p-p, p-$\Lambda$ and $\Lambda$-$\Lambda$ correlations studied via femtoscopy in pp reactions at $\sqrt{s}$ = 7 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Rev.C 99 (2019) 024001, 2019.
Inspire Record 1675759 DOI 10.17182/hepdata.89305

We report on the first femtoscopic measurement of baryon pairs, such as p-p, p-$\Lambda$ and $\Lambda$-$\Lambda$, measured by ALICE at the Large Hadron Collider (LHC) in proton-proton collisions at $\sqrt{s}$ = 7 TeV. This study demonstrates the feasibility of such measurements in pp collisions at ultrarelativistic energies. The femtoscopy method is employed to constrain the hyperon-nucleon and hyperon-hyperon interactions, which are still rather poorly understood. A new method to evaluate the influence of residual correlations induced by the decays of resonances and experimental impurities is hereby presented. The p-p, p-$\Lambda$ and $\Lambda$-$\Lambda$ correlation functions were fitted simultaneously with the help of a new tool developed specifically for the femtoscopy analysis in small colliding systems 'Correlation Analysis Tool using the Schr\"odinger Equation' (CATS). Within the assumption that in pp collisions the three particle pairs originate from a common source, its radius is found to be equal to $r_{0} = 1.144\pm0.019$ (stat) $^{+0.069}_{-0.012}$ (syst) fm. The sensitivity of the measured p-$\Lambda$ correlation is tested against different scattering parameters which are defined by the interaction among the two particles, but the statistics is not sufficient yet to discriminate among different models. The measurement of the $\Lambda$-$\Lambda$ correlation function constrains the phase space spanned by the effective range and scattering length of the strong interaction. Discrepancies between the measured scattering parameters and the resulting correlation functions at LHC and RHIC energies are discussed in the context of various models.

4 data tables

The p$-$p $\oplus$ $\overline{\mathrm{p}}-\overline{\mathrm{p}}$ correlation function.

The p$-\Lambda$ $\oplus$ $\overline{\mathrm{p}}-\overline{\Lambda}$ correlation function.

The $\Lambda-\Lambda$ $\oplus$ $\overline{\Lambda}-\overline{\Lambda}$ correlation function.

More…

Analysis of the apparent nuclear modification in peripheral Pb-Pb collisions at 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Lett.B 793 (2019) 420-432, 2019.
Inspire Record 1672944 DOI 10.17182/hepdata.89396

Charged-particle spectra at midrapidity are measured in Pb-Pb collisions at the centre-of-mass energy per nucleon-nucleon pair $\sqrt{s_{\rm NN}}$ = 5.02 TeV and presented in centrality classes ranging from most central (0-5%) to most peripheral (95-100%) collisions. Possible medium effects are quantified using the nuclear modification factor ($R_{\rm AA}$) by comparing the measured spectra with those from proton-proton collisions, scaled by the number of independent nucleon-nucleon collisions obtained from a Glauber model. At large transverse momenta ($8<p_{\rm T}<20$ GeV/$c$), the average $R_{\rm AA}$ is found to increase from about $0.15$ in 0-5% central to a maximum value of about $0.8$ in 75-85% peripheral collisions, beyond which it falls off strongly to below $0.2$ for the most peripheral collisions. Furthermore, $R_{\rm AA}$ initially exhibits a positive slope as a function of $p_{\rm T}$ in the $8$-$20$ GeV/$c$ interval, while for collisions beyond the 80% class the slope is negative. To reduce uncertainties related to event selection and normalization, we also provide the ratio of $R_{\rm AA}$ in adjacent centrality intervals. Our results in peripheral collisions are consistent with a PYTHIA-based model without nuclear modification, demonstrating that biases caused by the event selection and collision geometry can lead to the apparent suppression in peripheral collisions. This explains the unintuitive observation that $R_{\rm AA}$ is below unity in peripheral Pb-Pb, but equal to unity in minimum-bias p-Pb collisions despite similar charged-particle multiplicities.

45 data tables

Nuclear modification factor RAA versus pT for charged particles at midrapidity in 0-5% central Pb-Pb collisions at 5.02 TeV

Nuclear modification factor RAA versus pT for charged particles at midrapidity in 5-10% central Pb-Pb collisions at 5.02 TeV

Nuclear modification factor RAA versus pT for charged particles at midrapidity in 10-15% central Pb-Pb collisions at 5.02 TeV

More…

Measurement of the inclusive J/$\psi$ polarization at forward rapidity in pp collisions at $\sqrt{s} = 8$ TeV

The ALICE collaboration Acharya, S. ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 78 (2018) 562, 2018.
Inspire Record 1672801 DOI 10.17182/hepdata.83784

We report on the measurement of the inclusive J/$\psi$ polarization parameters in pp collisions at a center of mass energy $\sqrt{s} = 8$ TeV with the ALICE detector at the LHC. The analysis is based on a data sample corresponding to an integrated luminosity of 1.23 pb$^{-1}$. J/$\psi$ resonances are reconstructed in their di-muon decay channel in the rapidity interval $2.5 < y < 4.0$ and over the transverse-momentum interval $2 < p_{\rm T} < 15$ GeV/$c$. The three polarization parameters ($\lambda_\theta$, $\lambda_\varphi$, $\lambda_{\theta\varphi}$) are measured as a function of $p_{\rm T}$ both in the helicity and Collins-Soper reference frames. The measured J/$\psi$ polarization parameters are found to be compatible with zero within uncertainties, contrary to expectations from all available predictions. The results are compared with the measurement in pp collisions at $\sqrt{s} = 7$ TeV.

20 data tables

ALICE inclusive J/psi polarization parameters lambda_theta in the Collins-Soper frame as a function of p_T in pp collisions at sqrt{s} = 8 TeV in the rapidity interval 2.5 < y < 4.0. The error bars represent the total uncertainties.

ALICE inclusive J/psi polarization parameters lambda_phi in the Collins-Soper frame as a function of p_T in pp collisions at sqrt{s} = 8 TeV in the rapidity interval 2.5 < y < 4.0. The error bars represent the total uncertainties.

ALICE inclusive J/psi polarization parameters lambda_thetaphi in the Collins-Soper frame as a function of p_T in pp collisions at sqrt{s} = 8 TeV in the rapidity interval 2.5 < y < 4.0. The error bars represent the total uncertainties.

More…

Measurements of low-$p_{\rm T}$ electrons from semileptonic heavy-flavour hadron decays at mid-rapidity in pp and Pb-Pb collisions at $\mathbf{\sqrt{{\it s}_\mathrm{NN}}}$ = 2.76 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
JHEP 10 (2018) 061, 2018.
Inspire Record 1672811 DOI 10.17182/hepdata.85021

Transverse-momentum ($p_{\rm T}$) differential yields of electrons from semileptonic heavy-flavour hadron decays have been measured in the most central (0-10%) and in semi-central (20-40%) Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV. The corresponding production cross section in pp collisions has been measured at the same energy with substantially reduced systematic uncertainties with respect to previously published results. The modification of the yield in Pb-Pb collisions with respect to the expectation from an incoherent superposition of nucleon-nucleon collisions is quantified at mid-rapidity ($|y|$ $<$ 0.8) in the $p_{\rm T}$ interval 0.5-3 GeV/$c$ via the nuclear modification factor, $R_{\rm AA}$. This paper extends the $p_{\rm T}$ reach of the $R_{\rm AA}$ measurement towards significantly lower values with respect to a previous publication. In Pb-Pb collisions the $p_{\rm T}$-differential measurements of yields at low $p_{\rm T}$ are essential to investigate the scaling of heavy-flavour production with the number of binary nucleon-nucleon collisions. Heavy-quark hadronization, a collective expansion and even initial-state effects, such as the nuclear modification of the Parton Distribution Functions, are also expected to have a significant effect on the measured distribution.

5 data tables

Cross section of electron from heavy-flavour hadron decays in pp collisions at 2.76 TeV; additional systematic uncertainty: ± 1.9% (normalization/luminosity uncertainty) not shown.

Spectra of electron from heavy-flavour hadron decays in 0-10% centrality class.

Spectra of electron from heavy-flavour hadron decays in 20-40% centrality class.

More…

Suppression of $\Lambda(1520)$ resonance production in central Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Rev.C 99 (2019) 024905, 2019.
Inspire Record 1672806 DOI 10.17182/hepdata.84284

The production yield of the $\Lambda(1520)$ baryon resonance is measured at mid-rapidity in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV with the ALICE detector at the LHC. The measurement is performed in the $\Lambda(1520)\rightarrow {\rm pK}^{-}$ (and charge conjugate) hadronic decay channel as a function of the transverse momentum ($p_{\rm T}$) and collision centrality. The $p_{\rm T}$-integrated production rate of $\Lambda(1520)$ relative to $\Lambda$ in central collisions is suppressed by about a factor of 2 with respect to peripheral collisions. This is the first observation of the suppression of a baryonic resonance at LHC and the first evidence of $\Lambda(1520)$ suppression in heavy-ion collisions. The measured $\Lambda(1520)/\Lambda$ ratio in central collisions is smaller than the value predicted by the statistical hadronisation model calculations. The shape of the measured $p_{\rm T}$ distribution and the centrality dependence of the suppression are reproduced by the EPOS3 Monte Carlo event generator. The measurement adds further support to the formation of a dense hadronic phase in the final stages of the evolution of the fireball created in heavy-ion collisions, lasting long enough to cause a significant reduction in the observable yield of short-lived resonances.

5 data tables

$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) at midrapidity in the 0-20% centrality class. The uncertainty 'syst,uncorrelated' indicates the systematic uncertainty after removing the contributions common to all centrality classes

$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) at midrapidity in the 20-50% centrality class. The uncertainty 'syst,uncorrelated' indicates the systematic uncertainty after removing the contributions common to all centrality classes

$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) at midrapidity in the 50-80% centrality class. The uncertainty 'syst,uncorrelated' indicates the systematic uncertainty after removing the contributions common to all centrality classes

More…

Azimuthal anisotropy of heavy-flavour decay electrons in p-Pb collisions at $ \sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 122 (2019) 072301, 2019.
Inspire Record 1672812 DOI 10.17182/hepdata.87259

Angular correlations between heavy-flavour decay electrons and charged particles at mid-rapidity ($|\eta| < 0.8$) are measured in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV. The analysis is carried out for the 0-20% (high) and 60-100% (low) multiplicity ranges. The jet contribution in the correlation distribution from high-multiplicity events is removed by subtracting the distribution from low-multiplicity events. An azimuthal modulation remains after removing the jet contribution, similar to previous observations in two-particle angular correlation measurements for light-flavour hadrons. A Fourier decomposition of the modulation results in a positive second-order coefficient ($v_{2}$) for heavy-flavour decay electrons in the transverse momentum interval $1.5 < p_{\rm{T}} < 4$ GeV/$c$ in high-multiplicity events, with a significance larger than $5\sigma$. The results are compared with those of charged particles at mid-rapidity and of inclusive muons at forward rapidity. The $v_2$ measurement of open heavy-flavour particles at mid-rapidity in small collision systems could provide crucial information to help interpret the anisotropies observed in such systems.

3 data tables

$V_{2\Delta}^{HFe-ch}$ in bins of $p_T$ for p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV. Charged particles are selected on the range $ 0.3 < p_T^{ch} < 2$ GeV/$c$. The results are obtained by subtracting associated per-trigger correlation distribution in low-multiplicity (60-100% V0A) collisions from the correlation distribution in high-multiplicity (0-20% V0A) collisions.

Baselines in high-multiplicity collisions ($b_{\rm HM}$) and low-multiplicity collisions ($b_{\rm LM}$) in bins of $p_T$ for p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV. The values were obtained using the Zero Yield at Minimum (ZYAM) method.

$v_2^{HFe}$ in bins of $p_T$ for p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV. The systematic and statistical uncertainties correspond to the combined uncertainties of the $V_{2\Delta}^{HFe-ch}$ and of the charged particle $v_2$. The results are obtained by subtracting associated per-trigger correlation distribution in low-multiplicity (60-100% V0A) collisions from the correlation distribution in high-multiplicity (0-20% V0A) collisions.


$\Upsilon$ suppression at forward rapidity in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Lett.B 790 (2019) 89-101, 2019.
Inspire Record 1672798 DOI 10.17182/hepdata.88408

Inclusive $\Upsilon$(1S) and $\Upsilon$(2S) production have been measured in Pb-Pb collisions at the centre-of-mass energy per nucleon-nucleon pair $\sqrt{s_{_{\rm NN}}}=5.02$ TeV, using the ALICE detector at the CERN LHC. The $\Upsilon$ mesons are reconstructed in the centre-of-mass rapidity interval $2.5<y<4$ and in the transverse-momentum range $p_{\rm T}<15$ GeV/$c$, via their decays to muon pairs. In this Letter, we present results on the inclusive $\Upsilon$(1S) nuclear modification factor $R_{\rm AA}$ as a function of collision centrality, transverse momentum and rapidity. The $\Upsilon$(1S) and $\Upsilon$(2S) $R_{\rm AA}$, integrated over the centrality range 0-90%, are $0.37 \pm 0.02 {\rm{(stat)}}\pm 0.03 {\rm{(syst)}}$ and $0.10 \pm 0.04 {\rm{(stat)}}\pm 0.02 {\rm{(syst)}}$, respectively, leading to a ratio $R_{\rm{AA}}^{\Upsilon(\rm2S)}/R_{\rm{AA}}^{\Upsilon(\rm1S)}$ of $0.28\pm0.12\text{(stat)}\pm0.06\text{(syst)}$. The observed $\Upsilon$(1S) suppression increases with the centrality of the collision and no significant variation is observed as a function of transverse momentum and rapidity.

6 data tables

Inclusive $\Upsilon$(1S) $R_{\rm AA}$ and Pb-Pb yields for the centrality, transverse-momentum and rapidity ranges 0-90%, $0<p_{\rm T}<15$ GeV/$c$ and $2.5<y<4$, respectively. Statistical and systematic uncertainties are reported. (The yield is not normalized to the kinematic intervals).

Inclusive $\Upsilon$(1S) $R_{\rm AA}$ and Pb-Pb yields as a function of collision centrality. The transverse-momentum and rapidity ranges are $0<p_{\rm T}<15$ GeV/$c$ and $2.5<y<4$, respectively. Statistical and systematic uncertainties are reported. A global systematic uncertainty of 7.7% (4.9%) affects all the $R_{\rm AA}$ (yield) values. (The yields are not normalized to the kinematic intervals).

Inclusive $\Upsilon$(1S) $R_{\rm AA}$ and Pb-Pb yields as a function of transverse momentum. The centrality and rapidity ranges are 0-90% and $2.5<y<4$, respectively. Statistical and systematic uncertainties are reported. A global systematic uncertainty of 2.7% (2.3%) affects all the $R_{\rm AA}$ (yield) values.

More…

Production of the $\rho$(770)${^{0}}$ meson in pp and Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Rev.C 99 (2019) 064901, 2019.
Inspire Record 1672860 DOI 10.17182/hepdata.84285

The production of the $\rho$(770)${^{0}}$ meson has been measured at mid-rapidity $(|y|<0.5)$ in pp and centrality differential Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV with the ALICE detector at the Large Hadron Collider. The particles have been reconstructed in the $\rho$(770)$\rightarrow\pi^{+}\pi^{-}$ decay channel in the transverse momentum ($p_{T}$) range $0.5-11$ GeV/$c$. A centrality dependent suppression of the ratio of the integrated yields $2\rho$(770)$^{0}/(\pi^{+}+\pi^{-})$ is observed. The ratio decreases by $\sim40\%$ from pp to central Pb-Pb collisions. A study of the $p_{T}$-differential $2\rho$(770)$^{0}/(\pi^{+}+\pi^{-})$ ratio reveals that the suppression occurs at low transverse momenta, $p_{T}<2$ GeV/$c$. At higher momentum, particle ratios measured in heavy-ion and pp collisions are consistent. The observed suppression is very similar to that previously measured for the $K^{*}$(892)$^{0}/K$ ratio and is consistent with EPOS3 predictions that may imply that rescattering in the hadronic phase is a dominant mechanism for the observed suppression.

19 data tables

Reconstructed mass of $\rho^{0}$ meson in pp collisions at $\sqrt{s}=2.76~{\rm TeV}$.

Reconstructed mass of $\rho^{0}$ meson in 0-20$\%$ central Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76~{\rm TeV}$.

Reconstructed mass of $\rho^{0}$ meson in 20-40$\%$ central Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76~{\rm TeV}$.

More…

Inclusive J/$\psi$ production in Xe-Xe collisions at $\sqrt{s_{\rm NN}}$ = 5.44 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Lett.B 785 (2018) 419-428, 2018.
Inspire Record 1672800 DOI 10.17182/hepdata.84718

Inclusive J/$\psi$ production is studied in Xe-Xe interactions at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\rm NN}}= 5.44$ TeV, using the ALICE detector at the CERN LHC. The J/$\psi$ meson is reconstructed via its decay into a muon pair, in the centre-of-mass rapidity interval $2.5<y<4$ and down to zero transverse momentum. In this Letter, the nuclear modification factors $R_{\rm AA}$ for inclusive J/$\psi$, measured in the centrality range 0-90% as well as in the centrality intervals 0-20% and 20-90% are presented. The $R_{\rm AA}$ values are compared to previously published results for Pb-Pb collisions at $\sqrt{s_{\rm NN}}= 5.02$ TeV and to the calculation of a transport model. A good agreement is found between Xe-Xe and Pb-Pb results as well as between data and the model.

2 data tables

Inclusive J/$\psi$ production at forward and backward rapidity in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
JHEP 07 (2018) 160, 2018.
Inspire Record 1672807 DOI 10.17182/hepdata.83702

Inclusive J/$\psi$ production is studied in p-Pb interactions at a centre-of-mass energy per nucleon-nucleon collision $\sqrt{s_{\rm NN}}=8.16$ TeV, using the ALICE detector at the CERN LHC. The J/$\psi$ meson is reconstructed, via its decay to a muon pair, in the centre-of-mass rapidity intervals $2.03<y_{\rm {cms}}<3.53$ and $-4.46<y_{\rm {cms}}<-2.96$, where positive and negative $y_{\rm {cms}}$ refer to the p-going and Pb-going direction, respectively. The transverse momentum coverage is $p_{\rm T}<20$ GeV/$c$. In this paper, $y_{\rm cms}$- and $p_{\rm T}$-differential cross sections for inclusive J/$\psi$ production are presented, and the corresponding nuclear modification factors $R_{\rm pPb}$ are shown. Forward results show a suppression of the J/$\psi$ yield with respect to pp collisions, concentrated in the region $p_{\rm T}\lesssim 5$ GeV/$c$. At backward rapidity no significant suppression is observed. The results are compared to previous measurements by ALICE in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV and to theoretical calculations. Finally, the ratios $R_{\rm FB}$ between forward- and backward-$y_{\rm {cms}}$ $R_{\rm pPb}$ values are shown and discussed.

8 data tables

The y-differential inclusive JPsi cross section obtained in p-Pb and Pb-p collisions. The first uncertainty is statistical, the second one is the uncorrelated systematic uncertainty, while the third one is the global uncertainty common to p-Pb and Pb-p results.

The pt-differential inclusive JPsi cross section obtained in Pb-p collisions. The first uncertainty is statistical, the second one is the uncorrelated systematic uncertainty, while the third one is the global uncertainty common to p-Pb and Pb-p results.

The pt-differential inclusive JPsi nuclear modification factor obtained in p-Pb. The first uncertainty is statistical, the second one is the uncorrelated systematic uncertainty, while the third one is the global uncertainty common to p-Pb and Pb-p results.

More…