a_1(1260) dominance in the process e+e- \to 4\pi at energies 1.05--1.38 GeV

The CMD-2 collaboration Akhmetshin, R.R. ; Anashkin, E.V. ; Arpagaus, M. ; et al.
Phys.Lett.B 466 (1999) 392-402, 1999.
Inspire Record 483994 DOI 10.17182/hepdata.50145

First results of the study of the process e+e- \to 4\pi by the CMD-2 collaboration at VEPP-2M are presented for the energy range 1.05--1.38 GeV. Using an integrated luminosity of 5.8 pb^{-1}, energy dependence of the processes e+e- \to \pi^+\pi^- 2\pi^0 and e+e- \to 2\pi^+ 2\pi^- has been measured. Analysis of the differential distributions demonstrates the dominance of the a_1\pi and \omega\pi intermediate states. Upper limits for the contributions of other alternative mechanisms are also placed.

3 data tables

Energy dependence of the cross section for the 2PI+ 2PI- final state. Statistical errors only.

Energy dependence of the cross section for the PI+ PI- 2PI0 final state. Statistical errors only.

Energy dependence of the cross section for the OMEGA PI0 final state. Statistical errors only.


Study of the $\phi$ decays into $\pi^0\pi^0\gamma$ and $\eta\pi^0\gamma$ final states

The CMD-2 collaboration Akhmetshin, R.R. ; Anashkin, E.V. ; Arpagaus, M. ; et al.
Phys.Lett.B 462 (1999) 380, 1999.
Inspire Record 503232 DOI 10.17182/hepdata.41563

Radiative decays of the $\phi$ meson have been studied using a data sample of about 19 million $\phi$ decays collected by the CMD-2 detector at VEPP-2M collider in Novosibirsk. From selected $e^+e^-\to\pi^{0}\pi^{0}\gamma$ and $e^+e^-\to\eta\pi^{0}\gamma$ events the following model independent results have been obtained: \par $Br(\phi\to\pi^{0}\pi^{0}\gamma) = (0.92\pm 0.08\pm0.06)\times10^{-4}$ for $M_{\pi^{0}\pi^{0}}>700$ MeV, \par $Br(\phi\to\eta\pi^{0}\gamma) = (0.90\pm 0.24\pm 0.10)\times10^{-4}$. It is shown that the intermediate mechanism $f_{0}(980)\gamma$ dominates in the $\phi\to\pi^{0}\pi^{0}\gamma$ decay and the corresponding branching ratio is \par $Br(\phi\to f_{0}(980)\gamma)=(2.90\pm 0.21\pm1.54)\times10^{-4}$. The systematic error is dominated by the possible model uncertainty. \par Using the same data sample the upper limit has been obtained for the P- and CP-violating decay of $\eta$ at 90% CL: \par $Br(\eta\to\pi^{0}\pi^{0}) < 4.3\times10^{-4}$ >.

1 data table

Non-resonant cross section.