chi}^{0}_{2} \rightarrow \ell^{+}\ell^{-}\tilde{\chi}^{0}_{1}$), resulting in a kinematic endpoint in the dilepton invariant mass distribution. For the former, an excess of events above the expected Standard Model background is observed, with a significance of 3 standard deviations. In the latter case, the data are well-described by the expected Standard Model background. The results from each channel are interpreted in the context of several supersymmetric models involving the production of squarks and gluinos.

60 data tables

The observed and expected dielectron invariant mass distribution in SR-Z. The negigible estimated contribution from Z+jets is omitted in these distributions.

The observed and expected dimuon invariant mass distribution in SR-Z. The negigible estimated contribution from Z+jets is omitted in these distributions.

The observed and expected $E_T^{miss}$ distribution in the dielectron SR-Z. The negigible estimated contribution from Z+jets is omitted in these distributions. The last bin contains the overflow.

More…

Search for direct pair production of a chargino and a neutralino decaying to the 125 GeV Higgs boson in $\sqrt{s}$ = 8 TeV pp collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 208, 2015.
Inspire Record 1341609 DOI 10.17182/hepdata.68405

A search is presented for the direct pair production of a chargino and a neutralino $pp\to\tilde{\chi}^\pm_1\tilde{\chi}^0_2$, where the chargino decays to the lightest neutralino and the $W$ boson, $\tilde{\chi}^\pm_1 \to \tilde{\chi}^0_1 (W^{\pm}\to\ell^{\pm}\nu)$, while the neutralino decays to the lightest neutralino and the 125 GeV Higgs boson, $\tilde{\chi}^0_2 \to \tilde{\chi}^0_1 (h\to bb/\gamma\gamma/\ell^{\pm}\nu qq)$. The final states considered for the search have large missing transverse momentum, an isolated electron or muon, and one of the following: either two jets identified as originating from bottom quarks, or two photons, or a second electron or muon with the same electric charge. The analysis is based on 20.3 fb$^{-1}$ of $\sqrt{s}=8$ TeV proton-proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with the Standard Model expectations, and limits are set in the context of a simplified supersymmetric model.

62 data tables

Distribution of contransverse mass $m_{\rm CT}$ in CRlbb-T, central $m_{bb}$ bin. The background histograms are obtained from the background-only fit, and their uncertainty represents the total background uncertainty after the fit. The last bin includes overflow.

Distribution of contransverse mass $m_{\rm CT}$ in SRlbb-1 and SRlbb-2, $m_{bb}$ sideband. The background histograms are obtained from the background-only fit, and their uncertainty represents the total background uncertainty after the fit. The last bin includes overflow.

Distribution of the transverse mass of the $W$-candidate $m_{\rm T}^{W}$ for the one lepton and two $b$-jets channel in VRlbb-2, central $m_{bb}$ bin. The background histograms are obtained from the background-only fit, and their uncertainty represents the total background uncertainty after the fit. The last bin includes overflow.

More…