Measurement of the primary Lund jet plane density in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-SMP-22-007, 2023.
Inspire Record 2741216 DOI 10.17182/hepdata.145874

A measurement is presented of the primary Lund jet plane (LJP) density in inclusive jet production in proton-proton collisions. The analysis uses 138 fb$^{-1}$ of data collected by the CMS experiment at $\sqrt{s}$ = 13 TeV. The LJP, a representation of the phase space of emissions inside jets, is constructed using iterative jet declustering. The transverse momentum $k_\mathrm{T}$ and the splitting angle $\Delta R$ of an emission relative to its emitter are measured at each step of the jet declustering process. The average density of emissions as function of $\ln(k_\mathrm{T}$/GeV) and $\ln(R/\Delta R)$ is measured for jets with distance parameters $R$ = 0.4 or 0.8, transverse momentum $p_\mathrm{T} \gt$ 700 GeV, and rapidity $\vert y\vert \lt $ 1.7. The jet substructure is measured using the charged-particle tracks of the jet. The measured distributions, unfolded to the level of stable particles, are compared with theoretical predictions from simulations and with perturbative quantum chromodynamics calculations. Due to the ability of the LJP to factorize physical effects, these measurements can be used to improve different aspects of the physics modeling in event generators.

4 data tables

Primary Lund jet plane density for AK4 jets in a one-dimensional representation with bin indices for MC tuning purposes. The mapping between the bin indices and the physical binning can be imported from the XML file attached to this HepData record using the TUnfoldBinningXML class of ROOT (qualitatively, it corresponds to slicing the Lund plane horizontally from low kT to high kT). All systematic uncertainties are bin-to-bin fully correlated (allowing for sign-changes bin-to-bin), with the exception of the statistical uncertainties from data and MC, for which a separate correlation matrix is provided in this HepData record.

Correlation matrix associated to the statistical covariance matrix of the data and MC for the primary Lund jet plane density for AK4 jets in a one-dimensional representation with bin indices. The mapping between the bin indices and the physical binning can be imported from the XML file attached to this HepData record using the TUnfoldBinningXML class of ROOT (qualitatively, it corresponds to slicing the Lund plane horizontally from low kT to high kT).

Primary Lund jet plane density for AK8 jets in a one-dimensional representation with bin indices for MC tuning purposes. The mapping between the bin indices and the physical binning can be imported from the XML file attached to this HepData record using the TUnfoldBinningXML class of ROOT (qualitatively, it corresponds to slicing the Lund plane horizontally from low kT to high kT). All systematic uncertainties are bin-to-bin fully correlated (allowing for sign-changes bin-to-bin), with the exception of the statistical uncertainties from data and MC, for which a separate correlation matrix is provided in this HepData record.

More…

Measurement of the production and lepton charge asymmetry of $\textit{W}$ bosons in Pb+Pb collisions at $\sqrt{s_{\mathrm{\mathbf{NN}}}}=$ 2.76 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 23, 2015.
Inspire Record 1311623 DOI 10.17182/hepdata.66358

A measurement of $\textit{W}$ boson production in lead-lead collisions at $\sqrt{s_{\mathrm{NN}}}=$2.76 TeV is presented. It is based on the analysis of data collected with the ATLAS detector at the LHC in 2011 corresponding to an integrated luminosity of 0.14 $\mathrm{nb}^{-1}$ and 0.15 $\mathrm{nb}^{-1}$ in the muon and electron decay channels, respectively. The differential production yields and lepton charge asymmetry are each measured as a function of the average number of participating nucleons $< N_{\mathrm{part}} >$ and absolute pseudorapidity of the charged lepton. The results are compared to predictions based on next-to-leading-order QCD calculations. These measurements are, in principle, sensitive to possible nuclear modifications to the parton distribution functions and also provide information on scaling of $\textit{W}$ boson production in multi-nucleon systems.

5 data tables

Ratio of W+ and W- candidates in $W\rightarrow \ell \nu_{\ell}$ as a function of the mean number of participants $N_{part}$.

$W^\pm$ boson production yield per binary collision as a function of the mean number of participants $N_{part}$.

Differential production yield per binary collision for $W^{+}$ bosons as a function of $|\eta_\ell|$.

More…

Measurement of the production cross section for W-bosons in association with jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 698 (2011) 325-345, 2011.
Inspire Record 882534 DOI 10.17182/hepdata.57048

This Letter reports on a first measurement of the inclusive W+jets cross section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC, with the ATLAS detector. Cross sections, in both the electron and muon decay modes of the W boson, are presented as a function of jet multiplicity and of the transverse momentum of the leading and next-to-leading jets in the event. Measurements are also presented of the ratio of cross sections sigma(W+ \ge n) / sigma(W+ \ge n-1) for inclusive jet multiplicities n=1-4. The results, based on an integrated luminosity of 1.3 pb-1, have been corrected for all known detector effects and are quoted in a limited and well-defined range of jet and lepton kinematics. The measured cross sections are compared to particle-level predictions based on perturbative QCD. Next-to-leading order calculations, studied here for n \le 2, are found in good agreement with the data. Leading-order multiparton event generators, normalized to the NNLO total cross section, describe the data well for all measured jet multiplicities.

8 data tables

The measured cross section times branching ratio for W+jets in the electron channel as a function of corrected jet multiplicity.

The measured cross section times branching ratio for W+jets in the muon channel as a function of corrected jet multiplicity.

The measured cross section ratio for W+jets in the electron channel as a function of corrected jet multiplicity.

More…

Measurement of the production cross section for Z + b jets in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 105 (2022) 092014, 2022.
Inspire Record 1992937 DOI 10.17182/hepdata.115490

The measurement of the cross section for the production of a Z boson, decaying to dielectrons or dimuons, in association with at least one bottom quark jet are performed with proton-proton collision data at $\sqrt{s} =$ 13 TeV. The data sample corresponds to an integrated luminosity of 137 fb$^{-1}$, collected by the CMS experiment at the LHC during 2016-2018. The integrated cross sections for Z + $\ge$ 1 b jet and Z + $\ge$ 2 b jets are reported for the electron, muon, and combined channels. The fiducial cross sections in the combined channel are 6.52 $\pm$ 0.04 (stat) $\pm$ 0.40 (syst) $\pm$ 0.14 (theo) pb for Z + $\ge$ 1 b jet and 0.65 $\pm$ 0.03 (stat) $\pm$ 0.07 (syst) $\pm$ 0.02 (theo) pb for Z + $\ge$ 2 b jets. The differential cross section distributions are measured as functions of various kinematic observables that are useful for precision tests of perturbative quantum chromodynamics predictions. The ratios of integrated and differential cross sections for Z + $\ge$ 2 b jets and Z + $\ge$ 1 b jet processes are also determined. The value of the integrated cross section ratio measured in the combined channel is 0.100 $\pm$ 0.005 (stat) $\pm$ 0.007 (syst) $\pm$ 0.003 (theo). All measurements are compared with predictions from various event generators.

32 data tables

Differential cross section distribution as a function of Z transverse momentum for the Z + >= 1 b jet events

Normalized differential cross section distribution as a function of Z transverse momentum for the Z + >= 1 b jet events

Differential cross section distribution as a function of the leading b jet transverse momentum for the Z +>= 1 b jet events

More…

Measurement of the production cross section for Z/gamma* in association with jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 85 (2012) 032009, 2012.
Inspire Record 945498 DOI 10.17182/hepdata.58228

Results are presented on the production of jets of particles in association with a Z/gamma* boson, in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector. The analysis includes the full 2010 data set, collected with a low rate of multiple proton-proton collisions in the accelerator, corresponding to an integrated luminosity of 36 pb^-1. Inclusive jet cross sections in Z/gamma* events, with Z/gamma* decaying into electron or muon pairs, are measured for jets with transverse momentum pT > 30 GeV and jet rapidity |y| < 4.4. The measurements are compared to next-to-leading-order perturbative QCD calculations, and to predictions from different Monte Carlo generators implementing leading-order matrix elements supplemented by parton showers.

24 data tables

Cross section for Inclusive Jet Multiplicity corrected to the lepton common fiducial region and for QED radiation effects.

Ratio of cross sections for N/N-1 inclusive jet multiplicities corrected to the lepton common fiducial region and for QED radiation effects.

Inclusive jet differential cross section dsigma/dpt corrected to the lepton common fiducial region and for QED radiation effects.

More…

Measurement of the production cross section for a W boson and two b jets in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 735 (2014) 204-225, 2014.
Inspire Record 1273578 DOI 10.17182/hepdata.65711

The production cross section for a W boson and two b jets is measured using proton-proton collisions at sqrt(s) = 7 TeV in a data sample collected with the CMS experiment at the LHC corresponding to an integrated luminosity of 5.0 inverse femtobarns. The W + b b-bar events are selected in the W to mu nu decay mode by requiring a muon with transverse momentum pt > 25 GeV and pseudorapidity abs(eta) < 2.1, and exactly two b-tagged jets with pt > 25 GeV and abs(eta) < 2.4. The measured W + b b-bar production cross section in the fiducial region, calculated at the level of final-state particles, is sigma(pp to W + b b-bar) x B(W to mu nu) = 0.53 +/- 0.05 (stat.) +/- 0.09 (syst.) +/- 0.06 (theo.) +/- 0.01 (lum.) pb, in agreement with the standard model prediction. In addition, kinematic distributions of the W + b b-bar system are in agreement with the predictions of a simulation using MADGRAPH and PYTHIA.

2 data tables

The measured $W+b\bar{b}$ cross section.

Parameters for theoretical comparison: theoretical $W+b\bar{b}$ cross section from MCFM and the two corrections (additive double parton scattering cross section estimation at the parton jet level, and multiplicative hadronization correction factor $C_{b\rightarrow B}$ ) that need to be applied in this order to it to compare to the observed cross section.


Measurement of the production cross section for a W boson in association with a charm quark in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 84 (2024) 27, 2024.
Inspire Record 2685711 DOI 10.17182/hepdata.141611

The strange quark content of the proton is probed through the measurement of the production cross section for a W boson and a charm (c) quark in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis uses a data sample corresponding to a total integrated luminosity of 138 fb$^{-1}$ collected with the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm jets are tagged using the presence of a muon or a secondary vertex inside the jet. The W+c production cross section and the cross section ratio $R^\pm_\text{c}$ = $\sigma$(W$^+$+$\bar{\text{c}}$) / $\sigma$(W$^-$+$\text{c}$) are measured inclusively and differentially as functions of the transverse momentum and the pseudorapidity of the lepton originating from the W boson decay. The precision of the measurements is improved with respect to previous studies, reaching 1% in $R^\pm_\text{c}$. The precision of the measurements is improved with respect to previous studies, reaching 1% in $R^\pm_\text{c}$ = 0.950 $\pm$ 0.005 (stat) $\pm$ 0.010 (syst). The measurements are compared with theoretical predictions up to next-to-next-to-leading order in perturbative quantum chromodynamics.

13 data tables

Particle level efficiency*acceptance correction factors and cross section measurements for the four channels (W decay to muon or electron and charm identification via muon or secondary vertex inside a jet). The combined measurement is shown in the last row.

Parton level efficiency*acceptance correction factors and cross section measurements for the four channels (W decay to muon or electron and charm identification via muon or secondary vertex inside a jet). The combined measurement is shown in the last row.

Inclusive cross section predictions at QCD NLO accuracy from MCFM using different PDF sets

More…

Measurement of the production cross section for single top quarks in association with W bosons in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 10 (2018) 117, 2018.
Inspire Record 1674077 DOI 10.17182/hepdata.85698

A measurement is presented of the associated production of a single top quark and a W boson in proton-proton collisions at $\sqrt{s}=$ 13 TeV by the CMS Collaboration at the CERN LHC. The data collected corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The measurement is performed using events with one electron and one muon in the final state along with at least one jet originated from a bottom quark. A multivariate discriminant, exploiting the kinematic properties of the events, is used to separate the signal from the dominant $\mathrm{t\overline{t}}$ background. The measured cross section of 63.1 $\pm$ 1.8 (stat) $\pm$ 6.4 (syst) $\pm$ 2.1 (lumi) pb is in agreement with the standard model expectation.

2 data tables

The measured total cross sections based on the $\rm{e}^\pm \mu^\mp$ decay channel. The first uncertainty is the statistical, the second is the systematic, and the last due to the integrated luminosity.

Summary of the individual contributions to the uncertainty in the $\sigma_{tW}$ measurement.


Measurement of the production cross section of an isolated photon associated with jets in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 85 (2012) 092014, 2012.
Inspire Record 1093738 DOI 10.17182/hepdata.58652

A measurement of the cross section for the production of an isolated photon in association with jets in proton-proton collisions at a center-of-mass energy $\sqrt{s}$ = 7 TeV is presented. Photons are reconstructed in the pseudorapidity range $|\eta^{\gamma}| \lt 1.37$ and with a transverse energy $E_T^\gamma$ > 25 GeV. Jets are reconstructed in the rapidity range $|y^{jet}|$ < 4.4 and with a transverse momentum $p_T^{jet}$ > 20 GeV. The differential cross section $d\sigma/dE_T^\gamma$ is measured, as a function of the photon transverse energy, for three different rapidity ranges of the leading-$p_T$ jet: $|y^{jet}| < 1.2, 1.2 \le |y^{jet}|$ < 2.8 and 2.8 $\le |y^{jet}|$ < 4.4. For each rapidity configuration the same-sign $(\eta^{\gamma}y^{jet}\ge 0)$ and opposite-sign $(\eta^{\gamma}y^{jet}<0)$ cases are studied separately. The results are based on an integrated luminosity of 37 pb$^{-1}$, collected with the ATLAS detector at the LHC. Next-to-leading order perturbative QCD calculations are found to be in fair agreement with the data, except for $E_T^{\gamma} \lt 45$ GeV, where the theoretical predictions overestimate the measured cross sections.

6 data tables

The measured cross section as a function of the photon transverse energy, ET, for pT(jet)>20 GeV, |eta(gamma)|<1.37, |y(jet)|<1.2, eta(gamma)*y(jet)>=0.

The measured cross section as a function of the photon transverse energy, ET, for pT(jet)>20 GeV, |eta(gamma)|<1.37, 1.2<=|y(jet)|<2.8, eta(gamma)*y(jet)>=0.

The measured cross section as a function of the photon transverse energy, ET, for pT(jet)>20 GeV, |eta(gamma)|<1.37, 2.8<=|y(jet)|<4.4, eta(gamma)*y(jet)>=0.

More…

Measurement of the production cross section of jets in association with a Z boson in pp collisions at $\sqrt{s}$ = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 07 (2013) 032, 2013.
Inspire Record 1230812 DOI 10.17182/hepdata.67922

Measurements of the production of jets of particles in association with a Z boson in pp collisions at $\sqrt{s}$ = 7 TeV are presented, using data corresponding to an integrated luminosity of 4.6/fb collected by the ATLAS experiment at the Large Hadron Collider. Inclusive and differential jet cross sections in Z events, with Z decaying into electron or muon pairs, are measured for jets with transverse momentum pT > 30 GeV and rapidity |y| < 4.4. The results are compared to next-to-leading-order perturbative QCD calculations, and to predictions from different Monte Carlo generators based on leading-order and next-to-leading-order matrix elements supplemented by parton showers.

28 data tables

The distribution of Inclusive jet multiplicity. The first (sys) error is the uncorrelated systematic error and the second the correlated systematic error.

The distribution of Ratio of cross sections for successive inclusive jet multiplicities n/(n-1). The first (sys) error is the uncorrelated systematic error and the second the correlated systematic error.

The distribution of exclusive jet multiplicity. The first (sys) error is the uncorrelated systematic error and the second the correlated systematic error.

More…