A search for $t\bar{t}$ resonances using lepton-plus-jets events in proton-proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 08 (2015) 148, 2015.
Inspire Record 1373299 DOI 10.17182/hepdata.70548

A search for new particles that decay into top quark pairs is reported. The search is performed with the ATLAS experiment at the LHC using an integrated luminosity of 20.3 fb$^{-1}$ of proton-proton collision data collected at a centre-of-mass energy of $\sqrt{s}=8$ TeV. The lepton-plus-jets final state is used, where the top pair decays to $W^+bW^-\bar{b}$, with one $W$ boson decaying leptonically and the other hadronically. The invariant mass spectrum of top quark pairs is examined for local excesses or deficits that are inconsistent with the Standard Model predictions. No evidence for a top quark pair resonance is found, and 95% confidence-level limits on the production rate are determined for massive states in benchmark models. The upper limits on the cross-section times branching ratio of a narrow $Z'$ boson decaying to top pairs range from 4.2 pb to 0.03 pb for resonance masses from 0.4 TeV to 3.0 TeV. A narrow leptophobic topcolour $Z'$ boson with mass below 1.8 TeV is excluded. Upper limits are set on the cross-section times branching ratio for a broad colour-octet resonance with $\Gamma/m =$ 15% decaying to $t\bar{t}$. These range from 2.5 pb to 0.03 pb for masses from 0.4 TeV to 3.0 TeV. A Kaluza-Klein excitation of the gluon in a Randall-Sundrum model is excluded for masses below 2.2 TeV.

16 data tables

Selection efficiency x Acceptance for a Z' resonance.

Selection efficiency x Acceptance for a KK gluon resonance.

Selection efficiency x Acceptance for a KK graviton resonance.

More…

Differential top-antitop cross-section measurements as a function of observables constructed from final-state particles using pp collisions at $\sqrt{s}=7$ TeV in the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 06 (2015) 100, 2015.
Inspire Record 1345452 DOI 10.17182/hepdata.77064

Various differential cross-sections are measured in top-quark pair ($t\bar{t}$) events produced in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 7$ TeV at the LHC with the ATLAS detector. These differential cross-sections are presented in a data set corresponding to an integrated luminosity of $4.6$ fb$^{-1}$. The differential cross-sections are presented in terms of kinematic variables, such as momentum, rapidity and invariant mass, of a top-quark proxyreferred to as the pseudo-top-quark as well as the pseudo-top-quark pair system. The dependence of the measurement on theoretical models is minimal. The measurements are performed on $t\bar{t}$ events in the lepton+jets channel, requiring exactly one charged lepton and at least four jets with at least two of them tagged as originating from a $b$-quark. The hadronic and leptonic pseudo-top-quarks are defined via the leptonic or hadronic decay mode of the $W$ boson produced by the top-quark decay in events with a single charged lepton. Differential cross-section measurements of the pseudo-top-quark variables are compared with several Monte Carlo models that implement next-to-leading order or leading-order multi-leg matrix-element calculations.

21 data tables

Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the hadronic pseudo-top-quark $p_{\mathrm{T}}(\hat{t}_{\mathrm{h}})$in the muon channel. The results shown in this table are one of the inputs for the combined results.

Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the hadronic pseudo-top-quark $p_{\mathrm{T}}(\hat{t}_{\mathrm{h}})$ in the electron channel. The results shown in this table are one of the inputs for the combined results.

Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the hadronic pseudo-top-quark $|y(\hat{t}_{\mathrm{h}})|$ in the muon channel. The results shown in this table are one of the inputs for the combined results.

More…

First Measurement of the Cross Section for Top-Quark Pair Production in Proton-Proton Collisions at sqrt(s)=7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Phys.Lett.B 695 (2011) 424-443, 2011.
Inspire Record 874738 DOI 10.17182/hepdata.63811

The first measurement of the cross section for top-quark pair production in pp collisions at the LHC at center-of-mass energy sqrt(s)= 7 TeV has been performed using 3.1 {\pm} 0.3 inverse pb of data recorded by the CMS detector. This result utilizes the final state with two isolated, highly energetic charged leptons, large missing transverse energy, and two or more jets. Backgrounds from Drell-Yan and non-W/Z boson production are estimated from data. Eleven events are observed in the data with 2.1 {\pm} 1.0 events expected from background. The measured cross section is 194 {\pm} 72 (stat.) {\pm} 24 (syst.) {\pm} 21 (lumi.) pb, consistent with next-to-leading order predictions.

1 data table

Total cross section. The second systematic error represents the uncertainty on the luminosity.


Inclusive and differential measurements of the t t-bar charge asymmetry in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 757 (2016) 154-179, 2016.
Inspire Record 1382590 DOI 10.17182/hepdata.68759

The t t-bar charge asymmetry is measured in proton-proton collisions at a centre-of-mass energy of 8 TeV. The data, collected with the CMS experiment at the LHC, correspond to an integrated luminosity of 19.7 inverse femtobarns. Selected events contain an electron or a muon and four or more jets, where at least one jet is identified as originating from b-quark hadronization. The inclusive charge asymmetry is found to be 0.0010 +/- 0.0068 (stat) +/- 0.0037 (syst). In addition, differential charge asymmetries as a function of rapidity, transverse momentum, and invariant mass of the t t-bar system are studied. For the first time at the LHC, the measurements are also performed in a reduced fiducial phase space of top quark pair production, with an integrated result of -0.0035 +/- 0.0072 (stat) +/- 0.0031 (syst). All measurements are consistent within two standard deviations with zero asymmetry as well as with the predictions of the standard model.

16 data tables

Corrected asymmetry as a function of $|y_\mathrm{t\bar{t}}|$ in the fiducial phase space. The value 9999 is used as a placeholder for infinity. The correlation matrix for these values can be found in a separate table.

Correlation matrix for the asymmetries as a function of $|y_\mathrm{t\bar{t}}|$ in the fiducial phase space. Both statistical and systematic effects are considered.

Corrected asymmetry as a function of $p_\text{T}^\mathrm{t\bar{t}}$ in the fiducial phase space. The value 9999 is used as a placeholder for infinity. The correlation matrix for these values can be found in a separate table.

More…

Measurement of $K_S^0$ and $\Lambda^0$ production in $t \bar{t}$ dileptonic events in $pp$ collisions at $\sqrt{s} =$ 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 1017, 2019.
Inspire Record 1746286 DOI 10.17182/hepdata.91243

Measurements of $K_S^0$ and $\Lambda^0$ production in $t\bar{t}$ final states have been performed. They are based on a data sample with integrated luminosity of 4.6 $\mathrm{fb}^{-1}$ from proton-proton collisions at a centre-of-mass energy of 7 TeV, collected in 2011 with the ATLAS detector at the Large Hadron Collider. Neutral strange particles are separated into three classes, depending on whether they are contained in a jet, with or without a $b$-tag, or not associated with a selected jet. The aim is to look for differences in their main kinematic distributions. A comparison of data with several Monte Carlo simulations using different hadronisation and fragmentation schemes, colour reconnection models and different tunes for the underlying event has been made. The production of neutral strange particles in $t\bar{t}$ dileptonic events is found to be well described by current Monte Carlo models for $K_S^0$ and $\Lambda^0$ production within jets, but not for those produced outside jets.

22 data tables

The transverse momentum ($p_{T}$) distribution for $K^{0}_{S}$ production inside $b$-jets for unfolded data to particle level, normalised to the total number of top pair dileptonic events and scaled to the bin width. The systematic uncertainties are, in order, due to; the MC modelling, the tracking inefficiencies, the jet energy scale (JES), the jet energy resolution (JER), out-of-fiducial events and the unfolding non-closure.

The energy fraction ($x_{K}$) distribution for $K^{0}_{S}$ production inside $b$-jets for unfolded data to particle level, normalised to the total number of top pair dileptonic events and scaled to the bin width. The systematic uncertainties are, in order, due to; the MC modelling, the tracking ineficiencies, the jet energy scale (JES), the jet energy resolution (JER), out-of-fiducial events and the unfolding non-closure.

The energy distribution for $K^{0}_{S}$ production inside $b$-jets for unfolded data to particle level, normalised to the total number of top pair dileptonic events and scaled to the bin width. The systematic uncertainties are, in order, due to; the MC modelling, the tracking ineficiencies, the jet energy scale (JES), the jet energy resolution (JER), out-of-fiducial events and the unfolding non-closure.

More…

Measurement of colour flow with the jet pull angle in $t\bar{t}$ events using the ATLAS detector at $\sqrt{s}=8$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 750 (2015) 475-493, 2015.
Inspire Record 1376945 DOI 10.17182/hepdata.71235

The distribution and orientation of energy inside jets is predicted to be an experimental handle on colour connections between the hard--scatter quarks and gluons initiating the jets. This Letter presents a measurement of the distribution of one such variable, the jet pull angle. The pull angle is measured for jets produced in $t\bar{t}$ events with one $W$ boson decaying leptonically and the other decaying to jets using 20.3 fb$^{-1}$ of data recorded with the ATLAS detector at a centre-of-mass energy of $\sqrt{s}=8$ TeV at the LHC. The jet pull angle distribution is corrected for detector resolution and acceptance effects and is compared to various models.

6 data tables

Normalised fiducial ttbar differential cross-section for the jet pull angle distribution constructed using all particles.

Normalised fiducial ttbar differential cross-section for the jet pull angle distribution constructed using charged particles.

Statistical bin-bin correlation matrix.

More…

Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton-proton collisions at 13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 95 (2017) 092001, 2017.
Inspire Record 1491950 DOI 10.17182/hepdata.76554

Differential and double-differential cross sections for the production of top quark pairs in proton-proton collisions at 13 TeV are measured as a function of jet multiplicity and of kinematic variables of the top quarks and the top quark-antiquark system. This analysis is based on data collected by the CMS experiment at the LHC corresponding to an integrated luminosity of 2.3 inverse femtobarns. The measurements are performed in the lepton+jets decay channels with a single muon or electron in the final state. The differential cross sections are presented at particle level, within a phase space close to the experimental acceptance, and at parton level in the full phase space. The results are compared to several standard model predictions.

164 data tables

Absolute cross section at particle level.

Covariance matrix of absolute cross section at particle level.

Absolute cross section at particle level.

More…

Measurement of double-differential cross sections for top quark pair production in pp collisions at sqrt(s) = 8 TeV and impact on parton distribution functions

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 77 (2017) 459, 2017.
Inspire Record 1516191 DOI 10.17182/hepdata.77008

Normalized double-differential cross sections for top quark pair (t t-bar) production are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 19.7 inverse femtobarns. The measurement is performed in the dilepton e+/- mu-/+ final state. The t t-bar cross section is determined as a function of various pairs of observables characterizing the kinematics of the top quark and t t-bar system. The data are compared to calculations using perturbative quantum chromodynamics at next-to-leading and approximate next-to-next-to-leading orders. They are also compared to predictions of Monte Carlo event generators that complement fixed-order computations with parton showers, hadronization, and multiple-parton interactions. Overall agreement is observed with the predictions, which is improved when the latest global sets of proton parton distribution functions are used. The inclusion of the measured t t-bar cross sections in a fit of parametrized parton distribution functions is shown to have significant impact on the gluon distribution.

18 data tables

The measured normalized $t\bar{t}$ double-differential cross sections in different bins of $y(t)$ and $p_{T}(t)$, along with their relative statistical and systematic uncertainties expressed as percentages.

The correlation matrix of statistical uncertainties for the normalized $t\bar{t}$ double-differential cross sections as a function of $y(t)$ and $p_{T}(t)$. The values are expressed as percentages. For bin indices see Table 5.

Sources and values of the relative systematic uncertainties in percent of the measured normalized $t\bar{t}$ double-differential cross sections as a function of $y(t)$ and $p_{T}(t)$. For bin indices see Table 5.

More…

Measurement of forward top pair production in the dilepton channel in $pp$ collisions at $\sqrt{s}=13$ TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 08 (2018) 174, 2018.
Inspire Record 1662483 DOI 10.17182/hepdata.97367

Forward top quark pair production is studied in $pp$ collisions in the $\mu eb$ final state using a data sample corresponding to an integrated luminosity of 1.93 fb$^{-1}$ collected with the LHCb experiment at a centre-of-mass energy of 13 TeV. The cross-section is measured in a fiducial region where both leptons have a transverse momentum greater than 20 GeV and a pseudorapidity between 2.0 and 4.5. The quadrature sum of the azimuthal separation and the difference in pseudorapidities, denoted $\Delta R$, between the two leptons must be larger than 0.1. The $b$-jet axis is required to be separated from both leptons by a $\Delta R$ of 0.5, and to have a transverse momentum in excess of 20 GeV and a pseudorapidity between 2.2 and 4.2. The cross-section is measured to be $$\sigma_{t\bar{t}}= 126\pm19\,(\mathrm{stat})\pm16\,(\mathrm{syst})\pm5\,(\mathrm{lumi})\,\,\mathrm{ fb}$$ where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measurement is compatible with the Standard Model prediction.

1 data table

The measured fiducial cross section. The uncertainty is split into statistical, systematic and uncertainty due to luminosity.


Measurement of jet multiplicity distributions in t t-bar production in pp collisions at $\sqrt{s}$ = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 74 (2015) 3014, 2015.
Inspire Record 1290126 DOI 10.17182/hepdata.64426

The normalised differential top quark-antiquark production cross section is measured as a function of the jet multiplicity in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC with the CMS detector. The measurement is performed in both the dilepton and lepton + jets decay channels using data corresponding to an integrated luminosity of 5.0 inverse femtobarns. Using a procedure to associate jets to decay products of the top quarks, the differential cross section of the t t-bar production is determined as a function of the additional jet multiplicity in the lepton + jets channel. Furthermore, the fraction of events with no additional jets is measured in the dilepton channel, as a function of the threshold on the jet transverse momentum. The measurements are compared with predictions from perturbative quantum chromodynamics and no significant deviations are observed.

6 data tables

Normalised differential TOP TOPBAR production cross section as a function of the jet multiplicity for jets with PT(JET) > 30 GeV in the dilepton channel. The statistical and main experimental and model systematic uncertainties are displayed.

Normalised differential TOP TOPBAR production cross section as a function of the jet multiplicity for jets with PT(JET) > 60 GeV in the dilepton channel. The statistical and main experimental and model systematic uncertainties are displayed.

Normalised differential TOP TOPBAR production cross section as a function of the jet multiplicity for jets with PT(JET) > 35 GeV in the lepton+jets channel. The statistical and main experimental and model systematic uncertainties are displayed.

More…

Measurement of jet shapes in top pair events at sqrt(s) = 7 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Eur.Phys.J.C 73 (2013) 2676, 2013.
Inspire Record 1243871 DOI 10.17182/hepdata.62685

A measurement of jet shapes in top-quark pair events using 1.8 fb$^{-1}$ of $\sqrt{s}$ = 7 TeV pp collision data recorded by the ATLAS detector is presented. Samples of top-quark pair events are selected in both the single-lepton and dilepton final states. The differential and integrated shapes of the jets initiated by bottom-quarks from the top-quark decays are compared with those of the jets originated by light-quarks from the hadronic W-boson decays $W \to q\bar{q}'$ in the single-lepton channel. The light-quark jets are found to have a narrower distribution of the momentum flow inside the jet area than b-quark jets.

10 data tables

Differential jet shape as a function of the radius r for the PT range 30-40 GeV.

Integrated jet shape as a function of the radius r for the PT range 30-40 GeV.

Differential jet shape as a function of the radius r for the PT range 40-50 GeV.

More…

Version 2
Measurement of jet substructure observables in $\mathrm{t\overline{t}}$ events from proton-proton collisions at $\sqrt{s} =$ 13TeV

The CMS collaboration Sirunyan, A. M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 98 (2018) 092014, 2018.
Inspire Record 1690148 DOI 10.17182/hepdata.84716

A measurement of jet substructure observables is presented using \ttbar events in the lepton+jets channel from proton-proton collisions at $\sqrt{s}=$ 13 TeV recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Multiple jet substructure observables are measured for jets identified as bottom, light-quark, and gluon jets, as well as for inclusive jets (no flavor information). The results are unfolded to the particle level and compared to next-to-leading-order predictions from POWHEG interfaced with the parton shower generators PYTHIA 8 and HERWIG 7, as well as from SHERPA 2 and DIRE2. A value of the strong coupling at the Z boson mass, $\alpha_S(m_\mathrm{Z}) = $ 0.115$^{+0.015}_{-0.013}$, is extracted from the substructure data at leading-order plus leading-log accuracy.

264 data tables

Distribution of $\lambda_{0}^{0}$ (N) reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.

Distribution of $\lambda_{0}^{0}$ (N) reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.

Distribution of $\lambda_{0}^{2}$ ($p_{T}^{d,*})$ reconstructed from charged particles with pt > 1 GeV, unfolded to the particle level.

More…

Version 2
Measurement of lepton differential distributions and the top quark mass in $t\bar{t}$ production in $pp$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 804, 2017.
Inspire Record 1626105 DOI 10.17182/hepdata.77890

This paper presents single lepton and dilepton kinematic distributions measured in dileptonic $t\bar{t}$ events produced in 20.2 fb$^{-1}$ of $\sqrt{s}=8$ TeV $pp$ collisions recorded by the ATLAS experiment at the LHC. Both absolute and normalised differential cross-sections are measured, using events with an opposite-charge $e\mu$ pair and one or two $b$-tagged jets. The cross-sections are measured in a fiducial region corresponding to the detector acceptance for leptons, and are compared to the predictions from a variety of Monte Carlo event generators, as well as fixed-order QCD calculations, exploring the sensitivity of the cross-sections to the gluon parton distribution function. Some of the distributions are also sensitive to the top quark pole mass; a combined fit of NLO fixed-order predictions to all the measured distributions yields a top quark mass value of $m_t^{\rm pole}=173.2\pm 0.9\pm0.8\pm1.2$ GeV, where the three uncertainties arise from data statistics, experimental systematics, and theoretical sources.

32 data tables

Absolute differential cross-section in the fiducial region as a function of lepton pT. The first column gives the cross-section including contributions from leptonic tau decays, the second without. Systematic uncertainties are given for ttbar modelling (ttmod), lepton calibration (lept), jet and b-tagging calibration (jet), backgrounds (bkg) and integrated luminosity and beam energy (leb).

Absolute differential cross-section in the fiducial region as a function of lepton pT. The first column gives the cross-section including contributions from leptonic tau decays, the second without. Systematic uncertainties are given for ttbar modelling (ttmod), lepton calibration (lept), jet and b-tagging calibration (jet), backgrounds (bkg) and integrated luminosity and beam energy (leb).

Normalised differential cross-section in the fiducial region as a function of lepton pT. The first column gives the cross-section including contributions from leptonic tau decays, the second without. Systematic uncertainties are given for ttbar modelling (ttmod), lepton calibration (lept), jet and b-tagging calibration (jet), backgrounds (bkg) and integrated luminosity and beam energy (leb).

More…

Measurement of normalized differential t-tbar cross sections in the dilepton channel from pp collisions at sqrt(s) = 13 TeV

The CMS collaboration Sirunyan, A.M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 04 (2018) 060, 2018.
Inspire Record 1620050 DOI 10.17182/hepdata.81686

Normalized differential cross sections for top quark pair production are measured in the dilepton (e$^+$e$^-$, $\mu^+\mu^-$, and $\mu^\mp$e$^\pm$) decay channels in proton-proton collisions at a center-of-mass energy of 13 TeV. The measurements are performed with data corresponding to an integrated luminosity of 2.1 fb$^{-1}$ using the CMS detector at the LHC. The cross sections are measured differentially as a function of the kinematic properties of the leptons, jets from bottom quark hadronization, top quarks, and top quark pairs at the particle and parton levels. The results are compared to several Monte Carlo generators that implement calculations up to next-to-leading order in perturbative quantum chromodynamics interfaced with parton showering, and also to fixed-order theoretical calculations of top quark pair production up to next-to-next-to-leading order.

28 data tables

Normalized differential ttbar cross sections with statistical and systematic uncertainties at the particle level as a function of pt(lepton).

Normalized differential ttbar cross sections with statistical and systematic uncertainties at the particle level as a function of pt(jet).

Normalized differential ttbar cross sections with statistical and systematic uncertainties at the particle level as a function of pt(top).

More…

Measurement of spin correlations in t t-bar production using the matrix element method in the muon + jets final state in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 758 (2016) 321-346, 2016.
Inspire Record 1405439 DOI 10.17182/hepdata.70230

The consistency of the spin correlation strength in top quark pair production with the standard model (SM) prediction is tested in the muon + jets final state. The events are selected from pp collisions, collected by the CMS detector, at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 inverse femtobarns. The data are compared with the expectation for the spin correlation predicted by the SM and with the expectation of no correlation. Using a template fit method, the fraction of events that show SM spin correlations is measured to be 0.72 +/- 0.08 (stat) +0.15 -0.13 (syst), representing the most precise measurement of this quantity in the lepton + jets final state to date.

1 data table

The result of the template fit of distributions for uncorrelated and SM-like correlated ttbar spins.


Measurement of t-tbar production with additional jet activity, including b quark jets, in the dilepton channel using pp collisions at sqrt(s) = 8TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 76 (2016) 379, 2016.
Inspire Record 1397174 DOI 10.17182/hepdata.70880

Jet multiplicity distributions in top quark pair (t t-bar) events are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC using a data set corresponding to an integrated luminosity of 19.7 inverse femtobarns. The measurement is performed in the dilepton decay channels (e+ e-, mu+ mu-, and e+/- mu-/+). The absolute and normalized differential cross sections for t t-bar production are measured as a function of the jet multiplicity in the event for different jet transverse momentum thresholds and the kinematic properties of the leading additional jets. The differential t t-bar b and t t-bar b b-bar cross sections are presented for the first time as a function of the kinematic properties of the leading additional b jets. Furthermore, the fraction of events without additional jets above a threshold is measured as a function of the transverse momenta of the leading additional jets and the scalar sum of the transverse momenta of all additional jets. The data are compared and found to be consistent with predictions from several perturbative quantum chromodynamics event generators and a next-to-leading order calculation.

76 data tables

Absolute differential ttbar cross sections as a function of the jet multiplicity for jets with pt > 30GeV, along with their statistical and systematic uncertainties. The results are presented at the particle level in the visible phase space of the ttbar decay products and the additional jets.

Normalized differential ttbar cross sections as a function of the jet multiplicity for jets with pt > 30GeV, along with their statistical and systematic uncertainties. The results are presented at the particle level in the visible phase space of the ttbar decay products and the additional jets.

Absolute differential ttbar cross sections as a function of the jet multiplicity for jets with pt > 60GeV, along with their statistical and systematic uncertainties. The results are presented at the particle level in the visible phase space of the ttbar decay products and the additional jets.

More…

Measurement of the $t\bar{t}$ production cross-section as a function of jet multiplicity and jet transverse momentum in 7 TeV proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 01 (2015) 020, 2015.
Inspire Record 1304688 DOI 10.17182/hepdata.18665

The $t\bar{t}$ production cross-section dependence on jet multiplicity and jet transverse momentum is reported for proton--proton collisions at a centre-of-mass energy of 7 TeV in the single-lepton channel. The data were collected with the ATLAS detector at the CERN Large Hadron Collider and comprise the full 2011 data sample corresponding to an integrated luminosity of 4.6 fb$^{-1}$. Differential cross-sections are presented as a function of the jet multiplicity for up to eight jets using jet transverse momentum thresholds of 25, 40, 60, and 80 GeV, and as a function of jet transverse momentum up to the fifth jet. The results are shown after background subtraction and corrections for all detector effects, within a kinematic range closely matched to the experimental acceptance. Several QCD-based Monte Carlo models are compared with the results. Sensitivity to the parton shower modelling is found at the higher jet multiplicities, at high transverse momentum of the leading jet and in the transverse momentum spectrum of the fifth leading jet. The MC@NLO+HERWIG MC is found to predict too few events at higher jet multiplicities.

9 data tables

Measurement of the $t\overline{t}$ cross-section as a function of the jet multiplicity for jets with $p_{\mathrm{T}}$ larger than 25 GeV. The uncertainties given correspond to the individual contributions of each source of systematic uncertainty as described in the paper.

Measurement of the $t\overline{t}$ cross-section as a function of the jet multiplicity for jets with $p_{\mathrm{T}}$ larger than 40 GeV. The uncertainties given correspond to the individual contributions of each source of systematic uncertainty as described in the paper.

Measurement of the $t\overline{t}$ cross-section as a function of the jet multiplicity for jets with $p_{\mathrm{T}}$ larger than 60 GeV. The uncertainties given correspond to the individual contributions of each source of systematic uncertainty as described in the paper.

More…

Version 2
Measurement of the $t\bar{t}$ production cross-section in the lepton+jets channel at $\sqrt{s}=13\;$TeV with the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 810 (2020) 135797, 2020.
Inspire Record 1802524 DOI 10.17182/hepdata.95748

The $t\bar{t}$ production cross-section is measured in the lepton+jets channel using proton$-$proton collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV collected with the ATLAS detector at the LHC. The dataset corresponds to an integrated luminosity of 139 fb$^{-1}$. Events with exactly one charged lepton and four or more jets in the final state, with at least one jet containing $b$-hadrons, are used to determine the $t\bar{t}$ production cross-section through a profile-likelihood fit. The inclusive cross-section is measured to be ${\sigma_{\text{inc}} = 830 \pm 0.4~ \text{(stat.)}\pm 36~\text{(syst.)}\pm 14~\text{(lumi.)}~\mathrm{pb}}$ with a relative uncertainty of 4.6 %. The result is consistent with theoretical calculations at next-to-next-to-leading order in perturbative QCD. The fiducial $t\bar{t}$ cross-section within the experimental acceptance is also measured.

10 data tables

The results of fitted inclusive and fiducial ${t\bar{t}}$ cross-sections

The results of fitted inclusive and fiducial ${t\bar{t}}$ cross-sections

Ranking of the systematic uncertainties on the measured cross-section, normalised to the predicted value, in the inclusive fit to data. The impact of each nuisance parameter, $\Delta \sigma_{\text{inc}}/\sigma^{\text{pred.}}_{\text{inc}}$, is computed by comparing the nominal best-fit value of $\sigma_{\text{inc}}/\sigma^{\text{pred}}_{\text{inc}}$ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $\theta$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \theta$ ($\pm \Delta \hat{\theta}$). The figure shows the effect of the ten most significant uncertainties.

More…

Measurement of the $t\bar{t}$ production cross-section using $e\mu$ events with $b$-tagged jets in $pp$ collisions at $\sqrt{s}=7$ and 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 74 (2014) 3109, 2014.
Inspire Record 1301856 DOI 10.17182/hepdata.65210

The inclusive top quark pair ($t\bar{t}$) production cross-section $\sigma_{t\bar{t}}$ has been measured in $pp$ collisions at $\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV with the ATLAS experiment at the LHC, using $t\bar{t}$ events with an opposite-charge $e\mu$ pair in the final state. The measurement was performed with the 2011 7 TeV dataset corresponding to an integrated luminosity of 4.6 fb$^{-1}$ and the 2012 8 TeV dataset of 20.3 fb$^{-1}$. The cross-section was measured to be: $\sigma_{t\bar{t}}=182.9\pm 3.1\pm 4.2\pm 3.6 \pm 3.3$ pb ($\sqrt{s}=7$ TeV) and $\sigma_{t\bar{t}}=242.9\pm 1.7\pm 5.5\pm 5.1\pm 4.2$ pb ($\sqrt{s}=8$ TeV, updated as described in the Addendum), where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the knowledge of the integrated luminosity and of the LHC beam energy. The results are consistent with recent theoretical QCD calculations at next-to-next-to-leading order. Fiducial measurements corresponding to the experimental acceptance of the leptons are also reported, together with the ratio of cross-sections measured at the two centre-of-mass energies. The inclusive cross-section results were used to determine the top quark pole mass via the dependence of the theoretically-predicted cross-section on $m_t^{\rm pole}$, giving a result of $m_t^{\rm pole}=172.9^{+2.5}_{-2.6}$ GeV. By looking for an excess of $t\bar{t}$ production with respect to the QCD prediction, the results were also used to place limits on the pair-production of supersymmetric top squarks $\tilde{t}_1$ with masses close to the top quark mass decaying via $\tilde{t}_1\rightarrow t\tilde{\chi}^0_1$ to predominantly right-handed top quarks and a light neutralino $\tilde{\chi}_0^1$, the lightest supersymmetric particle. Top squarks with masses between the top quark mass and 177 GeV are excluded at the 95% confidence level.

3 data tables

95% CL exclusion limit on signal strength.

95% CL exclusion limit on signal cross section for the 7 TeV dataset.

95% CL exclusion limit on signal cross section for the 8 TeV dataset.


Measurement of the $t\bar{t}$ production cross-section using $e\mu$ events with b-tagged jets in pp collisions at $\sqrt{s}$=13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 761 (2016) 136-157, 2016.
Inspire Record 1468168 DOI 10.17182/hepdata.73120

This paper describes a measurement of the inclusive top quark pair production cross-section ($\sigma_{t\bar{t}}$) with a data sample of 3.2 fb$^{-1}$ of proton--proton collisions at a centre-of-mass energy of $\sqrt{s}$=13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron--muon pair in the final state. Jets containing $b$-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two $b$-tagged jets are counted and used to determine simultaneously $\sigma_{t\bar{t}}$ and the efficiency to reconstruct and $b$-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: $\sigma_{t\bar{t}}$= 818 $\pm$ 8 (stat) $\pm$ 27 (syst) $\pm$ 19 (lumi) $\pm$ 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented.

2 data tables

Measured cross-section for $t\bar{t}$ events using $e\mu$ events with b-tagged jets in pp collisions at $\sqrt{s}$=13 TeV.

Measured fiducial cross-section for $t\bar{t}$ events producing an $e\mu$ pair, each lepton originating directly from t $\rightarrow$ W $\rightarrow$ l or via a leptonic $\tau$ decay t $\rightarrow$ W $\rightarrow$ $\tau$ $\rightarrow$ l and satisfying p$_{\mathrm{T}} > $ 25 GeV and $|\eta| <$ 2.5.


Measurement of the W boson helicity fractions in the decays of top quark pairs to lepton+jets final states produced in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 762 (2016) 512-534, 2016.
Inspire Record 1466294 DOI 10.17182/hepdata.74337

The W boson helicity fractions from top quark decays in t t-bar events are measured using data from proton-proton collisions at a centre-of-mass energy of 8 TeV. The data were collected in 2012 with the CMS detector at the LHC, corresponding to an integrated luminosity of 19.8 inverse femtobarns. Events are reconstructed with either one muon or one electron, along with four jets in the final state, with two of the jets being identified as originating from b quarks. The measured helicity fractions from both channels are combined, yielding F[0] = 0.681 +/- 0.012 (stat) +/- 0.023 (syst), F[L] = 0.323 +/- 0.008 (stat) +/- 0.014 (syst), and F[R] = -0.004 +/- 0.005 (stat) +/- 0.014 (syst) for the longitudinal, left-, and right-handed components of the helicity, respectively. These measurements of the W boson helicity fractions are the most accurate to date and they agree with the predictions from the standard model.

3 data tables

Measurement of the W longitudinal (F0), left- (FL) and righ- (FR) components of the boson helicity fractions from electron+jets final states in top quark pair decays. The helicity fractions F0 and FL are measured simultaneously and are strongly anti-correlated, with statistical correlation coefficient -0.950.

Measurement of the W longitudinal (F0), left- (FL) and righ- (FR) components of the boson helicity fractions from muon+jets final states in top quark pair decays. The helicity fractions F0 and FL are measured simultaneously and are strongly anti-correlated, with statistical correlation coefficient -0.957.

Measurement of the W longitudinal (F0), left- (FL) and righ- (FR) components of the boson helicity fractions from lepton+jets final states in top quark pair decays. The helicity fractions F0 and FL are measured simultaneously and are strongly anti-correlated, with statistical correlation coefficient -0.959, and total correlation, considering both statistical and systematic uncertainties, of -0.87.


Measurement of the charge asymmetry in highly boosted top-quark pair production in $\sqrt{s} =$ 8 TeV $pp$ collision data collected by the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 756 (2016) 52-71, 2016.
Inspire Record 1410588 DOI 10.17182/hepdata.77021

In the $pp \rightarrow t\bar{t}$ process the angular distributions of top and anti-top quarks are expected to present a subtle difference, which could be enhanced by processes not included in the Standard Model. This Letter presents a measurement of the charge asymmetry in events where the top-quark pair is produced with a large invariant mass. The analysis is performed on 20.3 fb$^{-1}$ of $pp$ collision data at $\sqrt{s} =$ 8 TeV collected by the ATLAS experiment at the LHC, using reconstruction techniques specifically designed for the decay topology of highly boosted top quarks. The charge asymmetry in a fiducial region with large invariant mass of the top-quark pair ($m_{t\bar{t}} > $ 0.75 TeV) and an absolute rapidity difference of the top and anti-top quark candidates within $-$2 $ < |y_t| - |y_{\bar{t}}| <$ 2 is measured to be 4.2 $\pm$ 3.2%, in agreement with the Standard Model prediction at next-to-leading order. A differential measurement in three $t\bar{t}$ mass bins is also presented.

1 data table

The measured charge asymmetry after the unfolding to parton level in four intervals of the invariant mass of the $t\bar{t}$ system. The phase space is limited to $|(\Delta |y|)|<$ 2. The uncertainties correspond to the sum in quadrature of statistical and systematic uncertainties (for the data) or to the theory uncertainty (for the SM prediction).


Measurement of the charge asymmetry in top quark pair production in pp collisions at sqrt(s) = 8 TeV using a template method

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 93 (2016) 034014, 2016.
Inspire Record 1388178 DOI 10.17182/hepdata.69208

The charge asymmetry in the production of top quark and antiquark pairs is measured in proton-proton collisions at a center-of-mass energy of 8 TeV. The data, corresponding to an integrated luminosity of 19.6 inverse femtobarns, were collected by the CMS experiment at the LHC. Events with a single isolated electron or muon, and four or more jets, at least one of which is likely to have originated from hadronization of a bottom quark, are selected. A template technique is used to measure the asymmetry in the distribution of differences in the top quark and antiquark absolute rapidities. The measured asymmetry is A[c,y] = [0.33 +/- 0.26 (stat) +/- 0.33 (syst)]%, which is the most precise result to date. The results are compared to calculations based on the standard model and on several beyond-the-standard-model scenarios.

1 data table

The measured $t\bar{t}$ production asymmetry $A_c^y$.


Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in $pp$ collision data at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 87, 2016.
Inspire Record 1392455 DOI 10.17182/hepdata.75528

This paper reports inclusive and differential measurements of the $t\bar{t}$ charge asymmetry $A_{\textrm{C}}$ in 20.3 fb$^{-1}$ of $\sqrt{s} = 8$ TeV $pp$ collisions recorded by the ATLAS experiment at the Large Hadron Collider at CERN. Three differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the $t\bar{t}$ system. The $t\bar{t}$ pairs are selected in the single-lepton channels ($e$ or $\mu$) with at least four jets, and a likelihood fit is used to reconstruct the $t\bar{t}$ event kinematics. A Bayesian unfolding procedure is performed to infer the asymmetry at parton level from the observed data distribution. The inclusive $t\bar{t}$ charge asymmetry is measured to be $A_{\textrm{C}} = 0.009 \pm 0.005$ (stat.$+$syst.). The inclusive and differential measurements are compatible with the values predicted by the Standard Model.

7 data tables

The inclusive $t\bar{t}$ production charge asymmetry, $A_C$, with statistical and systematic uncertainties combined.

Measured charge asymmetry, $A_C$, values for the electron and muon channels combined after unfolding as a function of the $t\bar{t}$ invariant mass, $m_{t\bar{t}}$. The quoted uncertainties include statistical and systematic components after the marginalisation.

Measured charge asymmetry, $A_C$, values for the electron and muon channels combined after unfolding as a function of the $t\bar{t}$ velocity along the z-axis, $\beta_{z,t\bar{t}}$. The quoted uncertainties include statistical and systematic components after the marginalisation.

More…

Measurement of the correlations between the polar angles of leptons from top quark decays in the helicity basis at $\sqrt{s}=7$TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 93 (2016) 012002, 2016.
Inspire Record 1400803 DOI 10.17182/hepdata.76911

A measurement of the correlations between the polar angles of leptons from the decay of pair-produced $t$ and $\bar{t}$ quarks in the helicity basis is reported, using proton-proton collision data collected by the ATLAS detector at the LHC. The dataset corresponds to an integrated luminosity of 4.6fb$^{-1}$ at a center-of-mass energy of $\sqrt{s}=7$TeV collected during 2011. Candidate events are selected in the dilepton topology with large missing transverse momentum and at least two jets. The angles $\theta_1$ and $\theta_2$ between the charged leptons and the direction of motion of the parent quarks in the $t\bar{t}$ rest frame are sensitive to the spin information, and the distribution of {\mbox{$\cos\theta_1\cdot\cos\theta_2$}} is sensitive to the spin correlation between the $t$ and $\bar{t}$ quarks. The distribution is unfolded to parton level and compared to the next-to-leading order prediction. A good agreement is observed.

2 data tables

The numerical summary of the unfolded $\cos\theta_1\cdot\cos\theta_2$ distribution, with statistical and systematic uncertainties.

The correlation factors for the statistical uncertainties between any two bins of the unfolded distribution.