Version 6
Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb$^{-1}$ of $\sqrt{s}$=13 TeV $pp$ collision data with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 97 (2018) 112001, 2018.
Inspire Record 1641270 DOI 10.17182/hepdata.77891

A search for the supersymmetric partners of quarks and gluons (squarks and gluinos) in final states containing hadronic jets and missing transverse momentum, but no electrons or muons, is presented. The data used in this search were recorded in 2015 and 2016 by the ATLAS experiment in $\sqrt{s}$=13 TeV proton--proton collisions at the Large Hadron Collider, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. The results are interpreted in the context of various models where squarks and gluinos are pair-produced and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95\% confidence level on the mass of the gluino is set at 2.03 TeV for a simplified model incorporating only a gluino and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.55 TeV are excluded if the lightest neutralino is massless. These limits substantially extend the region of supersymmetric parameter space previously excluded by searches with the ATLAS detector.

426 data tables

Observed and expected background and signal effective mass distributions for SR2j-2100. For signal, a squark direct decay model where squarks have mass of 600 GeV and the neutralino1 has mass of 595 GeV is shown.

Observed and expected background and signal effective mass distributions for SR2j-2800. For signal, a squark direct decay model where squarks have mass of 1500 GeV and the neutralino1 has mass of 0 GeV is shown.

Observed and expected background and signal effective mass distributions for SR4j-1000. For signal, a gluino direct decay model where gluinos have mass of 1300 GeV and the neutralino1 has mass of 900 GeV is shown.

More…

Version 2
Fiducial, total and differential cross-section measurements of $t$-channel single top-quark production in $pp$ collisions at 8 TeV using data collected by the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 531, 2017.
Inspire Record 1512776 DOI 10.17182/hepdata.82544

Detailed measurements of $t$-channel single top-quark production are presented. They use 20.2 fb$^{-1}$ of data collected by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of 8 TeV at the LHC. Total, fiducial and differential cross-sections are measured for both top-quark and top-antiquark production. The fiducial cross-section is measured with a precision of 5.8 % (top quark) and 7.8 % (top antiquark), respectively. The total cross-sections are measured to be $\sigma_{\mathrm{tot}}(tq) = 56.7^{+4.3}_{-3.8}\;$pb for top-quark production and $\sigma_{\mathrm{tot}}(\bar{t}q) = 32.9^{+3.0}_{-2.7}\;$pb for top-antiquark production, in agreement with the Standard Model prediction. In addition, the ratio of top-quark to top-antiquark production cross-sections is determined to be $R_t=1.72 \pm 0.09$, with an improved relative precision of 4.9 % since several systematic uncertainties cancel in the ratio. The differential cross-sections as a function of the transverse momentum and rapidity of both the top quark and the top antiquark are measured at both the parton and particle levels. The transverse momentum and rapidity differential cross-sections of the accompanying jet from the $t$-channel scattering are measured at particle level. All measurements are compared to various Monte Carlo predictions as well as to fixed-order QCD calculations where available.

108 data tables

Predicted and observed event yields for the signal region (SR). The multijet background prediction is obtained from a binned maximum-likelihood fit to the $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution. All the other predictions are derived using theoretical cross-sections, given for the backgrounds in Sect. 6 and for the signal in Sect. 1. The quoted uncertainties are in the predicted cross-sections or in the number of multijet events, in case of the multijet process.

Predicted and observed event yields for the signal region (SR). The multijet background prediction is obtained from a binned maximum-likelihood fit to the $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution. All the other predictions are derived using theoretical cross-sections, given for the backgrounds in Sect. 6 and for the signal in Sect. 1. The quoted uncertainties are in the predicted cross-sections or in the number of multijet events, in case of the multijet process.

Definition of the fiducial phase space.

More…

Version 3
Measurement of the Drell--Yan triple-differential cross section in $pp$ collisions at $\sqrt{s} = 8$ TeV

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 12 (2017) 059, 2017.
Inspire Record 1630886 DOI 10.17182/hepdata.77492

This paper presents a measurement of the triple-differential cross section for the Drell--Yan process $Z/\gamma^*\rightarrow \ell^+\ell^-$ where $\ell$ is an electron or a muon. The measurement is performed for invariant masses of the lepton pairs, $m_{\ell\ell}$, between $46$ and $200$ GeV using a sample of $20.2$ fb$^{-1}$ of $pp$ collisions data at a centre-of-mass energy of $\sqrt{s}=8$ TeV collected by the ATLAS detector at the LHC in 2012. The data are presented in bins of invariant mass, absolute dilepton rapidity, $|y_{\ell\ell}|$, and the angular variable $\cos\theta^{*}$ between the outgoing lepton and the incoming quark in the Collins--Soper frame. The measurements are performed in the range $|y_{\ell\ell}|<2.4$ in the muon channel, and extended to $|y_{\ell\ell}|<3.6$ in the electron channel. The cross sections are used to determine the $Z$ boson forward-backward asymmetry as a function of $|y_{\ell\ell}|$ and $m_{\ell\ell}$. The measurements achieve high-precision, below the percent level in the pole region, excluding the uncertainty in the integrated luminosity, and are in agreement with predictions. These precision data are sensitive to the parton distribution functions and the effective weak mixing angle.

20 data tables

Detailed breakdown of systematic uncertainties for the measurement in the central rapidity muon channel. Common systematic uncertainty on the luminosity measurment of 1.8% is not included. Correlated systematic uncertainties with the suffix :A should be treated as additive and with the suffix :M should be treated as multiplicative. The source 'sys,uncor' represents bin-to-bin uncorrelated systematic uncertainty. The cross sections are given at the Born QED level. 'C Dressed' represents the multiplicative correction factor to translate the cross sections to the dressed level with the cone radius of 0.1: SigmaDressed = C Dressed * SigmaBorn.

Detailed breakdown of systematic uncertainties for the measurement in the central rapidity muon channel. Common systematic uncertainty on the luminosity measurment of 1.8% is not included. Correlated systematic uncertainties with the suffix :A should be treated as additive and with the suffix :M should be treated as multiplicative. The source 'sys,uncor' represents bin-to-bin uncorrelated systematic uncertainty. The cross sections are given at the Born QED level. 'C Dressed' represents the multiplicative correction factor to translate the cross sections to the dressed level with the cone radius of 0.1: SigmaDressed = C Dressed * SigmaBorn.

Detailed breakdown of systematic uncertainties for the measurement in the central rapidity muon channel. Common systematic uncertainty on the luminosity measurment of 1.8% is not included. Correlated systematic uncertainties with the suffix :A should be treated as additive and with the suffix :M should be treated as multiplicative. The source 'sys,uncor' represents bin-to-bin uncorrelated systematic uncertainty. The cross sections are given at the Born QED level. 'C Dressed' represents the multiplicative correction factor to translate the cross sections to the dressed level with the cone radius of 0.1: SigmaDressed = C Dressed * SigmaBorn.

More…

Version 2
Measurement of differential cross sections and $W^+/W^-$ cross-section ratios for $W$ boson production in association with jets at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 05 (2018) 077, 2018.
Inspire Record 1635273 DOI 10.17182/hepdata.80076

This paper presents a measurement of the $W$ boson production cross section and the $W^{+}/W^{-}$ cross-section ratio, both in association with jets, in proton--proton collisions at $\sqrt{s}=8$ TeV with the ATLAS experiment at the Large Hadron Collider. The measurement is performed in final states containing one electron and missing transverse momentum using data corresponding to an integrated luminosity of 20.2 fb$^{-1}$. Differential cross sections for events with one or two jets are presented for a range of observables, including jet transverse momenta and rapidities, the scalar sum of transverse momenta of the visible particles and the missing transverse momentum in the event, and the transverse momentum of the $W$ boson. For a subset of the observables, the differential cross sections of positively and negatively charged $W$ bosons are measured separately. In the cross-section ratio of $W^{+}/W^{-}$ the dominant systematic uncertainties cancel out, improving the measurement precision by up to a factor of nine. The observables and ratios selected for this paper provide valuable input for the up quark, down quark, and gluon parton distribution functions of the proton.

86 data tables

Cross section for the production of W bosons for different inclusive jet multiplicities.

Statistical correlation between bins in data for the cross section for the production of W bosons for different inclusive jet multiplicities.

Differential cross sections for the production of W<sup>+</sup> bosons, W<sup>-</sup> bosons and the W<sup>+</sup>/W<sup>-</sup> cross section ratio as a function of the inclusive jet multiplicity.

More…

Measurements of inclusive and differential fiducial cross-sections of $t\bar{t}\gamma$ production in leptonic final states at $\sqrt{s}$ = 13 TeV in ATLAS

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 79 (2019) 382, 2019.
Inspire Record 1707015 DOI 10.17182/hepdata.88061

Inclusive and differential cross-sections for the production of a top-quark pair in association with a photon are measured with proton-proton collision data corresponding to an integrated luminosity of 36.1 fb$^{-1}$, collected by the ATLAS detector at the LHC in 2015 and 2016 at a centre-of-mass energy of 13 TeV. The measurements are performed in single-lepton and dilepton final states in a fiducial volume. Events with exactly one photon, one or two leptons, a channel-dependent minimum number of jets, and at least one $b$-jet are selected. Neural network algorithms are used to separate the signal from the backgrounds. The fiducial cross-sections are measured to be 521 $\pm$ 9(stat.) $\pm$ 41(sys.) fb and 69 $\pm$ 3(stat.) $\pm$ 4(sys.) fb for the single-lepton and dilepton channels, respectively. The differential cross-sections are measured as a function of photon transverse momentum, photon absolute pseudorapidity, and angular distance between the photon and its closest lepton in both channels, as well as azimuthal opening angle and absolute pseudorapidity difference between the two leptons in the dilepton channel. All measurements are in agreement with the theoretical predictions.

20 data tables

The measured fiducial cross section in the single lepton channel. The first uncertainty is the statistical uncertainty and the second one is the systematic uncertainty.

The measured fiducial cross section in the dilepton channel. The first uncertainty is the statistical uncertainty and the second one is the systematic uncertainty.

The measured normalized differential cross section as a function of the photon pT in the single lepton channel. The uncertainty is decomposed into five components which are the signal modelling uncertainty, the experimental uncertainty, the ttbar modelling uncertainty, the other background estimation uncertainty, and the data statistical uncertainty.

More…

Measurement of the $ Z\gamma \to \nu \overline{\nu}\gamma $ production cross section in pp collisions at $ \sqrt{s}=13 $ TeV with the ATLAS detector and limits on anomalous triple gauge-boson couplings

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 12 (2018) 010, 2018.
Inspire Record 1698006 DOI 10.17182/hepdata.83965

The production of $Z$ bosons in association with a high-energy photon ($Z\gamma$ production) is studied in the neutrino decay channel of the $Z$ boson using $pp$ collisions at $\sqrt{s}$ = 13 TeV. The analysis uses a data sample with an integrated luminosity of 36.1 fb$^{-1}$ collected by the ATLAS detector at the LHC in 2015 and 2016. Candidate $Z\gamma$ events with invisible decays of the $Z$ boson are selected by requiring significant transverse momentum ($p_{T}$) of the dineutrino system in conjunction with a single isolated photon with large transverse energy ($E_{T}$). The rate of $Z\gamma$ production is measured as a function of photon $E_{T}$, dineutrino system $p_{T}$ and jet multiplicity. Evidence of anomalous triple gauge-boson couplings is sought in $Z\gamma$ production with photon $E_{T}$ greater than 600 GeV. No excess is observed relative to the Standard Model expectation, and upper limits are set on the strength of $ZZ\gamma$ and $Z\gamma\gamma$ couplings.

8 data tables

Measured integrated cross sections for the $Z\gamma$ process for neutrino final states at $\sqrt{s} = 13$ TeV in the extended fiducial region defined in the paper.

Measured differential cross sections for the $pp \rightarrow \nu\bar{\nu}\gamma$ process at $\sqrt{s} = 13$ TeV as a function of photon $E_{T}$ in the inclusive $N_{jets} \geq 0$ extended fiducial region defined in the paper.

Measured differential cross sections for the $pp \rightarrow \nu\bar{\nu}\gamma$ process at $\sqrt{s} = 13$ TeV as a function of photon $E_{T}$ in the exclusive $N_{jets} = 0$ extended fiducial region defined in the paper.

More…

Measurement of $W^{\pm}Z$ production cross sections and gauge boson polarisation in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 79 (2019) 535, 2019.
Inspire Record 1720438 DOI 10.17182/hepdata.83701

This paper presents measurements of $W^{\pm}Z$ production cross sections in $pp$ collisions at a centre-of-mass energy of 13 TeV. The data were collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider, and correspond to an integrated luminosity of 36.1 fb$^{-1}$. The $W^{\pm}Z$ candidate events are reconstructed using leptonic decay modes of the gauge bosons into electrons and muons. The measured inclusive cross section in the detector fiducial region for a single leptonic decay mode is $\sigma_{W^\pm Z \rightarrow \ell^{'} \nu \ell \ell}^{\textrm{fid.}} = 63.7 \pm 1.0$ (stat.) $\pm 2.3$ (syst.) $\pm 1.4$ (lumi.) fb, reproduced by the next-to-next-to-leading-order Standard Model prediction of $61.5^{+1.4}_{-1.3}$ fb. Cross sections for $W^+Z$ and $W^-Z$ production and their ratio are presented as well as differential cross sections for several kinematic observables. An analysis of angular distributions of leptons from decays of $W$ and $Z$ bosons is performed for the first time in pair-produced events in hadronic collisions, and integrated helicity fractions in the detector fiducial region are measured for the $W$ and $Z$ bosons separately. Of particular interest, the longitudinal helicity fraction of pair-produced vector bosons is also measured.

24 data tables

The measured $W^{\pm}Z$ fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the modelling uncertainty, the third is luminosity uncertainty.

The measured $W^{+}Z$ fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the modelling uncertainty, the third is luminosity uncertainty.

The measured $W^{-}Z$ fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the modelling uncertainty, the third is luminosity uncertainty.

More…

Measurement of prompt photon production in $\sqrt{s_\mathrm{NN}} = 8.16$ TeV $p$+Pb collisions with ATLAS

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 796 (2019) 230-252, 2019.
Inspire Record 1723858 DOI 10.17182/hepdata.87256

The inclusive production rates of isolated, prompt photons in $p$+Pb collisions at $\sqrt{s_\mathrm{NN}} = 8.16$ TeV are studied with the ATLAS detector at the Large Hadron Collider using a dataset with an integrated luminosity of 165 nb$^{-1}$ recorded in 2016. The cross-section and nuclear modification factor $R_{p\mathrm{Pb}}$ are measured as a function of photon transverse energy from 20 GeV to 550 GeV and in three nucleon-nucleon centre-of-mass pseudorapidity regions, (-2.83,-2.02), (-1.84,0.91), and (1.09,1.90). The cross-section and $R_{p\mathrm{Pb}}$ values are compared with the results of a next-to-leading-order perturbative QCD calculation, with and without nuclear parton distribution function modifications, and with expectations based on a model of the energy loss of partons prior to the hard scattering. The data disfavour a large amount of energy loss and provide new constraints on the parton densities in nuclei.

7 data tables

The measured cross sections for prompt, isolated photons with rapidity in (1.09,1.90).

The measured cross sections for prompt, isolated photons with rapidity in (−1.84,0.91).

The measured cross sections for prompt, isolated photons with rapidity in (−2.83,−2.02).

More…

Observation of electroweak production of a same-sign $W$ boson pair in association with two jets in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 123 (2019) 161801, 2019.
Inspire Record 1738841 DOI 10.17182/hepdata.84643

This Letter presents the observation and measurement of electroweak production of a same-sign $W$ boson pair in association with two jets using 36.1 fb$^{-1}$ of proton-proton collision data recorded at a center-of-mass energy of $\sqrt{s}=13$ TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed in the detector fiducial phase-space region, defined by the presence of two same-sign leptons, electron or muon, and at least two jets with a large invariant mass and rapidity difference. A total of 122 candidate events are observed for a background expectation of $69 \pm 7$ events, corresponding to an observed signal significance of 6.5 standard deviations. The measured fiducial signal cross section is $\sigma^{\mathrm {fid.}}=2.89^{+0.51}_{-0.48} \mathrm{(stat.)} ^{+0.29}_{-0.28} \mathrm{(syst.)}$ fb.

6 data tables

Measured fiducial cross section.

The $m_{jj}$ distribution for events meeting all selection criteria for the signal region. Signal and individual background distributions are shown as predicted after the fit. The last bin includes the overflow. The highest value measured in a candidate event in data is $m_{jj}=3.8$ TeV.

The $m_{ll}$ distribution for events meeting all selection criteria for the signal region as predicted after the fit. The fitted signal strength and nuisance parameters have been propagated, with the exception of the uncertainties due to the interference and electroweak corrections for which a flat uncertainty is assigned. The last bin includes the overflow. The highest value measured in a candidate event in data is $m_{ll}=824$ GeV.

More…

Version 2
Search for heavy charged long-lived particles in the ATLAS detector in 31.6 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 092007, 2019.
Inspire Record 1718558 DOI 10.17182/hepdata.86565

A search for heavy charged long-lived particles is performed using a data sample of 36.1 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the Large Hadron Collider. The search is based on observables related to ionization energy loss and time of flight, which are sensitive to the velocity of heavy charged particles traveling significantly slower than the speed of light. Multiple search strategies for a wide range of lifetimes, corresponding to path lengths of a few meters, are defined as model-independently as possible, by referencing several representative physics cases that yield long-lived particles within supersymmetric models, such as gluinos/squarks ($R$-hadrons), charginos and staus. No significant deviations from the expected Standard Model background are observed. Upper limits at 95% confidence level are provided on the production cross sections of long-lived $R$-hadrons as well as directly pair-produced staus and charginos. These results translate into lower limits on the masses of long-lived gluino, sbottom and stop $R$-hadrons, as well as staus and charginos of 2000 GeV, 1250 GeV, 1340 GeV, 430 GeV and 1090 GeV, respectively.

60 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Lower mass requirement for signal regions.</b> <ul> <li><a href="86565?version=1&table=Table1">Gluinos and squarks</a></li> <li><a href="86565?version=1&table=Table2">Staus and charginos</a></li> </ul> <b>Discovery regions:</b> <ul> <li><a href="86565?version=1&table=Table3">Yields</a></li> <li><a href="86565?version=1&table=Table6">p0-values and limits</a></li> </ul> <b>Signal yield tables:</b> <ul> <li><a href="86565?version=1&table=Table4">MS-agnostic R-hadron search</a></li> <li><a href="86565?version=1&table=Table5">Full-detector R-hadron search</a></li> <li><a href="86565?version=1&table=Table7">MS-agnostic search for metastable gluino R-hadrons</a></li> <li><a href="86565?version=1&table=Table8">Full-detector direct-stau search</a></li> <li><a href="86565?version=1&table=Table9">Full-detector chargino search</a></li> </ul> <b>Limits:</b> <ul> <li><a href="86565?version=1&table=Table10">Gluino R-hadron search</a></li> <li><a href="86565?version=1&table=Table11">Sbottom R-hadron search</a></li> <li><a href="86565?version=1&table=Table12">Stop R-hadron search</a></li> <li><a href="86565?version=1&table=Table13">Stau search</a></li> <li><a href="86565?version=1&table=Table14">Chargino search</a></li> <li><a href="86565?version=1&table=Table15">Meta-stable gluino R-hadron search</a></li> <li><a href="86565?version=1&table=Table17">Meta-stable gluino R-hadron search</a></li> </ul> <b>Acceptance and efficiency:</b> <ul> <li><a href="86565?version=1&table=Table16">MS-agnostic R-hadron search</a></li> </ul> <b>Truth quantities:</b> <ul> <li><a href="86565?version=1&table=Table18">Flavor composition of 800 GeV stop R-hadrons simulated using the generic model</a></li> <li><a href="86565?version=1&table=Table19">Flavor composition of 800 GeV anti-stop R-hadrons simulated using the generic model</a></li> <li><a href="86565?version=1&table=Table20">Flavor composition of 800 GeV stop R-hadrons simulated using the Regge model</a></li> <li><a href="86565?version=1&table=Table21">Flavor composition of 800 GeV anti-stop R-hadrons simulated using the Regge model</a></li> </ul> <b>Reinterpretation material:</b> <ul> <li><a href="86565?version=1&table=Table22">ETmiss trigger efficiency as function of true ETmiss</a></li> <li><a href="86565?version=1&table=Table23">Single-muon trigger efficiency as function of |eta| and beta</a></li> <li><a href="86565?version=1&table=Table24">Candidate reconstruction efficiency for ID+Calo selection</a></li> <li><a href="86565?version=1&table=Table25">Candidate reconstruction efficiency for loose selection</a></li> <li><a href="86565?version=1&table=Table26">Efficiency for a loose candidate to be promoted to a tight candidate</a></li> <li><a href="86565?version=1&table=Table27">Resolution and average of reconstructed dE/dx mass for a given simulated mass for ID+calo candidates</a></li> <li><a href="86565?version=1&table=Table28">Resolution and average of reconstructed ToF mass for a given simulated mass for ID+calo candidates</a></li> <li><a href="86565?version=1&table=Table29">Resolution and average of reconstructed ToF mass for a given simulated mass for FullDet candidates</a></li> </ul> <p><b>Pseudo-code snippets</b> and <b>example SLHA setups</b> are available in the "Resources" linked on the left, and more detailed reinterpretation material is available at <a href="http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-32/hepdata_info.pdf">http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-32/hepdata_info.pdf</a>.</p>

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Lower mass requirement for signal regions.</b> <ul> <li><a href="86565?version=1&table=Table1">Gluinos and squarks</a></li> <li><a href="86565?version=1&table=Table2">Staus and charginos</a></li> </ul> <b>Discovery regions:</b> <ul> <li><a href="86565?version=1&table=Table3">Yields</a></li> <li><a href="86565?version=1&table=Table6">p0-values and limits</a></li> </ul> <b>Signal yield tables:</b> <ul> <li><a href="86565?version=1&table=Table4">MS-agnostic R-hadron search</a></li> <li><a href="86565?version=1&table=Table5">Full-detector R-hadron search</a></li> <li><a href="86565?version=1&table=Table7">MS-agnostic search for metastable gluino R-hadrons</a></li> <li><a href="86565?version=1&table=Table8">Full-detector direct-stau search</a></li> <li><a href="86565?version=1&table=Table9">Full-detector chargino search</a></li> </ul> <b>Limits:</b> <ul> <li><a href="86565?version=1&table=Table10">Gluino R-hadron search</a></li> <li><a href="86565?version=1&table=Table11">Sbottom R-hadron search</a></li> <li><a href="86565?version=1&table=Table12">Stop R-hadron search</a></li> <li><a href="86565?version=1&table=Table13">Stau search</a></li> <li><a href="86565?version=1&table=Table14">Chargino search</a></li> <li><a href="86565?version=1&table=Table15">Meta-stable gluino R-hadron search</a></li> <li><a href="86565?version=1&table=Table17">Meta-stable gluino R-hadron search</a></li> </ul> <b>Acceptance and efficiency:</b> <ul> <li><a href="86565?version=1&table=Table16">MS-agnostic R-hadron search</a></li> </ul> <b>Truth quantities:</b> <ul> <li><a href="86565?version=1&table=Table18">Flavor composition of 800 GeV stop R-hadrons simulated using the generic model</a></li> <li><a href="86565?version=1&table=Table19">Flavor composition of 800 GeV anti-stop R-hadrons simulated using the generic model</a></li> <li><a href="86565?version=1&table=Table20">Flavor composition of 800 GeV stop R-hadrons simulated using the Regge model</a></li> <li><a href="86565?version=1&table=Table21">Flavor composition of 800 GeV anti-stop R-hadrons simulated using the Regge model</a></li> </ul> <b>Reinterpretation material:</b> <ul> <li><a href="86565?version=1&table=Table22">ETmiss trigger efficiency as function of true ETmiss</a></li> <li><a href="86565?version=1&table=Table23">Single-muon trigger efficiency as function of |eta| and beta</a></li> <li><a href="86565?version=1&table=Table24">Candidate reconstruction efficiency for ID+Calo selection</a></li> <li><a href="86565?version=1&table=Table25">Candidate reconstruction efficiency for loose selection</a></li> <li><a href="86565?version=1&table=Table26">Efficiency for a loose candidate to be promoted to a tight candidate</a></li> <li><a href="86565?version=1&table=Table27">Resolution and average of reconstructed dE/dx mass for a given simulated mass for ID+calo candidates</a></li> <li><a href="86565?version=1&table=Table28">Resolution and average of reconstructed ToF mass for a given simulated mass for ID+calo candidates</a></li> <li><a href="86565?version=1&table=Table29">Resolution and average of reconstructed ToF mass for a given simulated mass for FullDet candidates</a></li> </ul> <p><b>Pseudo-code snippets</b> and <b>example SLHA setups</b> are available in the "Resources" linked on the left, and more detailed reinterpretation material is available at <a href="http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-32/hepdata_info.pdf">http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-32/hepdata_info.pdf</a>.</p>

Lower mass requirement for signal regions.

More…

Measurements of Higgs boson properties in the diphoton decay channel with 36 fb$^{-1}$ of $pp$ collision data at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 98 (2018) 052005, 2018.
Inspire Record 1654582 DOI 10.17182/hepdata.83417

Properties of the Higgs boson are measured in the two-photon final state using 36.1 fb$^{-1}$ of proton-proton collision data recorded at $\sqrt{s} = 13$ TeV by the ATLAS experiment at the Large Hadron Collider. Cross-section measurements for the production of a Higgs boson through gluon-gluon fusion, vector-boson fusion, and in association with a vector bosonor a top-quark pair are reported. The signal strength, defined as the ratio of the observed to the expected signal yield, is measured for each of these production processes as well as inclusively. The global signal strength measurement of $0.99 \pm 0.14$ improves on the precision of the ATLAS measurement at $\sqrt{s} = 7$ and 8 TeV by a factor of two. Measurements of gluon-gluon fusion and vector-boson fusion productions yield signal strengths compatible with the Standard Model prediction. Measurements of simplified template cross sections, designed to quantify the different Higgs boson production processes in specific regions of phase space, are reported. The cross section for the production of the Higgs boson decaying to two isolated photons in a fiducial region closely matching the experimental selection of the photons is measured to be $55 \pm 10$ fb, which is in good agreement with the Standard Model prediction of $64 \pm 2$ fb. Furthermore, cross sections in fiducial regions enriched in Higgs boson production in vector-boson fusion or in association with large missing transverse momentum, leptons or top-quark pairs are reported. Differential and double-differential measurements are performed for several variables related to the diphoton kinematics as well as the kinematics and multiplicity of the jets produced in association with a Higgs boson. No significant deviations from a wide array of Standard Model predictions are observed.

39 data tables

Measured differential cross section with associated uncertainties as a function of PT(2GAMMA). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

Measured differential cross section with associated uncertainties as a function of YRAP(2GAMMA). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

Measured differential cross section with associated uncertainties as a function of PTTHRUST(2GAMMA). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

More…

Measurement of fiducial and differential $W^+W^-$ production cross-sections at $\sqrt{s}=$13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 79 (2019) 884, 2019.
Inspire Record 1734263 DOI 10.17182/hepdata.89225

A measurement of fiducial and differential cross-sections for $W^+W^-$ production in proton-proton collisions at $\sqrt{s}=$13 TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of $36.1$ fb$^{-1}$ is presented. Events with one electron and one muon are selected, corresponding to the decay of the diboson system as $WW\rightarrow e^{\pm}\nu\mu^{\mp}\nu$. To suppress top-quark background, events containing jets with a transverse momentum exceeding 35 GeV are not included in the measurement phase space. The fiducial cross-section, six differential distributions and the cross-section as a function of the jet-veto transverse momentum threshold are measured and compared with several theoretical predictions. Constraints on anomalous electroweak gauge boson self-interactions are also presented in the framework of a dimension-six effective field theory.

43 data tables

Measured fiducial cross-section as a function of the jet-veto $p_{T}$ threshold. The value at the jet-veto $p_{T}$ threshold of 35GeV corresponds to the nominal fiducial cross section measured in this publication.

Statistical correlation between bins in data for the measured fiducial cross-section as a function of the jet-veto $p_{T}$ threshold. The value at the jet-veto $p_{T}$ threshold of 35GeV corresponds to the nominal fiducial cross section measured in this publication.

Total correlation between bins in data for the measured fiducial cross-section as a function of the jet-veto $p_{T}$ threshold. The value at the jet-veto $p_{T}$ threshold of 35GeV corresponds to the nominal fiducial cross section measured in this publication.

More…

Measurement of the $t\bar{t}Z$ and $t\bar{t}W$ cross sections in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 072009, 2019.
Inspire Record 1713423 DOI 10.17182/hepdata.88175

A measurement of the associated production of a top-quark pair ($t\bar{t}$) with a vector boson ($W$, $Z$) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented, using $36.1$ fb$^{-1}$ of integrated luminosity collected by the ATLAS detector at the Large Hadron Collider. Events are selected in channels with two same- or opposite-sign leptons (electrons or muons), three leptons or four leptons, and each channel is further divided into multiple regions to maximize the sensitivity of the measurement. The $t\bar{t}Z$ and $t\bar{t}W$ production cross sections are simultaneously measured using a combined fit to all regions. The best-fit values of the production cross sections are $\sigma_{t\bar{t}Z} = 0.95 \pm 0.08_{\mathrm{stat.}} \pm 0.10_{\mathrm{syst.}}$ pb and $\sigma_{t\bar{t}W} = 0.87 \pm 0.13_{\mathrm{stat.}} \pm 0.14_{\mathrm{syst.}}$ pb in agreement with the Standard Model predictions. The measurement of the $t\bar{t}Z$ cross section is used to set constraints on effective field theory operators which modify the $t\bar{t}Z$ vertex.

5 data tables

The result of the simultaneous fit to the $t\bar{t}Z$ and $t\bar{t}W$ cross sections.

68% confidence level (CL) contours of the measured $t\bar{t}Z$ and $t\bar{t}W$ cross sections.

95% confidence level (CL) contours of the measured $t\bar{t}Z$ and $t\bar{t}W$ cross sections.

More…

Measurement of inclusive jet and dijet cross-sections in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 05 (2018) 195, 2018.
Inspire Record 1634970 DOI 10.17182/hepdata.79952

Inclusive jet and dijet cross-sections are measured in proton-proton collisions at a centre-of-mass energy of 13 TeV. The measurement uses a dataset with an integrated luminosity of 3.2 fb$^{-1}$ recorded in 2015 with the ATLAS detector at the Large Hadron Collider. Jets are identified using the anti-${k_t}$ algorithm with a radius parameter value of $R=0.4$. The inclusive jet cross-sections are measured double-differentially as a function of the jet transverse momentum, covering the range from 100 GeV to 3.5 TeV, and the absolute jet rapidity up to $|y|=3$. The double-differential dijet production cross-sections are presented as a function of the dijet mass, covering the range from 300 GeV to 9 TeV, and the half absolute rapidity separation between the two leading jets within $|y|<3$, $y*$, up to $y*=3$. Next-to-leading-order, and next-to-next-to-leading-order for the inclusive jet measurement, perturbative QCD calculations corrected for non-perturbative and electroweak effects are compared to the measured cross-sections.

12 data tables

rapidity bin 0 < |Y| < 0.5 anti-kt R=0.4

rapidity bin 0.5 < |Y| < 1.0 anti-kt R=0.4

rapidity bin 1.0 < |Y| < 1.5 anti-kt R=0.4

More…

Observation of electroweak $W^{\pm}Z$ boson pair production in association with two jets in $pp$ collisions at $\sqrt{s} =$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 793 (2019) 469-492, 2019.
Inspire Record 1711223 DOI 10.17182/hepdata.83785

An observation of electroweak $W^{\pm}Z$ production in association with two jets in proton-proton collisions is presented. The data collected by the ATLAS detector at the Large Hadron Collider in 2015 and 2016 at a centre-of-mass energy of $\sqrt{s} =$ 13 TeV are used, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. Events containing three identified leptons, either electrons or muons, and two jets are selected. The electroweak production of $W^{\pm}Z$ bosons in association with two jets is measured with an observed significance of 5.3 standard deviations. A fiducial cross-section for electroweak production including interference effects is measured to be $\sigma_{WZjj\mathrm{-EW}} = 0.57 \; ^{+ 0.14} _{- 0.13} \,(\mathrm{stat.}) \; ^{+ 0.07} _{- 0.06} \,(\mathrm{syst.}) \; \mathrm{fb}$. Total and differential fiducial cross-sections of the sum of $W^\pm Z jj$ electroweak and strong productions for several kinematic observables are also measured.

21 data tables

Fiducial cross section of the electroweak $W^{\pm}Z$ boson pair production in association with two jets. The first systematic uncertainty is experimental, the second is the theory modelling and interference systematics and the third one is the luminosity uncertainty.

Fiducial cross section of the $W^{\pm}Z$ boson pair production in association with two jets. The first systematic uncertainty is experimental, the second is the theory modelling and interference systematics and the third one is the luminosity uncertainty.

Numbers of observed and expected events in the $W^{\pm}Zjj$ signal region and in the three control regions, before the fit. The expected number of $WZjj-EW$ events from $SHERPA$ and the estimated number of background events from the other processes are shown. The sum of the background containing misidentified leptons is labelled "Misid. leptons". The total uncertainties are quoted.

More…

Measurement of the inclusive jet cross-sections in proton--proton collisions at $\sqrt{s}= $8 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 09 (2017) 020, 2017.
Inspire Record 1604271 DOI 10.17182/hepdata.76967

Inclusive jet production cross-sections are measured in proton--proton collisions at a centre-of-mass energy of $\sqrt{s}=$8 TeV recorded by the ATLAS experiment at the Large Hadron Collider at CERN. The total integrated luminosity of the analysed data set amounts to $20.2$ fb$^{-1}$. Double-differential cross-sections are measured for jets defined by the anti-$k_{t}$ jet clustering algorithm with radius parameters of $R=0.4$ and $R=0.6$ and are presented as a function of the jet transverse momentum, in the range between 70 GeV and 2.5 TeV and in six bins of the absolute jet rapidity, between 0 and 3.0. The measured cross-sections are compared to predictions of quantum chromodynamics, calculated at next-to-leading order in perturbation theory, and corrected for non-perturbative and electroweak effects. The level of agreement with predictions, using a selection of different parton distribution functions for the proton, is quantified. Tensions between the data and the theory predictions are observed.

12 data tables

rapidity bin 0 < |Y| < 0.5 anti-kt R=0.6

rapidity bin 0.5 < |Y| < 1.0 anti-kt R=0.6

rapidity bin 1.0 < |Y| < 1.5 anti-kt R=0.6

More…

Version 2
Probing the quantum interference between singly and doubly resonant top-quark production in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 121 (2018) 152002, 2018.
Inspire Record 1677498 DOI 10.17182/hepdata.83544

This Letter presents a normalized differential cross-section measurement in a fiducial phase-space region where interference effects between top-quark pair production and associated production of a single top quark with a $W$ boson and a $b$-quark are significant. Events with exactly two leptons ($ee$, $\mu\mu$, or $e\mu$) and two $b$-tagged jets that satisfy a multi-particle invariant mass requirement are selected from $36.1$ fb$^{-1}$ of proton-proton collision data taken at $\sqrt{s}=13$ TeV with the ATLAS detector at the LHC in 2015 and 2016. The results are compared with predictions from simulations using various strategies for the interference. The standard prescriptions for interference modeling are significantly different from each other but are within $2\sigma$ of the data. State-of-the-art predictions that naturally incorporate interference effects provide the best description of the data in the measured region of phase space most sensitive to these effects. These results provide an important constraint on interference models and will guide future model development and tuning.

15 data tables

The minimax-mbl distribution in the three-b-tag region, constructed from the two b-jets with largest transverse momentum. The predicted tt+HF contribution from simulation is scaled to match observed data in this region. The hashed band indicates the uncertainty on the total number of predicted events, where the DR scheme is used to estimate the minor contribution from the tW process. Uncertainties include all statistical and systematic sources.

The detector-level minimax-mbl distribution, with signal selection and background estimation as described in the text. The total predicted events are shown for both the DR and DS definitions of the tW process, with uncertainties on the respective estimates indicated by separate error bars. Uncertainties include all statistical and systematic sources.

The unfolded, normalized differential minimax-mbl cross-section compared with theoretical models of the tt+tWb signal with various implementations of interference effects. The uncertainty of each data point includes all statistical and systematic sources, while uncertainties for each of the MC predictions correspond to variations of the PDF set and renormalization and factorization scales.

More…

Measurement of the inclusive and fiducial $t\bar{t}$ production cross-sections in the lepton+jets channel in $pp$ collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 487, 2018.
Inspire Record 1644099 DOI 10.17182/hepdata.81945

The inclusive and fiducial $t\bar{t}$ production cross-sections are measured in the lepton+jets channel using 20.2 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of 8 TeV recorded with the ATLAS detector at the LHC. Major systematic uncertainties due to the modelling of the jet energy scale and $b$-tagging efficiency are constrained by separating selected events into three disjoint regions. In order to reduce systematic uncertainties in the most important background, the W+jets process is modelled using Z+jets events in a data-driven approach. The inclusive $t\bar{t}$ cross-section is measured with a precision of 5.7% to be $\sigma_{\text{inc}}(t\bar{t})$ = 248.3 $\pm$ 0.7 (stat.) $\pm$ 13.4 (syst.) $\pm$ 4.7 (lumi.) pb, assuming a top-quark mass of 172.5 GeV. The result is in agreement with the Standard Model prediction. The cross-section is also measured in a phase space close to that of the selected data. The fiducial cross-section is $\sigma_{\text{fid}}(t\bar{t})$ = 48.8 $\pm$ 0.1 (stat.) $\pm$ 2.0 (syst.) $\pm$ 0.9 (lumi.) pb with a precision of 4.5%.

2 data tables

The measured inclusive cross section. The first systematic uncertainty (sys_1) is the combined systematic uncertainty excluding luminosity, the second (sys_2) is the luminosity

The measured fiducial cross section. The first systematic uncertainty (sys_1) is the combined systematic uncertainty excluding luminosity, the second (sys_2) is the luminosity


Measurement of the $t\bar{t}\gamma$ production cross section in proton-proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 11 (2017) 086, 2017.
Inspire Record 1604029 DOI 10.17182/hepdata.81946

The cross section of a top-quark pair produced in association with a photon is measured in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 8$ TeV with $20.2$ fb$^{-1}$ of data collected by the ATLAS detector at the Large Hadron Collider in 2012. The measurement is performed by selecting events that contain a photon with transverse momentum $p_\mathrm{T} > 15$ GeV, an isolated lepton with large transverse momentum, large missing transverse momentum, and at least four jets, where at least one is identified as originating from a $b$-quark. The production cross section is measured in a fiducial region close to the selection requirements. It is found to be $139 \pm 7 (\mathrm{stat.}) \pm 17 (\mathrm{syst.})$ fb, in good agreement with the theoretical prediction at next-to-leading order of $151 \pm 24$ fb. In addition, differential cross sections in the fiducial region are measured as a function of the transverse momentum and pseudorapidity of the photon.

3 data tables

The measured fiducial cross sections. The first uncertainty is the statistical uncertainty and the second is the systematic uncertainty

differential cross section as function of the photon pT. The first uncertainty is the statistical uncertainty and the second is the systematic uncertainty

differential cross section as function of the photon pseudorapidity. The first uncertainty is the statistical uncertainty and the second is the systematic uncertainty


Search for long-lived particles produced in $pp$ collisions at $\sqrt{s}=13$ TeV that decay into displaced hadronic jets in the ATLAS muon spectrometer

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 052005, 2019.
Inspire Record 1704138 DOI 10.17182/hepdata.85748

A search for the decay of neutral, weakly interacting, long-lived particles using data collected by the ATLAS detector at the LHC is presented. The analysis in this paper uses 36.1 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV recorded in 2015-2016. The search employs techniques for reconstructing vertices of long-lived particles decaying into jets in the muon spectrometer exploiting a two vertex strategy and a novel technique that requires only one vertex in association with additional activity in the detector that improves the sensitivity for longer lifetimes. The observed numbers of events are consistent with the expected background and limits for several benchmark signals are determined.

122 data tables

- - - - - - - - - - - - - - - - - - - - <br/><b>Muon RoI Cluster trigger efficiency:</b> <br/><i>mPhi=100:</i> <a href="85748?version=1&table=Table1">Barrel</a> <i>mPhi=125:</i> <a href="85748?version=1&table=Table2">Barrel</a> <br/><i>mPhi=200:</i> <a href="85748?version=1&table=Table3">Barrel</a> <i>mPhi=400:</i> <a href="85748?version=1&table=Table4">Barrel</a> <br/><i>mPhi=600:</i> <a href="85748?version=1&table=Table5">Barrel</a> <i>mPhi=1000:</i> <a href="85748?version=1&table=Table6">Barrel</a> <br/><i>Stealth SUSY:</i> <a href="85748?version=1&table=Table7">Barrel</a> <br/><i>Baryogenesis nubb:</i> <a href="85748?version=1&table=Table8">Barrel</a> <i>Baryogenesis cbs:</i> <a href="85748?version=1&table=Table9">Barrel</a> <br/><i>Baryogenesis lcb:</i> <a href="85748?version=1&table=Table10">Barrel</a> <i>Baryogenesis tautaunu:</i> <a href="85748?version=1&table=Table11">Barrel</a> <br/><i>mPhi=100:</i> <a href="85748?version=1&table=Table12">Endcaps</a> <i>mPhi=125:</i> <a href="85748?version=1&table=Table13">Endcaps </a> <br/><i>mPhi=200:</i> <a href="85748?version=1&table=Table14">Endcaps</a> <i>mPhi=400:</i> <a href="85748?version=1&table=Table15">Endcaps</a> <br/><i>mPhi=600:</i> <a href="85748?version=1&table=Table16">Endcaps</a> <i>mPhi=1000:</i> <a href="85748?version=1&table=Table17">Endcaps</a> <br/><i>Stealth SUSY:</i> <a href="85748?version=1&table=Table18">Endcaps</a> <br/><i>Baryogenesis nubb:</i> <a href="85748?version=1&table=Table19">Endcaps</a> <i>Baryogenesis cbs:</i> <a href="85748?version=1&table=Table20">Endcaps</a> <br/><i>Baryogenesis lcb:</i> <a href="85748?version=1&table=Table21">Endcaps</a> <i>Baryogenesis tautaunu:</i> <a href="85748?version=1&table=Table22">Endcaps</a> <br/><b>MS vertex efficiency:</b> <br/><i>mPhi=100:</i> <a href="85748?version=1&table=Table23">Barrel</a> <i>mPhi=125:</i> <a href="85748?version=1&table=Table24">Barrel</a> <br/><i>mPhi=200:</i> <a href="85748?version=1&table=Table25">Barrel</a> <i>mPhi=400:</i> <a href="85748?version=1&table=Table26">Barrel</a> <br/><i>mPhi=600:</i> <a href="85748?version=1&table=Table27">Barrel</a> <i>mPhi=1000:</i> <a href="85748?version=1&table=Table28">Barrel</a> <br/><i>Stealth SUSY:</i> <a href="85748?version=1&table=Table29">Barrel</a> <br/><i>Baryogenesis nubb:</i> <a href="85748?version=1&table=Table30">Barrel</a> <i>Baryogenesis cbs:</i> <a href="85748?version=1&table=Table31">Barrel</a> <br/><i>Baryogenesis lcb:</i> <a href="85748?version=1&table=Table32">Barrel</a> <i>Baryogenesis tautaunu:</i> <a href="85748?version=1&table=Table33">Barrel</a> <br/><i>mPhi=100:</i> <a href="85748?version=1&table=Table34">Endcaps</a> <i>mPhi=125:</i> <a href="85748?version=1&table=Table35">Endcaps</a> <br/><i>mPhi=200:</i> <a href="85748?version=1&table=Table36">Endcaps</a> <i>mPhi=400:</i> <a href="85748?version=1&table=Table37">Endcaps</a> <br/><i>mPhi=600:</i> <a href="85748?version=1&table=Table38">Endcaps</a> <i>mPhi=1000:</i> <a href="85748?version=1&table=Table39">Endcaps</a> <br/><i>Stealth SUSY:</i> <a href="85748?version=1&table=Table40">Endcaps</a> <br/><i>Baryogenesis nubb:</i> <a href="85748?version=1&table=Table41">Endcaps</a> <i>Baryogenesis cbs:</i> <a href="85748?version=1&table=Table42">Endcaps</a> <br/><i>Baryogenesis lcb:</i> <a href="85748?version=1&table=Table43">Endcaps</a> <i>Baryogenesis tautaunu:</i> <a href="85748?version=1&table=Table44">Endcaps</a> <br/><b>Exclusion limits:</b> <br/><i>mPhi=125, mS=5:</i> <a href="85748?version=1&table=Table45">2Vx</a> <a href="85748?version=1&table=Table46">1Vx</a> <a href="85748?version=1&table=Table47">Combined</a> <br/><i>mPhi=125, mS=8:</i> <a href="85748?version=1&table=Table48">2Vx</a> <a href="85748?version=1&table=Table49">1Vx</a> <a href="85748?version=1&table=Table50">Combined</a> <br/><i>mPhi=125, mS=15:</i> <a href="85748?version=1&table=Table51">2Vx</a> <a href="85748?version=1&table=Table52">1Vx</a> <a href="85748?version=1&table=Table53">Combined</a> <br/><i>mPhi=125, mS=25:</i> <a href="85748?version=1&table=Table54">2Vx</a> <a href="85748?version=1&table=Table55">1Vx</a> <a href="85748?version=1&table=Table56">Combined</a> <br/><i>mPhi=125, mS=40:</i> <a href="85748?version=1&table=Table57">2Vx</a> <a href="85748?version=1&table=Table58">1Vx</a> <a href="85748?version=1&table=Table59">Combined</a> <br/><i>Stealth SUSY mG=250:</i> <a href="85748?version=1&table=Table60">2Vx</a> <br/><i>Stealth SUSY mG=500:</i> <a href="85748?version=1&table=Table61">2Vx</a> <a href="85748?version=1&table=Table62">1Vx</a> <a href="85748?version=1&table=Table63">Combined</a> <br/><i>Stealth SUSY mG=800:</i> <a href="85748?version=1&table=Table64">2Vx</a> <a href="85748?version=1&table=Table65">1Vx</a> <a href="85748?version=1&table=Table66">Combined</a> <br/><i>Stealth SUSY mG=1200:</i> <a href="85748?version=1&table=Table67">2Vx</a> <a href="85748?version=1&table=Table68">1Vx</a> <a href="85748?version=1&table=Table69">Combined</a> <br/><i>Stealth SUSY mG=1500:</i> <a href="85748?version=1&table=Table70">2Vx</a> <a href="85748?version=1&table=Table71">1Vx</a> <a href="85748?version=1&table=Table72">Combined</a> <br/><i>Stealth SUSY mG=2000:</i> <a href="85748?version=1&table=Table73">2Vx</a> <a href="85748?version=1&table=Table74">1Vx</a> <a href="85748?version=1&table=Table75">Combined</a> <br/><i>mPhi=100, mS=8:</i> <a href="85748?version=1&table=Table76">2Vx</a> <br/><i>mPhi=100, mS=25:</i> <a href="85748?version=1&table=Table77">2Vx</a> <br/><i>mPhi=200, mS=8:</i> <a href="85748?version=1&table=Table78">2Vx</a> <br/><i>mPhi=200, mS=25:</i> <a href="85748?version=1&table=Table79">2Vx</a> <br/><i>mPhi=200, mS=50:</i> <a href="85748?version=1&table=Table80">2Vx</a> <br/><i>mPhi=400, mS=50:</i> <a href="85748?version=1&table=Table81">2Vx</a> <br/><i>mPhi=400, mS=100:</i> <a href="85748?version=1&table=Table82">2Vx</a> <br/><i>mPhi=600, mS=50:</i> <a href="85748?version=1&table=Table83">2Vx</a> <br/><i>mPhi=600, mS=150:</i> <a href="85748?version=1&table=Table84">2Vx</a> <br/><i>mPhi=1000, mS=50:</i> <a href="85748?version=1&table=Table85">2Vx</a> <br/><i>mPhi=1000, mS=150:</i> <a href="85748?version=1&table=Table86">2Vx</a> <br/><i>mPhi=1000, mS=400:</i> <a href="85748?version=1&table=Table87">2Vx</a> <br/><i>Baryogenesis nubb, mChi=10</i> <a href="85748?version=1&table=Table88">2Vx</a> <a href="85748?version=1&table=Table89">1Vx</a> <a href="85748?version=1&table=Table90">Combined</a> <br/><i>Baryogenesis nubb, mChi=30</i> <a href="85748?version=1&table=Table91">2Vx</a> <a href="85748?version=1&table=Table92">1Vx</a> <a href="85748?version=1&table=Table93">Combined</a> <br/><i>Baryogenesis nubb, mChi=50</i> <a href="85748?version=1&table=Table94">2Vx</a> <a href="85748?version=1&table=Table95">1Vx</a> <a href="85748?version=1&table=Table96">Combined</a> <br/><i>Baryogenesis nubb, mChi=100</i> <a href="85748?version=1&table=Table97">2Vx</a> <br/><i>Baryogenesis cbs, mChi=10</i> <a href="85748?version=1&table=Table98">2Vx</a> <a href="85748?version=1&table=Table99">1Vx</a> <a href="85748?version=1&table=Table100">Combined</a> <br/><i>Baryogenesis cbs, mChi=30</i> <a href="85748?version=1&table=Table101">2Vx</a> <a href="85748?version=1&table=Table102">1Vx</a> <a href="85748?version=1&table=Table103">Combined</a> <br/><i>Baryogenesis cbs, mChi=50</i> <a href="85748?version=1&table=Table104">2Vx</a> <a href="85748?version=1&table=Table105">1Vx</a> <a href="85748?version=1&table=Table106">Combined</a> <br/><i>Baryogenesis cbs, mChi=100</i> <a href="85748?version=1&table=Table107">2Vx</a> <br/><i>Baryogenesis lcb, mChi=10</i> <a href="85748?version=1&table=Table108">2Vx</a> <a href="85748?version=1&table=Table109">1Vx</a> <a href="85748?version=1&table=Table110">Combined</a> <br/><i>Baryogenesis lcb, mChi=30</i> <a href="85748?version=1&table=Table111">2Vx</a> <a href="85748?version=1&table=Table112">1Vx</a> <a href="85748?version=1&table=Table113">Combined</a> <br/><i>Baryogenesis lcb, mChi=50</i> <a href="85748?version=1&table=Table114">2Vx</a> <a href="85748?version=1&table=Table115">1Vx</a> <a href="85748?version=1&table=Table116">Combined</a> <br/><i>Baryogenesis lcb, mChi=100</i> <a href="85748?version=1&table=Table117">2Vx</a> <br/><i>Baryogenesis tatanu, mChi=10</i> <a href="85748?version=1&table=Table118">2Vx</a> <br/><i>Baryogenesis tatanu, mChi=30</i> <a href="85748?version=1&table=Table119">2Vx</a> <br/><i>Baryogenesis tatanu, mChi=50</i> <a href="85748?version=1&table=Table120">2Vx</a> <br/><i>Baryogenesis tatanu, mChi=100</i> <a href="85748?version=1&table=Table121">2Vx</a>

Barrel Muon RoI Cluster trigger efficiencies (in %) for $m_{\Phi}=100$ GeV scalar benchmark samples. The trigger efficiency is defined as the fraction of LLPs selected by the Muon RoI Cluster trigger as a function of the LLP decay position. The trigger is efficient for hadronic decays of LLPs that occur anywhere from the outer regions of the HCal to the middle station of the MS. These efficiencies are obtained from the subset of events with only a single LLP decay in the muon spectrometer in order to ensure that the result of the trigger is due to a single burst of MS activity. The uncertainties shown are statistical only. The relative differences in efficiencies of the benchmark samples are a result of the different kinematics.

Barrel Muon RoI Cluster trigger efficiencies (in %) for $m_{\Phi}=125$ GeV scalar benchmark samples. The trigger efficiency is defined as the fraction of LLPs selected by the Muon RoI Cluster trigger as a function of the LLP decay position. The trigger is efficient for hadronic decays of LLPs that occur anywhere from the outer regions of the HCal to the middle station of the MS. These efficiencies are obtained from the subset of events with only a single LLP decay in the muon spectrometer in order to ensure that the result of the trigger is due to a single burst of MS activity. The uncertainties shown are statistical only. The relative differences in efficiencies of the benchmark samples are a result of the different kinematics.

More…

Search for pair production of higgsinos in final states with at least three $b$-tagged jets in $\sqrt{s} = 13$ TeV $pp$ collisions using the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 98 (2018) 092002, 2018.
Inspire Record 1677389 DOI 10.17182/hepdata.83418

A search for pair production of the supersymmetric partners of the Higgs boson (higgsinos $\tilde{H}$) in gauge-mediated scenarios is reported. Each higgsino is assumed to decay to a Higgs boson and a gravitino. Two complementary analyses, targeting high- and low-mass signals, are performed to maximize sensitivity. The two analyses utilize LHC $pp$ collision data at a center-of-mass energy $\sqrt{s} = 13$ TeV, the former with an integrated luminosity of 36.1 fb$^{-1}$ and the latter with 24.3 fb$^{-1}$, collected with the ATLAS detector in 2015 and 2016. The search is performed in events containing missing transverse momentum and several energetic jets, at least three of which must be identified as $b$-quark jets. No significant excess is found above the predicted background. Limits on the cross-section are set as a function of the mass of the $\tilde{H}$ in simplified models assuming production via mass-degenerate higgsinos decaying to a Higgs boson and a gravitino. Higgsinos with masses between 130 and 230 GeV and between 290 and 880 GeV are excluded at the 95% confidence level. Interpretations of the limits in terms of the branching ratio of the higgsino to a $Z$ boson or a Higgs boson are also presented, and a 45% branching ratio to a Higgs boson is excluded for $m_{\tilde{H}} \approx 400$ GeV.

16 data tables

Distribution of m(h1) for events passing the preselection criteria of the high-mass analysis.

Distribution of effective mass for events passing the preselection criteria of the high-mass analysis.

Exclusion limits on higgsino pair production. The results of the low-mass analysis are used below m(higgsino) = 300 GeV, while those of the high-mass analysis are used above. The figure shows the observed and expected 95% upper limits on the higgsino pair production cross-section as a function of m(higgsino).

More…

Search for heavy Majorana or Dirac neutrinos and right-handed $W$ gauge bosons in final states with two charged leptons and two jets at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2019) 016, 2019.
Inspire Record 1696330 DOI 10.17182/hepdata.83786

A search for heavy right-handed Majorana or Dirac neutrinos $N_R$ and heavy right-handed gauge bosons $W_R$ is performed in events with a pair of energetic electrons or muons, with the same or opposite electric charge, and two energetic jets. The events are selected from $pp$ collision data with an integrated luminosity of 36.1 fb$^{-1}$ collected by the ATLAS detector at $\sqrt{s}$ = 13 TeV. No significant deviations from the Standard Model are observed. The results are interpreted within the theoretical framework of a left-right symmetric model and lower limits are set on masses in the heavy right-handed $W$ boson and neutrino mass plane. The excluded region extends to $m_{W_R}=4.7$ TeV for both Majorana and Dirac $N_R$ neutrinos.

20 data tables

Expected 95% CL exclusion contour in the $m_{W_R}–m_{N_R}$ plane for the Majorana $N_R$ neutrino $ee$ channel.

Observed 95% CL exclusion contour in the $m_{W_R}–m_{N_R}$ plane for the Majorana $N_R$ neutrino $ee$ channel.

Observed and expected 95% CL exclusion, for the tested signal mass hypotheses in the $m_{W_R}–m_{N_R}$ plane, for the Majorana $N_R$ neutrino $ee$ channel.

More…

Measurement of $W^+W^-$ production in association with one jet in proton--proton collisions at $\sqrt{s} =8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 763 (2016) 114-133, 2016.
Inspire Record 1480365 DOI 10.17182/hepdata.79950

The production of $W$ boson pairs in association with one jet in $pp$ collisions at $\sqrt{s} = 8$ TeV is studied using data corresponding to an integrated luminosity of 20.3 fb$^{-1}$ collected by the ATLAS detector during 2012 at the CERN Large Hadron Collider. The cross section is measured in a fiducial phase-space region defined by the presence of exactly one electron and one muon, missing transverse momentum and exactly one jet with a transverse momentum above 25 GeV and a pseudorapidity of $|\eta|<4.5$. The leptons are required to have opposite electric charge and to pass transverse momentum and pseudorapidity requirements. The fiducial cross section is found to be $\sigma^{\mathrm{fid,1\textrm{-}jet}}_{WW}=136\pm6($stat$)\pm14($syst$)\pm3($lumi$)$ fb. In combination with a previous measurement restricted to leptonic final states with no associated jets, the fiducial cross section of $WW$ production with zero or one jet is measured to be $\sigma^{\mathrm{fid,}\leq\mathrm{1\textrm{-}jet}}_{WW}=511\pm9($stat$)\pm26($syst$)\pm10($lumi$)$ fb. The ratio of fiducial cross sections in final states with one and zero jets is determined to be $0.36\pm0.05$. Finally, a total cross section extrapolated from the fiducial measurement of $WW$ production with zero or one associated jet is reported. The measurements are compared to theoretical predictions and found in good agreement.

4 data tables

Measured production cross section of WW production in the fiducial region in case one W boson decays into a prompt electron and the other one into a prompt muon. The cross section is defined for direct decays of the W bosons into prompt electrons or muons, intermediate decays into tau leptons are disregarded. The electrons are required to be contained within abs(eta)<2.47 and to lie outside of 1.37 < abs(eta) < 1.53, muons are required to lie within abs(eta)<2.4. The leading and subleading leptons in the events are required to have a transverse momentum above 25 and 20 GeV respectively. The transverse momentum of the vectorial sum of the neutrinos in the event should be larger than 20 GeV (PT(C=SUM(NU))). The transverse momentum of the vectorial sum of the neutrinos is multiplied by the sine of the azimuthal difference between lepton and the vectorial sum of the neutrinos if their azimuthal difference is smaller than PI/2. It is required to be larger than 15 GeV. The invariant mass of the leptons should exceed 10 GeV. Particle-level jets are defined using the anti-kT algorithm with radius of 0.4. Only events with exactly one jet above 25 GeV and within abs(eta)<4.5 are selected. Events containing b-jets with p T > 20 GeV and within |η| < 2.5 are rejected. Both, resonant and non-resonant WW production processes, are included in the cross sections.

Measured production cross section of WW production in the fiducial region in case one W boson decays into a prompt electron and the other one into a prompt muon. The cross section is defined for direct decays of the W bosons into prompt electrons or muons, intermediate decays into tau leptons are disregarded. The electrons are required to be contained within abs(eta)<2.47 and to lie outside of 1.37 < abs(eta) < 1.53, muons are required to lie within abs(eta)<2.4. The leading and subleading leptons in the events are required to have a transverse momentum above 25 and 20 GeV respectively. The transverse momentum of the vectorial sum of the neutrinos in the event should be larger than 20 GeV (PT(C=SUM(NU))). The transverse momentum of the vectorial sum of the neutrinos is multiplied by the sine of the azimuthal difference between lepton and the vectorial sum of the neutrinos if their azimuthal difference is smaller than PI/2. It is required to be larger than 15 GeV. The invariant mass of the leptons should exceed 10 GeV. Particle-level jets are defined using the anti-kT algorithm with radius of 0.4. Only events with zero or exactly one jet above 25 GeV and within abs(eta)<4.5 are selected. Events containing b-jets with p T > 20 GeV and within |η| < 2.5 are rejected. Both, resonant and non-resonant WW production processes, are included in the cross sections.

Measured ratio of the production cross section of WW production with one associated jet to the production cross section of WW production with zero associated jets. The ratio is determined in the in the fiducial region which is defined in case one W boson decays into a prompt electron and the other one into a prompt muon. The cross section is defined for direct decays of the W bosons into prompt electrons or muons, intermediate decays into tau leptons are disregarded. The electrons are required to be contained within abs(eta)<2.47 and to lie outside of 1.37 < abs(eta) < 1.53, muons are required to lie within abs(eta)<2.4. The leading and subleading leptons in the events are required to have a transverse momentum above 25 and 20 GeV respectively. The transverse momentum of the vectorial sum of the neutrinos in the event should be larger than 20 GeV (PT(C=SUM(NU))). The transverse momentum of the vectorial sum of the neutrinos is multiplied by the sine of the azimuthal difference between lepton and the vectorial sum of the neutrinos if their azimuthal difference is smaller than PI/2. It is required to be larger than 15 GeV. The invariant mass of the leptons should exceed 10 GeV. Particle-level jets are defined using the anti-kT algorithm with radius of 0.4. Only events with zero or exactly one jet above 25 GeV and within abs(eta)<4.5 are selected. Events containing b-jets with p T > 20 GeV and within |η| < 2.5 are rejected. Both, resonant and non-resonant WW production processes, are included in the cross sections.

More…

Version 2
Search for squarks and gluinos in final states with hadronically decaying $\tau$-leptons, jets, and missing transverse momentum using $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 012009, 2019.
Inspire Record 1688943 DOI 10.17182/hepdata.84426

A search for supersymmetry in events with large missing transverse momentum, jets, and at least one hadronically decaying $\tau$-lepton is presented. Two exclusive final states with either exactly one or at least two $\tau$-leptons are considered. The analysis is based on proton-proton collisions at $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 36.1 fb$^{-1}$ delivered by the Large Hadron Collider and recorded by the ATLAS detector in 2015 and 2016. No significant excess is observed over the Standard Model expectation. At 95% confidence level, model-independent upper limits on the cross section are set and exclusion limits are provided for two signal scenarios: a simplified model of gluino pair production with $\tau$-rich cascade decays, and a model with gauge-mediated supersymmetry breaking (GMSB). In the simplified model, gluino masses up to 2000 GeV are excluded for low values of the mass of the lightest supersymmetric particle (LSP), while LSP masses up to 1000 GeV are excluded for gluino masses around 1400 GeV. In the GMSB model, values of the supersymmetry-breaking scale are excluded below 110 TeV for all values of $\tan\beta$ in the range $2 \leq \tan\beta \leq 60$, and below 120 TeV for $\tan\beta>30$.

104 data tables

1$\tau$ Compressed SR eff.

1$\tau$ Compressed SR eff.

1$\tau$ MediumMass SR eff.

More…

Search for vector-boson resonances decaying to a top quark and bottom quark in the lepton plus jets final state in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 788 (2019) 347-370, 2019.
Inspire Record 1684216 DOI 10.17182/hepdata.83825

A search for new charged massive gauge bosons, $W^\prime$, is performed with the ATLAS detector at the LHC. Data were collected in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV and correspond to an integrated luminosity of 36.1 $\textrm{fb}^{-1}$. This analysis searches for $W^\prime$ bosons in the $W^\prime \rightarrow t\bar{b}$ decay channel in final states with an electron or muon plus jets. The search covers resonance masses between 0.5 and 5.0 TeV and considers right-handed $W^\prime$ bosons. No significant deviation from the Standard Model (SM) expectation is observed and upper limits are set on the $W^\prime \rightarrow t\bar{b}$ cross section times branching ratio and the $W^\prime$ boson effective couplings as a function of the $W^\prime$ boson mass. For right-handed $W^\prime$ bosons with coupling to the SM particles equal to the SM weak coupling constant, masses below 3.15 TeV are excluded at the 95% confidence level. This search is also combined with a previously published ATLAS result for $W^\prime \rightarrow t\bar{b}$ in the fully hadronic final state. Using the combined searches, right-handed $W^\prime$ bosons with masses below 3.25 TeV are excluded at the 95% confidence level.

16 data tables

Signal selection efficiency (efficiency is defined as the number of events passing all selections divided by the total number of simulated $W' \to t\bar{b} \to \ell \nu b \bar{b}$ events) in the signal region as a function of the simulated $W^\prime_{\textrm{R}}$ mass.

Distribution of the reconstructed invariant mass of the $W^\prime$ boson candidate in the 2-jet 1-tag VR$_{\textrm{HF}}$ electron validation region. Background templates are fit to data in each VR using the same statistical method as for the signal region except that the normalizations of $t\bar{t}$ and $W$+jets backgrounds are constrained to the post-fit rates obtained in the signal region. Uncertainties include all the systematic and statistical uncertainties.

Distribution of the reconstructed invariant mass of the $W^\prime$ boson candidate in the 2-jet 1-tag VR$_{\textrm{HF}}$ muon validation region. Background templates are fit to data in each VR using the same statistical method as for the signal region except that the normalizations of $t\bar{t}$ and $W$+jets backgrounds are constrained to the post-fit rates obtained in the signal region. Uncertainties include all the systematic and statistical uncertainties.

More…

Version 2
Measurement of the production cross section of three isolated photons in $pp$ collisions at $\sqrt{s}$ = 8 TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 781 (2018) 55-76, 2018.
Inspire Record 1644367 DOI 10.17182/hepdata.80511

A measurement of the production of three isolated photons in proton-proton collisions at a centre-of-mass energy $\sqrt{s}$ = 8 TeV is reported. The results are based on an integrated luminosity of 20.2 fb$^{-1}$ collected with the ATLAS detector at the LHC. The differential cross sections are measured as functions of the transverse energy of each photon, the difference in azimuthal angle and in pseudorapidity between pairs of photons, the invariant mass of pairs of photons, and the invariant mass of the triphoton system. A measurement of the inclusive fiducial cross section is also reported. Next-to-leading-order perturbative QCD predictions are compared to the cross-section measurements. The predictions underestimate the measurement of the inclusive fiducial cross section and the differential measurements at low photon transverse energies and invariant masses. They provide adequate descriptions of the measurements at high values of the photon transverse energies, invariant mass of pairs of photons, and invariant mass of the triphoton system.

13 data tables

The three isolated photons cross section with systematic and statistical uncertainties as a function of ET(Photon1).

The three isolated photons cross section with systematic and statistical uncertainties as a function of ET(Photon2).

The three isolated photons cross section with systematic and statistical uncertainties as a function of ET(Photon3).

More…

Search for resonances in the mass distribution of jet pairs with one or two jets identified as $b$-jets in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 98 (2018) 032016, 2018.
Inspire Record 1674532 DOI 10.17182/hepdata.83179

A search for new resonances decaying into jets containing b-hadrons in $pp$ collisions with the ATLAS detector at the LHC is presented in the dijet mass range from 0.57 TeV to 7 TeV. The dataset corresponds to an integrated luminosity of up to 36.1 fb$^{-1}$ collected in 2015 and 2016 at $\sqrt{s} = 13$ TeV. No evidence of a significant excess of events above the smooth background shape is found. Upper cross-section limits and lower limits on the corresponding signal mass parameters for several types of signal hypotheses are provided at 95% CL. In addition, 95% CL upper limits are set on the cross-sections for new processes that would produce Gaussian-shaped signals in the di-b-jet mass distributions.

26 data tables

The per-event b-tagging efficiencies after the event selection, as a function of the reconstructed invariant mass, for both single b-tagged and double b-tagged categories. The efficiencies are shown for simulated event samples corresponding to seven different b and Z' resonance masses in the high-mass region.

The per-event b-tagging efficiencies after the event selection, as a function of the reconstructed invariant mass, for double b-tagged category. The efficiencies are shown for simulated event samples corresponding to four different Z' resonance masses in the low-mass region. The efficiencies of identifying an event with two b-jets at trigger level only (Online) and when requiring offline confirmation (Online+offline) are shown.

Dijet mass spectra after the background only fit with the background prediction in the inclusive 1-b-tag high-mass region.

More…

Version 3
Search for supersymmetry in final states with charm jets and missing transverse momentum in 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 09 (2018) 050, 2018.
Inspire Record 1672099 DOI 10.17182/hepdata.83011

A search for supersymmetric partners of top quarks decaying as $\tilde{t}_1\to c\tilde\chi^0_1$ and supersymmetric partners of charm quarks decaying as $\tilde{c}_1\to c\tilde\chi^0_1$, where $\tilde\chi^0_1$ is the lightest neutralino, is presented. The search uses 36.1 ${\rm fb}^{-1}$ $pp$ collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS experiment at the Large Hadron Collider and is performed in final states with jets identified as containing charm hadrons. Assuming a 100% branching ratio to $c\tilde\chi^0_1$, top and charm squarks with masses up to 850 GeV are excluded at 95% confidence level for a massless lightest neutralino. For $m_{\tilde{t}_1,\tilde{c}_1}-m_{\tilde\chi^0_1}

132 data tables

Acceptance for best expected CLS SR in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.

Acceptance for SR1 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.

Acceptance for SR1 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.

More…

Search for pair production of Higgs bosons in the $b\bar{b}b\bar{b}$ final state using proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2019) 030, 2019.
Inspire Record 1668124 DOI 10.17182/hepdata.82599

A search for Higgs boson pair production in the $b\bar{b}b\bar{b}$ final state is carried out with up to 36.1 $\mathrm{fb}^{-1}$ of LHC proton--proton collision data collected at $\sqrt{s}$ = 13 TeV with the ATLAS detector in 2015 and 2016. Three benchmark signals are studied: a spin-2 graviton decaying into a Higgs boson pair, a scalar resonance decaying into a Higgs boson pair, and Standard Model non-resonant Higgs boson pair production. Two analyses are carried out, each implementing a particular technique for the event reconstruction that targets Higgs bosons reconstructed as pairs of jets or single boosted jets. The resonance mass range covered is 260--3000 GeV. The analyses are statistically combined and upper limits on the production cross section of Higgs boson pairs times branching ratio to $b\bar{b}b\bar{b}$ are set in each model. No significant excess is observed; the largest deviation of data over prediction is found at a mass of 280 GeV, corresponding to 2.3 standard deviations globally. The observed 95% confidence level upper limit on the non-resonant production is 13 times the Standard Model prediction.

4 data tables

The observed and expected 95% CL upper limits on the production cross section times branching ratio for the narrow-width scalar.

The observed and expected 95% CL upper limits on the production cross section times branching ratio for the bulk Randall-Sundrum model with $\frac{k}{\overline{M}_{\mathrm{Pl}}} = 1$.

The observed and expected 95% CL upper limits on the production cross section times branching ratio for the bulk Randall-Sundrum model with $\frac{k}{\overline{M}_{\mathrm{Pl}}} = 2$.

More…

Version 3
A search for high-mass resonances decaying to $\tau\nu$ in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 120 (2018) 161802, 2018.
Inspire Record 1649273 DOI 10.17182/hepdata.80812

A search for high-mass resonances decaying to $\tau\nu$ using proton-proton collisions at $\sqrt{s}$ = 13 TeV produced by the Large Hadron Collider is presented. Only $\tau$-lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb$^{-1}$. No statistically significant excess above the Standard Model expectation is observed; model-independent upper limits are set on the visible $\tau\nu$ production cross section. Heavy $W^{\prime}$ bosons with masses less than 3.7 TeV in the Sequential Standard Model and masses less than 2.2-3.8 TeV depending on the coupling in the non-universal G(221) model are excluded at the 95% credibility level.

24 data tables

Observed and predicted $m_{\rm T}$ distributions including SSM and NU (cot$\phi$ = 5.5) $W^{\prime}$ signals with masses of 3 TeV. Please note that in the paper figure the bin content is divided by the bin width, but this is not done in the HepData table.

Observed and predicted $m_{\rm T}$ distributions including SSM and NU (cot$\phi$ = 5.5) $W^{\prime}$ signals with masses of 3 TeV. Please note that in the paper figure the bin content is divided by the bin width, but this is not done in the HepData table.

Observed and predicted $m_{\rm T}$ distributions including SSM and NU (cot$\phi$ = 5.5) $W^{\prime}$ signals with masses of 3 TeV. Please note that in the paper figure the bin content is divided by the bin width, but this is not done in the HepData table. The table also contains each background contribution to the Standard Model expectation separately with their statistical uncertainties.

More…

Search for $W' \rightarrow tb$ decays in the hadronic final state using pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 781 (2018) 327-348, 2018.
Inspire Record 1650152 DOI 10.17182/hepdata.82286

A search for $W'$-boson production in the $W' \rightarrow t\bar{b} \rightarrow q\bar{q}' b\bar{b}$ decay channel is presented using 36.1 fb$^{-1}$ of 13 TeV proton-proton collision data collected by the ATLAS detector at the Large Hadron Collider in 2015 and 2016. The search is interpreted in terms of both a left-handed and a right-handed chiral $W'$ boson within the mass range 1-5 TeV. Identification of the hadronically decaying top quark is performed using jet substructure tagging techniques based on a shower deconstruction algorithm. No significant deviation from the Standard Model prediction is observed and the results are expressed as upper limits on the $W' \rightarrow t\bar{b}$ production cross-section times branching ratio as a function of the $W'$-boson mass. These limits exclude $W'$ bosons with right-handed couplings with masses below 3.0 TeV and $W'$ bosons with left-handed couplings with masses below 2.9 TeV, at the 95% confidence level.

6 data tables

Observed and expected 95% CL limits on the right-handed W'-boson cross-section times branching ratio of W' to tb decay as a function of the corresponding W'-boson mass.

Observed and expected 95% CL limits on the left-handed W'-boson cross-section times branching ratio of W' to tb decay as a function of the corresponding W'-boson mass.

Reconstructed mtb distribution in data and for the background after the fit to the data in the signal region SR1. The statistical uncertainty on data points is calculated using assymetric Poisson confidence intervals.

More…

Measurement of exclusive $\gamma\gamma\rightarrow W^+W^-$ production and search for exclusive Higgs boson production in $pp$ collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 94 (2016) 032011, 2016.
Inspire Record 1475477 DOI 10.17182/hepdata.79951

Searches for exclusively produced $W$ boson pairs in the process $pp(\gamma\gamma) \rightarrow pW^+W^-p$ and exclusively produced Higgs boson in the process $pp(gg) \rightarrow pHp$ have been performed using $e^{\pm}\mu^{\mp}$ final states. These measurements use 20.2 fb$^{-1}$ of $pp$ collisions collected by the ATLAS experiment at a center-of-mass energy $\sqrt{s}=8$ TeV at the LHC. Exclusive production of $W^+W^-$ consistent with the Standard Model prediction is found with 3.0$\sigma$ significance. The exclusive $W^+W^-$ production cross-section is determined to be $\sigma (\gamma\gamma\rightarrow W^{+}W^{-}\rightarrow e^{\pm}\mu^{\mp} X) = 6.9 \pm 2.2 (\mathrm{stat.}) \pm 1.4 (\mathrm{sys.})$ fb, in agreement with the Standard Model prediction. Limits on anomalous quartic gauge couplings are set at 95\% confidence-level as $-1.7 \times 10^{-6} < a_0^W/\Lambda^2 < 1.7 \times 10^{-6}$ GeV$^{-2}$and $-6.4 \times 10^{-6} < a_C^W/\Lambda^2 < 6.3 \times 10^{-6}$ GeV$^{-2}$. A 95\% confidence-level upper limit on the total production cross-section for exclusive Higgs boson is set to 1.2 pb.

5 data tables

Observed allowed ranges for 6 dimensional aQGCs, cutoff 500 GeV.

Expected allowed ranges for 6 dimensional aQGCs, no cutoff).

Observed allowed ranges for 8 dimensional aQGCs, cutoff 500).

More…

Measurement of the cross-section for electroweak production of dijets in association with a $Z$ boson in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 775 (2017) 206-228, 2017.
Inspire Record 1627873 DOI 10.17182/hepdata.77267

The cross-section for the production of two jets in association with a leptonically decaying Z boson ($Zjj$) is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV, using data recorded with the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of 3.2 fb$^{-1}$. The electroweak $Zjj$ cross-section is extracted in a fiducial region chosen to enhance the electroweak contribution relative to the dominant Drell-Yan $Zjj$ process, which is constrained using a data-driven approach. The measured fiducial electroweak cross-section is $\sigma^{Zjj}_{EW}= 119\pm 16 (\mathrm{stat.}) \pm 20 (\mathrm{syst.})\pm 2 (\mathrm{lumi.})$ for dijet invariant mass greater than 250 GeV, and $34.2\pm 5.8 (\mathrm{stat.})\pm 5.5 (\mathrm{syst.})\pm 0.7 (\mathrm{lumi.})$ for dijet invariant mass greater than 1 TeV. Standard Model predictions are in agreement with the measurements. The inclusive $Zjj$ cross-section is also measured in six different fiducial regions with varying contributions from electroweak and Drell-Yan $Zjj$ production.

4 data tables

Fiducial regions definitions

Measured and predicted inclusive Zjj production cross-sections in the six fiducial regions

Measured and predicted EW-Zjj production cross-sections in the EW-enriched fiducial regions with and without an additional kinematic requirement of $m_{jj} > $ 1 TeV

More…

$ZZ \to \ell^{+}\ell^{-}\ell^{\prime +}\ell^{\prime -}$ cross-section measurements and search for anomalous triple gauge couplings in 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 97 (2018) 032005, 2018.
Inspire Record 1625109 DOI 10.17182/hepdata.82224

Measurements of $ZZ$ production in the $\ell^{+}\ell^{-}\ell^{\prime +}\ell^{\prime -}$ channel in proton-proton collisions at 13 TeV center-of-mass energy at the Large Hadron Collider are presented. The data correspond to 36.1 $\mathrm{fb}^{-1}$ of collisions collected by the ATLAS experiment in 2015 and 2016. Here $\ell$ and $\ell'$ stand for electrons or muons. Integrated and differential $ZZ \to \ell^{+}\ell^{-}\ell^{\prime +}\ell^{\prime -}$ cross sections with $Z \to \ell^+\ell^-$ candidate masses in the range of 66 GeV to 116 GeV are measured in a fiducial phase space corresponding to the detector acceptance and corrected for detector effects. The differential cross sections are presented in bins of twenty observables, including several that describe the jet activity. The integrated cross section is also extrapolated to a total phase space and to all Standard-Model decays of $Z$ bosons with mass between 66 GeV and 116 GeV, resulting in a value of $17.3 \pm 0.9$ [$\pm 0.6$ (stat.) $\pm 0.5$ (syst.) $\pm 0.6$ (lumi.)] pb. The measurements are found to be in good agreement with the Standard-Model predictions. A search for neutral triple gauge couplings is performed using the transverse momentum distribution of the leading $Z$-boson candidate. No evidence for such couplings is found and exclusion limits are set on their parameters.

121 data tables

Integrated fiducial cross sections. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.

Differential fiducial cross section as function of the transverse momentum of the four-lepton system. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.

Predicted background as function of the transverse momentum of the four-lepton system.

More…

Precision measurement and interpretation of inclusive $W^+$, $W^-$ and $Z/\gamma^*$ production cross sections with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 367, 2017.
Inspire Record 1502620 DOI 10.17182/hepdata.76541

High-precision measurements by the ATLAS Collaboration are presented of inclusive $W^+\to\ell^+\nu$, $W^-\to\ell^-\bar{\nu}$ and $Z/\gamma^*\to\ell\ell$ ($\ell=e,\mu$) Drell-Yan production cross sections at the LHC. The data were collected in proton-proton collisions at $\sqrt{s} = 7$ TeV with an integrated luminosity of 4.6 fb$^{-1}$. Differential $W^+$ and $W^-$ cross sections are measured in a lepton pseudorapidity range $|\eta_{\ell}| = 2.5$. Differential $Z/\gamma^*$ cross sections are measured as a function of the absolute dilepton rapidity, for $|y_{\ell\ell}| < 3.6$, for three intervals of dilepton mass, $m_{\ell\ell}$, extending from 46 to 150 GeV. The integrated and differential electron- and muon-channel cross sections are combined and compared to theoretical predictions using recent sets of parton distribution functions. The data, together with the final inclusive $e^{\pm}p$ scattering cross-section data from H1 and ZEUS, are interpreted in a next-to-next-to-leading-order QCD analysis, and a new set of parton distribution functions, ATLAS-epWZ16, is obtained. The ratio of strange-to-light sea-quark densities in the proton is determined more accurately than in previous determinations based on collider data only, and is established to be close to unity in the sensitivity range of the data. A new measurement of the CKM matrix element $|V_{cs}|$ is also provided.

59 data tables

Fiducial cross sections times branching ratios for $W^+$, $W^-$, central and forward $Z/\gamma^*$ ($m_{ee} = 66-116$ GeV) production in the electron decay channels. The fiducial regions used for the measurement are those defined for the combined fiducial regions, except that the central electron pseudorapidity is restricted to be $|\eta|<2.47$ and excludes $1.37<|\eta|<1.52$, and the forward electron pseudorapidity excludes the region $3.16<|\eta|<3.35$. The uncertainties denote the statistical (stat), the systematic (syst) and the luminosity (lumi) uncertainties.

Fiducial cross sections times branching ratios for $W^+$, $W^-$ and $Z/\gamma^*$ ($m_{\mu\mu} = 66-116$ GeV) production in the muon decay channels. The fiducial regions used for the measurement are those defined for the combined fiducial regions, except that the muon pseudorapidity is restricted to be $|\eta|<2.4$. The uncertainties denote the statistical (stat), the systematic (syst) and the luminosity (lumi) uncertainties.

Integrated fiducial cross sections times leptonic branching ratios in the electron and muon channels and their combination with statistical and systematic uncertainties, for $W^+$, $W^-$, their sum and the $Z/\gamma^*$ process measured at $\sqrt{s}=7$ TeV. The $Z/\gamma^*$ cross section is defined for the dilepton mass window $m_{\ell\ell} = 66 - 116$ GeV. The common fiducial regions are defined in Section 2.3. The uncertainties denote the statistical (stat), the experimental systematic (syst), and the luminosity (lumi) contributions.

More…

Version 7
Search for a scalar partner of the top quark in the jets plus missing transverse momentum final state at $\sqrt{s}$=13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 12 (2017) 085, 2017.
Inspire Record 1623207 DOI 10.17182/hepdata.79538

A search for pair production of a scalar partner of the top quark in events with four or more jets plus missing transverse momentum is presented. An analysis of 36.1 fb$^{-1}$ of $\sqrt{s}$=13 TeV proton-proton collisions collected using the ATLAS detector at the LHC yields no significant excess over the expected Standard Model background. To interpret the results a simplified supersymmetric model is used where the top squark is assumed to decay via $\tilde{t}_1 \rightarrow t^{(*)} \tilde\chi^0_1$ and $\tilde{t}_1\rightarrow b\tilde\chi^\pm_1 \rightarrow b W^{(*)} \tilde\chi^0_1$, where $\tilde\chi^0_1$ ($\chi^\pm_1$) denotes the lightest neutralino (chargino). Exclusion limits are placed in terms of the top-squark and neutralino masses. Assuming a branching ratio of 100% to $t \tilde\chi^0_1$, top-squark masses in the range 450-950 GeV are excluded for $\tilde\chi^0_1$ masses below 160 GeV. In the case where $m_{\tilde{t}_1}\sim m_t+m_{\tilde\chi^0_1}$, top-squark masses in the range 235-590 GeV are excluded.

581 data tables

Distribution of $E_\text{T}^\text{miss}$ for SRA-TT after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.

Distribution of $E_\text{T}^\text{miss}$ for SRA-TT after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.

Distribution of $E_\text{T}^\text{miss}$ for SRA-TT after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.

More…

Search for heavy resonances decaying into $WW$ in the $e\nu\mu\nu$ final state in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 24, 2018.
Inspire Record 1628411 DOI 10.17182/hepdata.79407

A search for neutral heavy resonances is performed in the $WW\to e\nu\mu\nu$ decay channel using $pp$ collision data corresponding to an integrated luminosity of 36.1 fb$^{-1}$, collected at a centre-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. No evidence of such heavy resonances is found. In the search for production via the quark--antiquark annihilation or gluon--gluon fusion process, upper limits on $\sigma_X \times B(X \to WW)$ as a function of the resonance mass are obtained in the mass range between 200 GeV and up to 5 TeV for various benchmark models: a Higgs-like scalar in different width scenarios, a two-Higgs-doublet model, a heavy vector triplet model, and a warped extra dimensions model. In the vector-boson fusion process, constraints are also obtained on these resonances, as well as on a Higgs boson in the Georgi--Machacek model and a heavy tensor particle coupling only to gauge bosons.

32 data tables

Figure 1, left, subfigure a, Acceptance times efficiency as a function of signal mass for the ggF or qqA production. The "0" efficiency mass point means there's no such signal sample for the corresponding model.

Figure 1, right, subfigure b, Acceptance times efficiency as a function of signal mass for the VBF production. The "0" efficiency mass point means there's no such signal sample for the corresponding model.

Figure 2, left, subfigure a, Transverse mass distribution in the ggF top-quark control regions. For NWA signals, the "0" value means lack of statistics.

More…

Measurement of the exclusive $\gamma \gamma \rightarrow \mu^+ \mu^-$ process in proton--proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 777 (2018) 303-323, 2018.
Inspire Record 1615866 DOI 10.17182/hepdata.79947

The production of exclusive $\gamma \gamma \rightarrow \mu^+ \mu^-$ events in proton--proton collisions at a centre-of-mass energy of 13 TeV is measured with the ATLAS detector at the LHC, using data corresponding to an integrated luminosity of 3.2 fb$^{-1}$. The measurement is performed for a dimuon invariant mass of 12 GeV $<m_{\mu^+\mu^-}<$ 70 GeV. The integrated cross-section is determined within a fiducial acceptance region of the ATLAS detector and differential cross-sections are measured as a function of the dimuon invariant mass. The results are compared to theoretical predictions that include corrections for absorptive effects.

2 data tables

The measured fiducial cross section.

Differential fiducial cross section in bins of the dimuon invariant mass. The measurements are listed together with the statistical and systematic uncertainties. The systematic uncertainties are separated into 2 uncorrelated, 7 correlated sources and the luminosity uncertainty. The sign of the uncertainty corresponds to a one standard deviation upward shift of the uncertainty source, where +/- means "+" and -/+ means "-".


Search for doubly charged Higgs boson production in multi-lepton final states with the ATLAS detector using proton-proton collisions at $\sqrt{s}$ = 13 TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 199, 2018.
Inspire Record 1632760 DOI 10.17182/hepdata.80462

A search for doubly charged Higgs bosons with pairs of prompt, isolated, highly energetic leptons with the same electric charge is presented. The search uses a proton-proton collision data sample at a centre-of-mass energy of 13 TeV corresponding to 36.1 $\mathrm{fb}^{-1}$ of integrated luminosity recorded in 2015 and 2016 by the ATLAS detector at the LHC. This analysis focuses on the decays $H^{\pm\pm}\rightarrow e^{\pm}e^{\pm}$, $H^{\pm\pm}\rightarrow e^{\pm}\mu^{\pm}$ and $H^{\pm\pm}\rightarrow \mu^{\pm}\mu^{\pm}$, fitting the dilepton mass spectra in several exclusive signal regions. No significant evidence of a signal is observed and corresponding limits on the production cross-section are derived at 95% confidence level. The observed lower limit on the mass of a doubly charged Higgs boson only coupling to left-handed leptons ($e$,$\mu$) varies from 770 GeV to 870 GeV (850 GeV expected) for $B(H^{\pm\pm}\rightarrow \ell^{\pm}\ell^{\pm})$ = 100% and both the expected and observed mass limits are above 450 GeV for $B(H^{\pm\pm}\rightarrow \ell^{\pm}\ell^{\pm})$ = 10% and any combination of partial branching ratios.

32 data tables

Observed and expected upper limit on the cross-section for $pp \to H^{++}H^{--}$ for a combination of partial branching ratios of $B(ee) = 100\%$, $B(e \mu ) = 0\%$, and $B( \mu \mu ) = 0\%$.

Observed and expected upper limit on the cross-section for $pp \to H^{++}H^{--}$ for a combination of partial branching ratios of $B(ee) = 0\%$, $B(e \mu ) = 0\%$, and $B( \mu \mu ) = 100\%$.

Observed and expected upper limit on the cross-section for $pp \to H^{++}H^{--}$ for a combination of partial branching ratios of $B(ee) = 0\%$, $B(e \mu ) = 100\%$, and $B( \mu \mu ) = 0\%$.

More…

Measurement of inclusive and differential cross sections in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 10 (2017) 132, 2017.
Inspire Record 1615206 DOI 10.17182/hepdata.79497

Inclusive and differential fiducial cross sections of Higgs boson production in proton-proton collisions are measured in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel. The proton-proton collision data were produced at the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector in 2015 and 2016, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. The inclusive fiducial cross section in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel is measured to be 3.62 $\pm$ 0.50 (stat) $^{+0.25}_{-0.20}$ (sys) fb, in agreement with the Standard Model prediction of 2.91 $\pm$ 0.13 fb. The cross section is also extrapolated to the total phase space including all Standard Model Higgs boson decays. Several differential fiducial cross sections are measured for observables sensitive to the Higgs boson production and decay, including kinematic distributions of jets produced in association with the Higgs boson. Good agreement is found between data and Standard Model predictions. The results are used to put constraints on anomalous Higgs boson interactions with Standard Model particles, using the pseudo-observable extension to the kappa-framework.

16 data tables

Measured differential fiducial cross sections in Higgs transverse momentum (second column). The given uncertainty is split into statistical (first) and systematic components (second). Values without uncertainties are 95% CL limits in the absence of signal events. The third column gives the theoretical prediction of Higgs production in the fiducial volume using Powheg NNLOPS for the ggF process, Powheg for the VBF and the VH processes, and Madgraph5_aMC@NLO for the ttH and bbH processes. The uncertainty includes PDF, scale, and branching fraction uncertainty. All predictions were normalized to the best available inclusive Higgs production cross sections at the time of the publication.

Measured differential fiducial cross sections in Higgs rapidity (second column). The given uncertainty is split into statistical (first) and systematic components (second). Values without uncertainties are 95% CL limits in the absence of signal events. The third column gives the theoretical prediction of Higgs production in the fiducial volume using Powheg NNLOPS for the ggF process, Powheg for the VBF and the VH processes, and Madgraph5_aMC@NLO for the ttH and bbH processes. The uncertainty includes PDF, scale, and branching fraction uncertainty. All predictions were normalized to the best available inclusive Higgs production cross sections at the time of the publication.

Measured differential fiducial cross sections in invariant mass of the subleading lepton pair (second column). The given uncertainty is split into statistical (first) and systematic components (second). Values without uncertainties are 95% CL limits in the absence of signal events. The third column gives the theoretical prediction of Higgs production in the fiducial volume using Powheg NNLOPS for the ggF process, Powheg for the VBF and the VH processes, and Madgraph5_aMC@NLO for the ttH and bbH processes. The uncertainty includes PDF, scale, and branching fraction uncertainty. All predictions were normalized to the best available inclusive Higgs production cross sections at the time of the publication.

More…

Measurement of differential cross sections of isolated-photon plus heavy-flavour jet production in pp collisions at $\sqrt{s}=8$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 776 (2018) 295-317, 2018.
Inspire Record 1632756 DOI 10.17182/hepdata.79163

This Letter presents the measurement of differential cross sections of isolated prompt photons produced in association with a b-jet or a c-jet. These final states provide sensitivity to the heavy-flavour content of the proton and aspects related to the modelling of heavy-flavour quarks in perturbative QCD. The measurement uses proton-proton collision data at a centre-of-mass energy of 8 TeV recorded by the ATLAS detector at the LHC in 2012 corresponding to an integrated luminosity of up to 20.2 fb$^{-1}$. The differential cross sections are measured for each jet flavour with respect to the transverse energy of the leading photon in two photon pseudorapidity regions: $|\eta^\gamma|<1.37$ and $1.56<|\eta^\gamma|<2.37$. The measurement covers photon transverse energies $25 < E_\textrm{T}^\gamma<400$ GeV and $25 < E_\textrm{T}^\gamma<350$ GeV respectively for the two $|\eta^\gamma|$ regions. For each jet flavour, the ratio of the cross sections in the two $|\eta^\gamma|$ regions is also measured. The measurement is corrected for detector effects and compared to leading-order and next-to-leading-order perturbative QCD calculations, based on various treatments and assumptions about the heavy-flavour content of the proton. Overall, the predictions agree well with the measurement, but some deviations are observed at high photon transverse energies. The total uncertainty in the measurement ranges between 13% and 66%, while the central $\gamma+b$ measurement exhibits the smallest uncertainty, ranging from 13% to 27%, which is comparable to the precision of the theoretical predictions.

12 data tables

Measured fiducial integrated $\gamma+b$ and $\gamma+c$ cross sections for $|\eta^\gamma|<1.37$ and $1.56<|\eta^\gamma|<2.37$.

Measured $\gamma+b$ fiducial differential cross section as a function of $E_\text{T}^\gamma$ for $|\eta^\gamma|<1.37$.

Measured $\gamma+b$ fiducial differential cross section as a function of $E_\text{T}^\gamma$ for $1.56<|\eta^\gamma|<2.37$.

More…

Version 2
Search for long-lived, massive particles in events with displaced vertices and missing transverse momentum in $\sqrt{s}$ = 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 97 (2018) 052012, 2018.
Inspire Record 1630632 DOI 10.17182/hepdata.78697

A search for long-lived, massive particles predicted by many theories beyond the Standard Model is presented. The search targets final states with large missing transverse momentum and at least one high-mass displaced vertex with five or more tracks, and uses 32.8 fb$^{-1}$ of $\sqrt{s}$ = 13 TeV $pp$ collision data collected by the ATLAS detector at the LHC. The observed yield is consistent with the expected background. The results are used to extract 95\% CL exclusion limits on the production of long-lived gluinos with masses up to 2.37 TeV and lifetimes of $\mathcal{O}(10^{-2})$-$\mathcal{O}(10)$ ns in a simplified model inspired by Split Supersymmetry.

72 data tables

Vertex reconstruction efficiency as a function of radial position $R$ with and without the special LRT processing for one $R$-hadron signal sample with $m_{\tilde{g}} = 1.2$ TeV, $m_{\tilde{\chi}_{1}^{0}} = 100$ GeV and $\tau_{\tilde{g}} = 1$ ns. The efficiency is defined as the probability for a true LLP decay to be matched with a reconstructed DV fulfilling the vertex preselection criteria in events with a reconstructed primary vertex.

Vertex reconstruction efficiency as a function of radial position $R$ for two $R$-hadron signal samples with $m_{\tilde{g}} = 1.2$ TeV, $\tau_{\tilde{g}} = 1$ ns and different neutralino masses. The efficiency is defined as the probability for a true LLP decay to be matched with a reconstructed DV fulfilling the vertex preselection criteria in events with a reconstructed primary vertex.

Fractions of selected events for several signal MC samples with a gluino lifetime $\tau = 1$ ns, illustrating how $\mathcal{A}\times\varepsilon$ varies with the model parameters.

More…

Version 2
Search for diboson resonances with boson-tagged jets in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 777 (2018) 91-113, 2018.
Inspire Record 1616092 DOI 10.17182/hepdata.79162

Narrow resonances decaying into $WW$, $WZ$ or $ZZ$ boson pairs are searched for in 36.7 fb $^{-1}$ of proton-proton collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 and 2016. The diboson system is reconstructed using pairs of large-radius jets with high transverse momentum and tagged as compatible with the hadronic decay of high-momentum $W$ or $Z$ bosons, using jet mass and substructure properties. The search is sensitive to diboson resonances with masses in the range 1.2-5.0 TeV. No significant excess is observed in any signal region. Exclusion limits are set at the 95% confidence level on the production cross section times branching ratio to dibosons for a range of theories beyond the Standard Model. Model-dependent lower limits on the mass of new gauge bosons are set, with the highest limit set at 3.5 TeV in the context of mass-degenerate resonances that couple predominantly to bosons.

40 data tables

Upper limits at the 95% CL on the cross section times branching ratio for WW+WZ production as a function of V' mass

Signal acceptance times efficiency as a function of mass for Scalar → WW in the heavy scalar model

Upper limits at the 95% CL on the cross section times branching ratio for WW+ZZ production as a function of GKK mass for the bulk RS model with k/M̄Pl=1.

More…

Version 2
Search for a new heavy gauge boson resonance decaying into a lepton and missing transverse momentum in 36 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} =$ 13 TeV with the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 401, 2018.
Inspire Record 1605396 DOI 10.17182/hepdata.77273

The results of a search for new heavy $W^\prime$ bosons decaying to an electron or muon and a neutrino using proton-proton collision data at a centre-of-mass energy of $\sqrt{s} = 13$ TeV are presented. The dataset was collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider and corresponds to an integrated luminosity of 36.1 fb$^{-1}$. As no excess of events above the Standard Model prediction is observed, the results are used to set upper limits on the $W^\prime$ boson cross-section times branching ratio to an electron or muon and a neutrino as a function of the $W^\prime$ mass. Assuming a $W^\prime$ boson with the same couplings as the Standard Model $W$ boson, $W^\prime$ masses below 5.1 TeV are excluded at the 95% confidence level.

12 data tables

Transverse mass distribution for events satisfying all selection criteria in the electron channel.

Transverse mass distribution for events satisfying all selection criteria in the electron channel.

Transverse mass distribution for events satisfying all selection criteria in the muon channel.

More…

Search for new high-mass phenomena in the dilepton final state using 36.1 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 10 (2017) 182, 2017.
Inspire Record 1609250 DOI 10.17182/hepdata.79077

A search is conducted for new resonant and non-resonant high-mass phenomena in dielectron and dimuon final states. The search uses 36.1 fb$^{-1}$ of proton-proton collision data, collected at $\sqrt{s}$ = 13 TeV by the ATLAS experiment at the LHC in 2015 and 2016. No significant deviation from the Standard Model prediction is observed. Upper limits at 95% credibility level are set on the cross-section times branching ratio for resonances decaying into dileptons, which are converted to lower limits on the resonance mass, up to 4.1 for the E$_{6}$-motivated Z'$_{\chi}$. Lower limits on the $qq \ell\ell$ contact interaction scale are set between 24 TeV and 40 TeV, depending on the model.

12 data tables

Product of acceptance and efficiency for the dielectron (upper curve) and dimuon (lower curve) selections as a function of the Z' (Chi) pole mass. Upper 95% CL limits on the Z' production cross-section times branching ratio to two electrons as a function of Z' pole mass.

Distribution of dielectron reconstructed invariant mass after selection, for data and the SM background estimates.

Distribution of dimuon reconstructed invariant mass after selection, for data and the SM background estimates.

More…

Search for new phenomena in high-mass final states with a photon and a jet from $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 102, 2018.
Inspire Record 1627878 DOI 10.17182/hepdata.78551

A search is performed for new phenomena in events having a photon with high transverse momentum and a jet collected in 36.7 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The invariant mass distribution of the leading photon and jet is examined to look for the resonant production of new particles or the presence of new high-mass states beyond the Standard Model. No significant deviation from the background-only hypothesis is observed and cross-section limits for generic Gaussian-shaped resonances are extracted. Excited quarks hypothesized in quark compositeness models and high-mass states predicted in quantum black hole models with extra dimensions are also examined in the analysis. The observed data exclude, at 95% confidence level, the mass range below 5.3 TeV for excited quarks and 7.1 TeV (4.4 TeV) for quantum black holes in the Arkani-Hamed-Dimopoulos-Dvali (Randall-Sundrum) model with six (one) extra dimensions.

6 data tables

Observed 95% CL upper limits on the production cross section times branching ratio to a photon and a quark or gluon for the excited-quarks model.The limits are placed as a function of m_q* for the excited-quark signal. The calculation is performed using ensemble tests for masses in the search range every 250 GeV up to 5 TeV and then 200 GeV up to 6 TeV.

Observed 95% CL upper limits on the production cross section times branching ratio to a photon and a quark or gluon for the RS1 model. The limits are placed as a function of M_th. The calculation is performed using ensemble tests for masses in the search range every 200 GeV.

Fiducial acceptance and selection efficiency for the excited quark model as a function of the excited-quark mass.

More…

Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2018) 055, 2018.
Inspire Record 1624690 DOI 10.17182/hepdata.78402

A search for heavy neutral Higgs bosons and $Z^{\prime}$ bosons is performed using a data sample corresponding to an integrated luminosity of 36.1 fb$^{-1}$ from proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded by the ATLAS detector at the LHC during 2015 and 2016. The heavy resonance is assumed to decay to $\tau^+\tau^-$ with at least one tau lepton decaying to final states with hadrons and a neutrino. The search is performed in the mass range of 0.2-2.25 TeV for Higgs bosons and 0.2-4.0 TeV for $Z^{\prime}$ bosons. The data are in good agreement with the background predicted by the Standard Model. The results are interpreted in benchmark scenarios. In the context of the hMSSM scenario, the data exclude $\tan\beta > 1.0$ for $m_A$ = 0.25 TeV and $\tan\beta > 42$ for $m_A$ = 1.5 TeV at the 95% confidence level. For the Sequential Standard Model, $Z^{\prime}_\mathrm{SSM}$ with $m_{Z^{\prime}} < 2.42$ TeV is excluded at 95% confidence level, while $Z^{\prime}_\mathrm{NU}$ with $m_{Z^{\prime}} < 2.25$ TeV is excluded for the non-universal $G(221)$ model that exhibits enhanced couplings to third-generation fermions.

29 data tables

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Despite listing this as an exclusive final state (as there must be no b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. In the paper, the first bin is cut off at 60 GeV for aesthetics but contains underflows down to 50 GeV as in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.

Observed and predicted mTtot distribution in the b-tag category of the 1l1tau_h channel. Despite listing this as an exclusive final state (as there must be at least one b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. In the paper, the first bin is cut off at 60 GeV for aesthetics but contains underflows down to 50 GeV as in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.

Observed and predicted mTtot distribution in the b-veto category of the 2tau_h channel. Despite listing this as an exclusive final state (as there must be no b-jets), there is no explicit selection on the presence of additional light-flavour jets. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table. The last bin includes overflows. The combined prediction for A and H bosons with masses of 300, 500 and 800 GeV and $\tan\beta$ = 10 in the hMSSM scenario are also provided.

More…

Study of $WW\gamma$ and $WZ\gamma$ production in $pp$ collisions at $\sqrt{s} = 8$ TeV and search for anomalous quartic gauge couplings with the ATLAS experiment

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 646, 2017.
Inspire Record 1610451 DOI 10.17182/hepdata.78400

This paper presents a study of $WW\gamma$ and $WZ\gamma$ triboson production using events from proton--proton collisions at a centre-of-mass energy of $\sqrt{s} = 8$ TeV recorded with the ATLAS detector at the LHC and corresponding to an integrated luminosity of 20.2 fb$^{-1}$. The $WW\gamma$ production cross-section is determined using a final state containing an electron, a muon, a photon, and neutrinos ($e\nu\mu\nu\gamma$). Upper limits on the production cross-section of the $e\nu\mu\nu\gamma$ final state and the $WW\gamma$ and $WZ\gamma$ final states containing an electron or a muon, two jets, a photon, and a neutrino ($e\nu jj\gamma$ or $\mu\nu jj\gamma$) are also derived. The results are compared to the cross-sections predicted by the Standard Model at next-to-leading order in the strong-coupling constant. In addition, upper limits on the production cross-sections are derived in a fiducial region optimised for a search for new physics beyond the Standard Model. The results are interpreted in the context of anomalous quartic gauge couplings using an effective field theory. Confidence intervals at 95% confidence level are derived for the 14 coupling coefficients to which $WW\gamma$ and $WZ\gamma$ production are sensitive.

8 data tables

Computed fiducial cross section in the $e\nu\mu\nu\gamma$ channel. The first uncertainty shown is the statistical uncertainty and the second one is the total systematic uncertainty including the uncertainty due to the luminosity. The theoretical prediction is determined with the VBFNLO generator and its uncertainty does not account for an uncertainty related to the scale introduced by restricting the jet multiplicity in the fully leptonic channel.

Observed and expected cross-section upper limits at 95\% CL for the different final states using the CL$_{\text{s}}$ method. The expected cross-section limits are computed assuming no signal is present. The last column shows the theory prediction for the signal cross-section ($\sigma_{\text{theo}}$) computed with the VBFNLO generator and corrected to particle level. The $\ell \nu jj \gamma$ cross-section corresponds to the average cross-section per lepton flavour in the semileptonic analysis and all events of the $e \nu jj \gamma$ and $\mu\nu jj \gamma$ final states are employed for the determination of this limit.

Observed and expected cross-section upper limits at 95\% CL using the CL$_{\text{s}}$ method for the different final states with the photon \et threshold optimised for maximal aQGC sensitivity. The expected cross-section limits are computed assuming the absence of $WV\gamma$ production. The last column shows the theory prediction for the SM signal cross-section computed with the VBFNLO generator and corrected to particle level. The $\ell \nu jj \gamma$ cross-section corresponds to the average cross-section per lepton flavour in the semileptonic analysis and all events of the $e \nu jj \gamma$ and $\mu\nu jj \gamma$ final states are employed for the determination of this limit.

More…

Measurement of $WW/WZ \to \ell \nu q q^{\prime}$ production with the hadronically decaying boson reconstructed as one or two jets in $pp$ collisions at $\sqrt{s}=8$ TeV with ATLAS, and constraints on anomalous gauge couplings

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 563, 2017.
Inspire Record 1602949 DOI 10.17182/hepdata.78399

This paper presents a study of the production of $WW$ or $WZ$ boson pairs, with one $W$ boson decaying to $e\nu$ or $\mu\nu$ and one $W$ or $Z$ boson decaying hadronically. The analysis uses 20.2 fb$^{-1}$ of $\sqrt{s}=8$ TeV $pp$ collision data, collected by the ATLAS detector at the Large Hadron Collider. Cross-sections for $WW/WZ$ production are measured in high-$p_{T}$ fiducial regions defined close to the experimental event selection. The cross-section is measured for the case where the hadronically decaying boson is reconstructed as two resolved jets, and the case where it is reconstructed as a single jet. The transverse momentum distribution of the hadronically decaying boson is used to search for new physics. Observations are consistent with the Standard Model predictions, and $95\%$ confidence intervals are calculated for parameters describing anomalous triple gauge-boson couplings.

7 data tables

Measured fiducial cross section in the WV->lvjj and WV->lvJ channels. Refer to the paper for details of applied event selection.

Correction factors D for WV->lvjj and WV->lvJ channels. D = fWW * CWW + (1-fWW) * CWZ. fWW is the predicted ratio of the WW fiducial cross section to the WW+WZ fiducial cross section: fWW = SIG_theo_WW * AWW / (SIG_theo_WW*AWW + SIG_theo_WZ*AWZ).

The expected and observed 95% confidence intervals for the anomalous coupling parameters defined in the EFT frame work. WV->lvjj channel.

More…

Search for the dimuon decay of the Higgs boson in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 119 (2017) 051802, 2017.
Inspire Record 1599399 DOI 10.17182/hepdata.78379

A search for the dimuon decay of the Higgs boson was performed using data corresponding to an integrated luminosity of 36.1 fb$^{-1}$ collected with the ATLAS detector in $pp$ collisions at $\sqrt{s}=13$ TeV at the Large Hadron Collider. No significant excess is observed above the expected background. The observed (expected) upper limit on the cross section times branching ratio is 3.0 (3.1) times the Standard Model prediction at the 95% confidence level for a Higgs boson mass of 125 GeV. When combined with the $pp$ collision data at $\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV, the observed (expected) upper limit is 2.8 (2.9) times the Standard Model prediction.

3 data tables

Measurement of signal strength

Event yields for the expected signal (S) and background (B) processes, and numbers of the observed data events in different categories. The full widths at half maximum (FWHM) of the signal $m_{μμ}$ distributions are also shown. In each category, the event yields are counted within an $m_{μμ}$ interval, which is centered at the simulated signal peak and contains 90% of the expected signal events. The expected signal event yields are normalized to $36.1 fb^-1$. The background in each category is normalized to the observed data yield, while the relative fractions between the different processes are fixed to the SM predictions.

The 95% CL upper limit on signal strength