Azimuthal correlations in Z+jets events in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 722, 2023.
Inspire Record 2172990 DOI 10.17182/hepdata.133278

The production of Z bosons associated with jets is measured in pp collisions at $\sqrt{s}$ = 13 TeV with data recorded with the CMS experiment at the LHC corresponding to an integrated luminosity of 36.3 fb$^{-1}$. The multiplicity of jets with transverse momentum $p_\mathrm{T}$$\gt$ 30 GeV is measured for different regions of the Z boson's $p_\mathrm{T}$(Z), from lower than 10 GeV to higher than 100 GeV. The azimuthal correlation $\Delta \phi$ between the Z boson and the leading jet, as well as the correlations between the two leading jets are measured in three regions of $p_\mathrm{T}$(Z). The measurements are compared with several predictions at leading and next-to-leading orders, interfaced with parton showers. Predictions based on transverse-momentum dependent parton distributions and corresponding parton showers give a good description of the measurement in the regions where multiple parton interactions and higher jet multiplicities are not important. The effects of multiple parton interactions are shown to be important to correctly describe the measured spectra in the low $p_\mathrm{T}$(Z) regions.

15 data tables

The measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$, when $p_T<10$ GeV

The measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$, when $10<p_T<30$ GeV

The measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$, when $30<p_T<50$ GeV

More…

Evidence for electroweak production of four charged leptons and two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 812 (2021) 135992, 2021.
Inspire Record 1811911 DOI 10.17182/hepdata.95433

Evidence is presented for the electroweak (EW) production of two jets (jj) in association with two Z bosons and constraints on anomalous quartic gauge couplings are set. The analysis is based on a data sample of proton-proton collisions at $\sqrt{s} = $ 13 TeV collected with the CMS detector in 2016-2018, and corresponding to an integrated luminosity of 137 fb$^{-1}$. The search is performed in the fully leptonic final state ZZ $\to$ $\ell\ell\ell'\ell'$, where $\ell,\ell' = $ e, $\mu$. The EW production of two jets in association with two Z bosons is measured with an observed (expected) significance of 4.0 (3.5) standard deviations. The cross sections for the EW production are measured in three fiducial volumes and the result is $\sigma_{\mathrm{EW}}$(pp $\to$ ZZjj $\to$ $\ell\ell\ell'\ell'$jj) = 0.33 $^{+0.11}_{-0.10}$ (stat) $^{+0.04}_{-0.03}$ (syst) fb in the most inclusive volume, in agreement with the standard model prediction of 0.275 $\pm$ 0.021 fb. Measurements of total cross sections for jj production in association with two Z bosons are also reported. Limits on anomalous quartic gauge couplings are derived in terms of the effective field theory operators T0, T1, T2, T8, and T9.

5 data tables

Data from paper Table 3. Measured and expected fiducial cross-sections in the ZZjj inclusive fiducial region.

Data from paper Table 3. Measured and expected fiducial cross-sections in the VBS-enriched loose fiducial region.

Data from paper Table 3. Measured and expected fiducial cross-sections in the VBS-enriched tight fiducial region.

More…

Inclusive and differential cross section measurements of single top quark production in association with a Z boson in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 02 (2022) 107, 2022.
Inspire Record 1961177 DOI 10.17182/hepdata.105865

Inclusive and differential cross sections of single top quark production in association with a Z boson are measured in proton-proton collisions at a center-of-mass energy of 13 TeV with a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ recorded by the CMS experiment. Events are selected based on the presence of three leptons, electrons or muons, associated with leptonic Z boson and top quark decays. The measurement yields an inclusive cross section of 87.9 $_{-7.3}^{+7.5}$ (stat) $_{-6.0}^{+7.3}$ (syst) fb for a dilepton invariant mass greater than 30 GeV, in agreement with standard model (SM) calculations and the most precise determination to date. The ratio between the cross sections for the top quark and the top antiquark production in association with a Z boson is measured as 2.37 $_{-0.42}^{+0.56}$ (stat) ${}_{-0.13}^{+0.27}$ (syst). Differential measurements at parton and particle levels are performed for the first time. Several kinematic observables are considered to study the modeling of the process. Results are compared to theoretical predictions with different assumptions on the source of the initial-state b quark and found to be in agreement, within the uncertainties. Additionally, the spin asymmetry, which is sensitive to the top quark polarization, is determined from the differential distribution of the polarization angle at parton level to be 0.54 $\pm$ 0.16 (stat) $\pm$ 0.06 (syst), in agreement with SM predictions.

73 data tables

Numerical results of inclusive cross section measurements. Each row represents a measurement: "tZq" for fully inclusive, "tZq_top" for the top quark channel, "tZq_antitop" for the top antiquark channel, "ratio" for the ratio measurement. The columns are the central value, statistical error up/down, systematic error up/down. All values are in fb, except for the ratio (dimensionless).

Numerical representation of impact plot.

Simulated signal, total background, and observed data in the signal category with exactly 1 b jet and 2-3 jets for the three data-taking years combined. For the uncertainty on the signal and background, both the total (systematic+statistical) and statistical uncertainties are provided. The uncertainty on the data is the (statistical) Poisson uncertainty. Note that this is the prefit version.

More…

Measurement of W$\gamma$ production cross section in proton-proton collisions at $\sqrt{s} =$ 13 TeV and constraints on effective field theory coefficients

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 126 (2021) 252002, 2021.
Inspire Record 1844754 DOI 10.17182/hepdata.102462

A fiducial cross section for W$\gamma$ production in proton-proton collisions is measured at a center-of-mass energy of 13 TeV in 137 fb$^{-1}$ of data collected using the CMS detector at the LHC. The W $\to$ e$\nu$ and $\mu\nu$ decay modes are used in a maximum-likelihood fit to the lepton-photon invariant mass distribution to extract the combined cross section. The measured cross section is compared with theoretical expectations at next-to-leading order in quantum chromodynamics. In addition, 95% confidence level intervals are reported for anomalous triple-gauge couplings within the framework of effective field theory.

4 data tables

The measured Wgamma fiducial cross section and corresponding theoretical predictions from MadGraph5_aMC@NLO and POWHEG. The MadGraph5_aMC@NLO prediction includes 0 and 1 jets in the matrix element at NLO in QCD. The POWHEG prediction uses the C-NLO method described in https://arxiv.org/abs/1408.5766. The cross section is measured in a fiducial region defined with isolated prompt photons and isolated prompt dressed leptons (electrons and muons). A lepton or photon is considered isolated if the pt sum of all stable particles within Delta R = 0.4, divided by the pt of the lepton or photon, is less than 0.5. A lepton is considered prompt if it originates from the hard process or from the decay of a tau lepton that originates from the hard process; a photon is considered prompt if it originates from the hard process or an FSR or ISR process involving a particle that originates from the hard process. A lepton is dressed by adding to its four-momentum the four-momenta of all photons within DeltaR = 0.1; this procedure is intended to restore the lepton to its pre-FSR state. The fiducial region kinematic requirements are: photon and lepton |eta|<2.5 and pt > 25 GeV, and DeltaR(lepton,photon) > 0.5.

Data and SM expected event yields corresponding to photon pt distribution used to extract aTGC limits.

95% CL limits on effective field theory parameters in Wgamma events. No unitarity regularisation scheme is applied. All parameters are fixed to their SM values except the one that is fitted.

More…

Measurement of associated production of a W boson and a charm quark in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 79 (2019) 269, 2019.
Inspire Record 1705068 DOI 10.17182/hepdata.89879

Measurements are presented of associated production of a W boson and a charm quark (W+c) in proton-proton collisions at a center-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 35.7 fb$^{-1}$ collected by the CMS experiment at the CERN LHC. The W bosons are identified by their decay into a muon and a neutrino. The charm quarks are tagged via the full reconstruction of D$^*$(2010)$^\pm$ mesons that decay via D$^*$(2010)$^\pm \to$ D$^0$ + $\pi^\pm \to$ K$^{\mp}$ + $\pi^\pm$ + $\pi^\pm$. A cross section is measured in the fiducial region defined by the muon transverse momentum $p_{T}^{\mu} >$ 26 GeV, muon pseudorapidity $|\eta^{\mu}| <$ 2.4, and charm quark transverse momentum $p_{T}^{c} >$ 5 GeV. The inclusive cross section for this kinematic range is $\sigma$(W+c) = 1026 $\pm$ 31 (stat) $\substack{+76\\-72}$ (syst) pb. The cross section is also measured differentially as a function of the pseudorapidity of the muon from the W boson decay. These measurements are compared with theoretical predictions and are used to probe the strange quark content of the proton.

6 data tables

The differential measurement of W + charm as a function of the absolute peudorapidity of the muon originating from the W boson.

The differential measurement of W+ + cbar as a function of the absolute peudorapidity of the muon originating from the W boson.

The differential measurement of W- + c as a function of the absolute peudorapidity of the muon originating from the W boson.

More…

Measurement of differential $\text{t}\overline{\text{t}}$ production cross sections in the full kinematic range using lepton+jets events from proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 104 (2021) 092013, 2021.
Inspire Record 1901295 DOI 10.17182/hepdata.102956

Measurements of differential and double-differential cross sections of top quark pair ($\text{t}\overline{\text{t}}$) production are presented in the lepton+jets channels with a single electron or muon and jets in the final state. The analysis combines for the first time signatures of top quarks with low transverse momentum $p_\text{T}$, where the top quark decay products can be identified as separated jets and isolated leptons, and with high $p_\text{T}$, where the decay products are collimated and overlap. The measurements are based on proton-proton collision data at $\sqrt{s} = $ 13 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. The cross sections are presented at the parton and particle levels, where the latter minimizes extrapolations based on theoretical assumptions. Most of the measured differential cross sections are well described by standard model predictions with the exception of some double-differential distributions. The inclusive $\text{t}\overline{\text{t}}$ production cross section is measured to be $\sigma_{\text{t}\overline{\text{t}}} = $ 791 $\pm$ 25 pb, which constitutes the most precise measurement in the lepton+jets channel to date.

362 data tables

differential cross sections.

differential cross sections.

differential cross sections.

More…

Measurement of differential cross sections for Z boson production in association with jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 965, 2018.
Inspire Record 1667854 DOI 10.17182/hepdata.91404

The production of a Z boson, decaying to two charged leptons, in association with jets in proton-proton collisions at a centre-of-mass energy of 13 TeV is measured. Data recorded with the CMS detector at the LHC are used that correspond to an integrated luminosity of 2.19 fb$^{-1}$. The cross section is measured as a function of the jet multiplicity and its dependence on the transverse momentum of the Z boson, the jet kinematic variables (transverse momentum and rapidity), the scalar sum of the jet momenta, which quantifies the hadronic activity, and the balance in transverse momentum between the reconstructed jet recoil and the Z boson. The measurements are compared with predictions from four different calculations. The first two merge matrix elements with different parton multiplicities in the final state and parton showering, one of which includes one-loop corrections. The third is a fixed-order calculation with next-to-next-to-leading order accuracy for the process with a Z boson and one parton in the final state. The fourth combines the fully differential next-to-next-to-leading order calculation with next-to-next-to-leading logarithm resummation and parton showering.

36 data tables

Measured cross section for Z+jets as a function of the exclusive jet multiplicity, $N_{\text{jets}}$, and breakdown of the relative uncertainty.

Bin-to-bin correlation in the measured cross section for Z+jets as a function of the exclusive jet multiplicity, $N_{\text{jets}}$.

Measured cross section for Z+jets as a function of inclusive jet multiplicity, $N_{\text{jets}}^{\text{min}}$, and breakdown of the relative uncertainty.

More…

Measurement of differential cross sections for the production of a Z boson in association with jets in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 108 (2023) 052004, 2023.
Inspire Record 2078067 DOI 10.17182/hepdata.115655

A measurement is presented of the production of Z bosons that decay into two electrons or muons in association with jets, in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data were recorded by the CMS Collaboration at the LHC with an integrated luminosity of 35.9 fb$^{-1}$. The differential cross sections are measured as a function of the transverse momentum ($p_\mathrm{T}$) of the Z boson and the transverse momentum and rapidities of the five jets with largest $p_\mathrm{T}$. The jet multiplicity distribution is measured for up to eight jets. The hadronic activity in the events is estimated using the scalar sum of the $p_\mathrm{T}$ of all the jets. All measurements are unfolded to the stable particle-level and compared with predictions from various Monte Carlo event generators, as well as with expectations at leading and next-to-leading orders in perturbative quantum chromodynamics.

70 data tables

Measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$, and breakdown of the relative uncertainty.

Bin-to-bin correlation in the measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$.

Measured cross section as a function of the rapidity absolute value of the first jet, $|y(\text{j}_1)|$, and breakdown of the relative uncertainty.

More…

Measurement of electroweak WZ boson production and search for new physics in WZ $+$ two jets events in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 795 (2019) 281-307, 2019.
Inspire Record 1713565 DOI 10.17182/hepdata.89174

A measurement of WZ electroweak (EW) vector boson scattering is presented. The measurement is performed in the leptonic decay modes WZ $\to$ $\ell\nu\ell'\ell'$, where $\ell, \ell' = $ e, $\mu$. The analysis is based on a data sample of proton-proton collisions at $\sqrt{s} =$ 13 TeV at the LHC collected with the CMS detector and corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The WZ plus two jet production cross section is measured in fiducial regions with enhanced contributions from EW production and found to be consistent with standard model predictions. The EW WZ production in association with two jets is measured with an observed (expected) significance of 2.2 (2.5) standard deviations. Constraints on charged Higgs boson production and on anomalous quartic gauge couplings in terms of dimension-eight effective field theory operators are also presented.

5 data tables

The measured WZ cross section in the tight EWK fiducial region.

The measured WZ cross section in the loose EWK fiducial region.

The measured EWK WZ scale factor (mu) in the tight EWK fiducial region. The uncertainty is the combined stastical uncertianty and the systematic uncertainty including experimental and theortical sources

More…

Measurement of quarkonium production cross sections in pp collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, A.M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 780 (2018) 251-272, 2018.
Inspire Record 1633431 DOI 10.17182/hepdata.85744

Differential production cross sections of J/$\psi$ and $\psi$(2S) charmonium and $\Upsilon$(nS) (n = 1, 2, 3) bottomonium states are measured in proton-proton collisions at $\sqrt{s} =$ 13 TeV, with data collected by the CMS detector at the LHC, corresponding to an integrated luminosity of 2.3 fb$^{-1}$ for the J/$\psi$ and 2.7 fb$^{-1}$ for the other mesons. The five quarkonium states are reconstructed in the dimuon decay channel, for dimuon rapidity $|y| <$ 1.2. The double-differential cross sections for each state are measured as a function of $y$ and transverse momentum, and compared to theoretical expectations. In addition, ratios are presented of cross sections for prompt $\psi$(2S) to J/$\psi$, $\Upsilon$(2S) to $\Upsilon$(1S), and $\Upsilon$(3S) to $\Upsilon$(1S) production.

12 data tables

Double-differential cross section times the dimuon branching fraction of the J/psi meson for different ranges of pT in bins of |y| and for the full |y| < 1.2 range, for the unpolarized decay hypothesis. The global uncertainty in the integrated luminosity of 2.3% is not included in the systematic uncertainties.

Double-differential cross section times the dimuon branching fraction of the psi(2S) meson for different ranges of pT in bins of |y| and for the full |y| < 1.2 range, for the unpolarized decay hypothesis. The global uncertainty in the integrated luminosity of 2.3% is not included in the systematic uncertainties.

Double-differential cross section times the dimuon branching fraction of the Y(1S) meson for different ranges of pT in bins of |y| and for the full |y| < 1.2 range, for the unpolarized decay hypothesis. The global uncertainty in the integrated luminosity of 2.3% is not included in the systematic uncertainties.

More…

Version 2
Measurement of the $\mathrm{t\bar{t}}\mathrm{b\bar{b}}$ production cross section in the all-jet final state in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 803 (2020) 135285, 2020.
Inspire Record 1753720 DOI 10.17182/hepdata.91630

A measurement of the production cross section of top quark pairs in association with two b jets ($\mathrm{t\bar{t}}\mathrm{b\bar{b}}$) is presented using data collected in proton-proton collisions at $\sqrt{s} =$ 13 TeV by the CMS detector at the LHC corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The cross section is measured in the all-jet decay channel of the top quark pair by selecting events containing at least eight jets, of which at least two are identified as originating from the hadronization of b quarks. A combination of multivariate analysis techniques is used to reduce the large background from multijet events not containing a top quark pair, and to help discriminate between jets originating from top quark decays and other additional jets. The cross section is determined for the total phase space to be 5.5 $\pm$ 0.3 (stat)${}^{+1.6}_{-1.3}$ (syst) pb and also measured for two fiducial $\mathrm{t\bar{t}}\mathrm{b\bar{b}}$ definitions. The measured cross sections are found to be larger than theoretical predictions by a factor of 1.5-2.4, corresponding to 1-2 standard deviations.

2 data tables

The measured cross sections. The first uncertainty is statistical, the second uncertianty is the systematic.

The measured cross sections. The first uncertainty is statistical, the second uncertianty is the systematic.


Measurement of the WZ production cross section in pp collisions at sqrt(s) = 13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 766 (2017) 268-290, 2017.
Inspire Record 1477805 DOI 10.17182/hepdata.76739

The WZ production cross section in proton-proton collisions at sqrt(s) = 13 TeV is measured with the CMS experiment at the LHC using a data sample corresponding to an integrated luminosity of 2.3 inverse femtobarns. The measurement is performed in the leptonic decay modes WZ to l nu l' l', where l, l'= e, mu. The measured cross section for the range 60 < m[l'l'] < 120 GeV is sigma(pp to WZ) = 39.9 +/- 3.2 (stat) +2.9/-3.1 (syst) +/- 0.4 (theo) +/- 1.3 (lumi) pb, consistent with the standard model prediction.

2 data tables

The fiducial pp to WZ to lnul'l' cross section. The first systematic uncertainty is detector systematics and the second is luminosity uncertainty. The theoretical prediction is calculated with MCFM at NLO with NNPDF3.0 PDFs, with dynamic renormalization and factorization scales set to muR = muF = m[WZ]. The uncertainty is obtained by varying the factorization and renormalization scales independently up and down by a factor of two with the condition that 0.5 < muR/muF < 2.

The total pp to WZ cross section. The first systematic uncertainty is detector systematics and the second is luminosity uncertainty. The first theoretical prediction is calculated with MCFM at NLO with NNPDF3.0 PDFs, with dynamic renormalization and factorization scales set to muR = muF = m[WZ]. The second theoretical prediction is calculated with MATRIX at NNLO with fixed QCD scales set to muR = muF = 1/2 (m[Z] + m[W]) and with NNPDF3.0 PDFs. The uncertainty is obtained by varying the factorization and renormalization scales independently up and down by a factor of two with the condition that 0.5 < muR/muF < 2.


Version 2
Measurement of the Z boson differential production cross section using its invisible decay mode (Z$\nu\bar{\nu}$) in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 05 (2021) 205, 2021.
Inspire Record 1837084 DOI 10.17182/hepdata.96028

Measurements of the total and differential fiducial cross sections for the Z boson decaying into two neutrinos are presented at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV. The data were collected by the CMS detector in 2016 and correspond to an integrated luminosity of 35.9 fb$^{-1}$. In these measurements, events are selected containing an imbalance in transverse momentum and one or more energetic jets. The fiducial differential cross section is measured as a function of the Z boson transverse momentum. The results are combined with a previous measurement of charged-lepton decays of the Z boson.

24 data tables

The measured and predicted inclusive fiducial cross sections in fb. The experimental measurement includes both statistical and systematics uncertainties. The theoretical prediction includes both the QCD scale and PDF uncertainties.

The measured and predicted inclusive fiducial cross sections in fb. The experimental measurement includes both statistical and systematics uncertainties. The theoretical prediction includes both the QCD scale and PDF uncertainties.

Experimental uncertainties affecting transfer factors in the analysis that is used to estimate the W background in the signal region (SR). The number of W boson events are denoted as $W_{SR}$ for the SR and in analogy as $W_{\mu\nu}$ ($W_{e\nu}$) for the single-muon (single-electron) control region (CR).

More…

Measurement of the ZZ production cross section and Z to l+l-l'+l'- branching fraction in pp collisions at sqrt(s) = 13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 763 (2016) 280-303, 2016.
Inspire Record 1478600 DOI 10.17182/hepdata.75368

Four-lepton production in proton-proton collisions, pp to (Z/gamma*)(Z/gamma*) to l+l-l'+l'-, where l, l' = e or mu, is studied at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 2.6 inverse femtobarns. The ZZ production cross section, sigma(pp to ZZ) = 14.6 +1.9/-1.8 (stat) +0.5/-0.3 (syst) +/- 0.2 (theo) +/- 0.4 (lumi) pb, is measured for events with two opposite-sign, same-flavor lepton pairs produced in the mass region 60 < m[l+l-], m[l'+l'-] < 120 GeV. The Z boson branching fraction to four leptons is measured to be B(Z to l+l-l'+l'-) = 4.9 +0.8/-0.7 (stat) +0.3/-0.2 (syst) +0.2/-0.1 (theo) +/- 0.1 (lumi) x E-6 for the four-lepton invariant mass in the range 80 < m[l+l-l'+l'-] < 100 GeV and dilepton mass m[l+l-] > 4 GeV for all opposite-sign, same-flavor lepton pairs. The results are in agreement with standard model predictions.

5 data tables

The (P P to Z Z to l+l-l'+l'-) fiducial cross section. The first systematic uncertainty is detector systematics, the second is luminosity uncertainty. The theoretical prediction is POWHEG generated at NLO plus the gluon-gluon initial state contribution from MCFM, using NNPDF3.0 PDFs and scales mu_F = mu_R = 0.5m[l+l-l'+l'-].

The (P P to Z to l+l-l'+l'-) fiducial cross section. The first systematic uncertainty is detector systematics, the second is luminosity uncertainty. The theoretical prediction is POWHEG generated at NLO using NNPDF3.0 PDFs and scales mu_F = mu_R = m[l+l-l'+l'-].

The total (P P to Z) cross section times the (Z to l+l-l'+l'-) branching ratio. The first systematic uncertainty is detector systematics, the second is theoretical uncertainty, and the third is luminosity uncertainty.

More…

Measurement of the associated production of a single top quark and a Z boson in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 779 (2018) 358-384, 2018.
Inspire Record 1642230 DOI 10.17182/hepdata.81680

A measurement is presented of the associated production of a single top quark and a Z boson. The study uses data from proton-proton collisions at $\sqrt{s} =$ 13 TeV recorded by the CMS experiment, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Using final states with three leptons (electrons or muons), the tZq production cross section is measured to be $\sigma$(pp$\to$tZq$\to$Wb$\ell^+\ell^-$q) = $123 ^{+33}_{-31}$ (stat) $^{+29}_{-23}$ (syst) fb, where $\ell$ stands for electrons, muons, or $\tau$ leptons, with observed and expected significances of 3.7 and 3.1 standard deviations, respectively.

1 data table

The measured cross section, with statistical and systematic uncertainties. The observed significance. The expected significance


Measurement of the cross section for electroweak production of a Z boson, a photon and two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV and constraints on anomalous quartic couplings

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 06 (2020) 076, 2020.
Inspire Record 1781935 DOI 10.17182/hepdata.93069

A measurement is presented of the cross section for electroweak production of a Z boson and a photon in association with two jets (Z$\gamma$jj) in proton-proton collisions. The Z boson candidates are selected through their decay into a pair of electrons or muons. The process of interest, electroweak Z$\gamma$jj production, is isolated by selecting events with a large dijet mass and a large pseudorapidity gap between the two jets. The measurement is based on data collected at the CMS experiment at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The observed significance of the signal is 3.9 standard deviations, where a significance of 5.2 standard deviations is expected in the standard model. These results are combined with published results by CMS at $\sqrt{s} =$ 8 TeV, which leads to observed and expected respective significances of 4.7 and 5.5 standard deviations. From the 13 TeV data, a value is obtained for the signal strength of electroweak Z$\gamma$jj production and bounds are given on quartic vector boson interactions in the framework of dimension-eight effective field theory operators.

3 data tables

The measured EWK Zgamma+2j fiducial cross section. The uncertainty is the combined stastical uncertianty and the systematic uncertainty including experimental and theortical sources

The measured combined QCD-induced and EWK Zgamma+2j fiducial cross section. The uncertainty is the combined stastical uncertianty and the systematic uncertainty including experimental and theortical sources

aQGC limits on effective field theory parameters in EWK Zgamma events


Measurement of the differential cross sections for the associated production of a W boson and jets in proton-proton collisions at sqrt(s) = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 96 (2017) 072005, 2017.
Inspire Record 1610623 DOI 10.17182/hepdata.79859

A measurement of the differential cross sections for a W boson produced in association with jets in the muon decay channel is presented. The measurement is based on 13 TeV proton-proton collision data corresponding to an integrated luminosity of 2.2 inverse femtobarns, recorded by the CMS detector at the LHC. The cross sections are reported as functions of jet multiplicity, jet transverse momentum pT, jet rapidity, the scalar pT sum of the jets, and angular correlations between the muon and the jet for different jet multiplicities. The measured cross sections are in agreement with predictions that include multileg leading-order (LO) and next-to-LO matrix element calculations interfaced with parton showers, as well as a next-to-next-to-LO calculation for the W boson and one jet production.

19 data tables

The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 6.

The cross section measurement as a function of the inclusive jet multiplicity, for jet multiplicities of up to 6.

The differential cross section measurement as a function of the transverse momentum of the first leading jet.

More…

Measurement of the electroweak production of Z$\gamma$ and two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV and constraints on anomalous quartic gauge couplings

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 104 (2021) 072001, 2021.
Inspire Record 1869513 DOI 10.17182/hepdata.102954

The first observation of the electroweak (EW) production of a Z boson, a photon, and two forward jets (Z$\gamma$jj) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. A data set corresponding to an integrated luminosity of 137 fb$^{-1}$, collected by the CMS experiment at the LHC in 2016-2018 is used. The measured fiducial cross section for EW Z$\gamma$jj is $\sigma_{\mathrm{EW}}$ = 5.21 $\pm$ 0.52 (stat) $\pm$ 0.56 (syst) fb = 5.21 $\pm$ 0.76 fb. Single-differential cross sections in photon, leading lepton, and leading jet transverse momenta, and double-differential cross sections in $m_{\mathrm{jj}}$ and $\lvert\Delta\eta_{\mathrm{jj}}\rvert$ are also measured. Exclusion limits on anomalous quartic gauge couplings are derived at 95% confidence level in terms of the effective field theory operators $\mathrm{M}_{0}$ to $\mathrm{M}_{5}$, $\mathrm{M}_{7}$, $\mathrm{T}_{0}$ to $\mathrm{T}_{2}$, and $\mathrm{T}_{5}$ to $\mathrm{T}_{9}$.

11 data tables

The measured inclusive fiducial cross section for the pure electroweak Z$\gamma$jj production. The uncertainty of the observed results includes the stastical uncertianty and the systematic uncertainty, while the uncertainty of the predicted results is the theoretical uncertainty from the MadGraph5_aMC@NLO.

The measured inclusive fiducial cross section for the combined QCD-induced and electroweak Z$\gamma$jj production. The uncertainty of the observed results includes the stastical uncertianty and the systematic uncertainty, while the uncertainty of the predicted results is the theoretical uncertainty from the MadGraph5_aMC@NLO.

The measured single-differential cross sections in photon transverse momenta for the pure electroweak Z$\gamma$jj production. The total uncertainty of the observed results includes the stastical uncertianty and the systematic uncertainty, while the uncertainty of the predicted results is the theoretical uncertainty from the MadGraph5_aMC@NLO. The last bin includes overflow events.

More…

Version 3
Measurement of the inclusive and differential $\mathrm{t\bar{t}}\gamma$ cross sections in the dilepton channel and effective field theory interpretation in proton-proton collisions at $\sqrt{s}$ =13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 05 (2022) 091, 2022.
Inspire Record 2013377 DOI 10.17182/hepdata.113657

The production cross section of a top quark pair in association with a photon is measured in proton-proton collisions in the decay channel with two oppositely charged leptons (e$^\pm\mu^\mp$, e$^+$e$^-$, or $\mu^+\mu^-$). The measurement is performed using 138 fb$^{-1}$ of proton-proton collision data recorded by the CMS experiment at $\sqrt{s} =$ 13 TeV during the 2016-2018 data-taking period of the CERN LHC. A fiducial phase space is defined such that photons radiated by initial-state particles, top quarks, or any of their decay products are included. An inclusive cross section of 175.2 $\pm$ 2.5 (stat) $\pm$ 6.3 (syst) fb is measured in a signal region with at least one jet coming from the hadronization of a bottom quark and exactly one photon with transverse momentum above 20 GeV. Differential cross sections are measured as functions of several kinematic observables of the photon, leptons, and jets, and compared to standard model predictions. The measurements are also interpreted in the standard model effective field theory framework, and limits are found on the relevant Wilson coefficients from these results alone and in combination with a previous CMS measurement of the $\mathrm{t\bar{t}}\gamma$ production process using the lepton+jets final state.

64 data tables

Observed and predicted event yields as a function of $p_{T}(\gamma)$ in the $e\mu$ channel, after the fit to the data.

Observed and predicted event yields as a function of $p_{T}(\gamma)$ in the $ee$ channel, after the fit to the data.

Observed and predicted event yields as a function of $p_{T}(\gamma)$ in the $\mu\mu$ channel, after the fit to the data.

More…

Version 2
Measurement of the inclusive and differential $\mathrm{t\overline{t}}\gamma$ cross sections in the single-lepton channel and EFT interpretation at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 12 (2021) 180, 2021.
Inspire Record 1876579 DOI 10.17182/hepdata.102876

The production cross section of a top quark pair in association with a photon is measured in proton-proton collisions at a center-of-mass energy of 13 TeV. The data set, corresponding to an integrated luminosity of 137 fb$^{-1}$, was recorded by the CMS experiment during the 2016-2018 data taking of the LHC. The measurements are performed in a fiducial volume defined at the particle level. Events with an isolated, highly energetic lepton, at least three jets from the hadronization of quarks, among which at least one is b tagged, and one isolated photon are selected. The inclusive fiducial $\mathrm{t\overline{t}}\gamma$ cross section, for a photon with transverse momentum greater than 20 GeV and pseudorapidity $\lvert \eta\rvert$$\lt$ 1.4442, is measured to be 798 $\pm$ 7 (stat) $\pm$ 48 (syst) fb, in good agreement with the prediction from the standard model at next-to-leading order in quantum chromodynamics. The differential cross sections are also measured as a function of several kinematic observables and interpreted in the framework of the standard model effective field theory (EFT), leading to the most stringent direct limits to date on anomalous electromagnetic dipole moment interactions of the top quark and the photon.

80 data tables

Distribution of $p_{T}(\gamma)$ in the $N_{jet}\geq 3$ signal region.

Distribution of $p_{T}(\gamma)$ in the $N_{jet}\geq 3$ signal region.

Distribution of $m_{T}(W)$ in the $N_{jet}\geq 3$ signal region.

More…

Measurement of the inclusive and differential Higgs boson production cross sections in the decay mode to a pair of $\tau$ leptons in pp collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 128 (2022) 081805, 2022.
Inspire Record 1894790 DOI 10.17182/hepdata.105961

Measurements of the inclusive and differential fiducial cross sections of the Higgs boson are presented, using the $\tau$ lepton decay channel. The differential cross sections are measured as functions of the Higgs boson transverse momentum, jet multiplicity, and transverse momentum of the leading jet in the event if any. The analysis is performed using proton-proton data collected with the CMS detector at the LHC at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb$^{-1}$. These are the first differential measurements of the Higgs boson cross section in the final state of two $\tau$ leptons, and they constitute a significant improvement over measurements in other final states in events with a large jet multiplicity or with a Lorentz-boosted Higgs boson.

7 data tables

The fiducial differential signal strength and cross section in each Higgs pT bin. Both the unregularized and regularized signal strengths are given; they do not include uncertainties in the SM signal normalization. The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

The fiducial differential signal strength and cross section in each jet multiplicity bin. Both the unregularized and regularized signal strengths are given; they do not include uncertainties in the SM signal normalization. The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

The fiducial differential signal strength and cross section in each leading jet pT bin. Both the unregularized and regularized signal strengths are given; they do not include uncertainties in the SM signal normalization. The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

More…

Measurement of the inclusive and differential Higgs boson production cross sections in the leptonic WW decay mode at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2021) 003, 2021.
Inspire Record 1805274 DOI 10.17182/hepdata.100162

Measurement of the fiducial inclusive and differential production cross sections of the Higgs boson in proton-proton collisions at $\sqrt{s} =$ 13 TeV are performed using events where the Higgs boson decays into a pair of W bosons that subsequently decay into a final state with an electron, a muon, and a pair of neutrinos. The analysis is based on data collected with the CMS detector at the LHC during 2016-2018, corresponding to an integrated luminosity of 137 fb$^{-1}$. Production cross sections are measured as a function of the transverse momentum of the Higgs boson and the associated jet multiplicity. The Higgs boson signal is extracted and simultaneously unfolded to correct for selection efficiency and resolution effects using maximum-likelihood fits to the observed distributions in data. The integrated fiducial cross section is measured to be 86.5 $\pm$ 9.5 fb, consistent with the Standard Model expectation of 82.5 $\pm$ 4.2 fb. No significant deviation from the Standard Model expectations is observed in the differential measurements.

5 data tables

The fiducial differential signal strength and cross section in each Higgs pT bin. Both the unregularized and regularized signal strengthes are given. For the regularized case the uncertainty breakdown is given in terms of statistical (stat), experimental (exp), theoretical uncertainties on the background (bkg) and on the signal (sig), and the luminosity uncertainty (lumi). The regularization estimated bias (bias) is also given. The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

The correlation matrix for the ptH measurements, both for the unregularized and regularized fits. The last bin is inclusive.

The fiducial differential signal strength and cross section in each njet bin. The uncertainty breakdown is given in terms of statistical (stat), experimental (exp), theoretical uncertainties on the background (bkg) and on the signal (sig), and the luminosity uncertainty (lumi). The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

More…

Measurement of the inelastic proton-proton cross section at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 07 (2018) 161, 2018.
Inspire Record 1653948 DOI 10.17182/hepdata.83970

A measurement of the inelastic proton-proton cross section with the CMS detector at a center-of-mass energy of $\sqrt{s} =$ 13 TeV is presented. The analysis is based on events with energy deposits in the forward calorimeters, which cover pseudorapidities of -6.6 $&lt; \eta $ 4.1 GeV and/or $M_\mathrm{Y} &gt;$ 13 GeV, where $M_\mathrm{X}$ and $M_\mathrm{Y}$ are the masses of the diffractive dissociation systems at negative and positive pseudorapidities, respectively. The results are compared with those from other experiments as well as to predictions from high-energy hadron-hadron interaction models.

1 data table

The measured fiducial cross sections. The first bin represents the $\xi > 10^{-6}$ region, while the second bin represents the extended $\xi_{X} > 10^{-7}$ or $\xi_{Y} > 10^{-6}$ result. The first uncertainty is the systematic uncertainty excluding luminosity, the second is the luminosity uncertainty.


Version 2
Measurement of the jet mass distribution and top quark mass in hadronic decays of boosted top quarks in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 124 (2020) 202001, 2020.
Inspire Record 1764472 DOI 10.17182/hepdata.93067

A measurement is reported of the jet mass distribution in hadronic decays of boosted top quarks produced in pp collisions at $\sqrt{s} =$ 13 TeV. The data were collected with the CMS detector at the LHC and correspond to an integrated luminosity of 35.9 fb$^{-1}$. The measurement is performed in the lepton+jets channel of $\mathrm{t\bar{t}}$ events, where the lepton is an electron or muon. The products of the hadronic top quark decay t $\to$ bW $\to$ bq$\mathrm{\bar{q}}'$ are reconstructed as a single jet with transverse momentum larger than 400 GeV. The $\mathrm{t\bar{t}}$ cross section as a function of the jet mass is unfolded at the particle level and used to extract a value of the top quark mass of 172.6 $\pm$ 2.5 GeV. A novel jet reconstruction technique is used for the first time at the LHC, which improves the precision by a factor of three relative to an earlier measurement. This highlights the potential of measurements using boosted top quarks, where the new technique will enable future precision measurements.

17 data tables

Reconstructed distribution of $m_\mathrm{jet}$ after the full event selection in the lepton+jets channel.

The particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section in the fiducial region as a function of the XCone-jet mass.

The particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section in the fiducial region as a function of the XCone-jet mass.

More…

Measurement of the jet mass distribution and top quark mass in hadronic decays of boosted top quarks in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 560, 2023.
Inspire Record 2175946 DOI 10.17182/hepdata.130712

A measurement of the jet mass distribution in hadronic decays of Lorentz-boosted top quarks is presented. The measurement is performed in the lepton+jets channel of top quark pair production ($\mathrm{t\bar{t}}$) events, where the lepton is an electron or muon. The products of the hadronic top quark decay are reconstructed using a single large-radius jet with transverse momentum greater than 400 GeV. The data were collected with the CMS detector at the LHC in proton-proton collisions and correspond to an integrated luminosity of 138 fb$^{-1}$. The differential $\mathrm{t\bar{t}}$ production cross section as a function of the jet mass is unfolded to the particle level and is used to extract the top quark mass. The jet mass scale is calibrated using the hadronic W boson decay within the large-radius jet. The uncertainties in the modelling of the final state radiation are reduced by studying angular correlations in the jet substructure. These developments lead to a significant increase in precision, and a top quark mass of 173.06 $\pm$ 0.84 GeV.

14 data tables

The particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section in the fiducial region as a function of the XCone-jet mass.

Correlations between bins in the particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section as a function of the XCone-jet mass.

The covariance matrix containing the statistical uncertainties of the particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section as a function of the XCone-jet mass.

More…