Antideuteron production in $\Upsilon(nS)$ decays and in $e^+e^- \to q\overline{q}$ at $\sqrt{s} \approx 10.58 \mathrm{\,Ge\kern -0.1em V}$

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 89 (2014) 111102, 2014.
Inspire Record 1286317 DOI 10.17182/hepdata.64605

We present measurements of the inclusive production of antideuterons in $e^+e^-$ annihilation into hadrons at $\approx 10.58 \mathrm{\,Ge\kern -0.1em V}$ center-of-mass energy and in $\Upsilon(1S,2S,3S)$ decays. The results are obtained using data collected by the BABAR detector at the PEP-II electron-positron collider. Assuming a fireball spectral shape for the emitted antideuteron momentum, we find $\mathcal{B}(\Upsilon(1S) \to \bar{d}X) = (2.81 \pm 0.49 \mathrm{(stat)} {}^{+0.20}_{-0.24} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(2S) \to \bar{d}X) = (2.64 \pm 0.11 \mathrm{(stat)} {}^{+0.26}_{-0.21} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(3S) \to \bar{d}X) = (2.33 \pm 0.15 \mathrm{(stat)} {}^{+0.31}_{-0.28} \mathrm{(syst)})/! \times /! 10^{-5}$, and $\sigma (e^+e^- \to \bar{d}X) = (9.63 \pm 0.41 \mathrm{(stat)} {}^{+1.17}_{-1.01} \mathrm{(syst)}) \mbox{\,fb}$.

5 data tables

The rate of antideuteron production from the decay of UPSILON(3S).

The rate of antideuteron production from the decay of UPSILON(2S).

The rate of antideuteron production from the decay of UPSILON(1S).

More…

Production of J/psi and Upsilon mesons in pp collisions at sqrt(s) = 8 TeV

The LHCb collaboration Aaij, R ; Abellan Beteta, C ; Adeva, B ; et al.
JHEP 06 (2013) 064, 2013.
Inspire Record 1230344 DOI 10.17182/hepdata.61706

The production of J/psi and Upsilon mesons in pp collisions at sqrt(s) = 8 TeV is studied with the LHCb detector. The J/psi and Upsilon mesons are reconstructed in the mu+mu- decay mode and the signal yields are determined with a fit to the mu+mu- invariant mass distributions. The analysis is performed in the rapidity range 2.0<y<4.5 and transverse momentum range 0<p_T<14(15) GeV/c of the J/psi(Upsilon) mesons. The J/psi and Upsilon production cross-sections and the fraction of J/psi mesons from b-hadron decays are measured as a function of the meson p_T and y.

17 data tables

The total integrated cross sections for prompt J/PSI production, assuming no polarisation, and J/PSI production from b-hadron decays in the rapidity range 2.0-4.5 and transverse momentum 0-14 GeV/c;.

Differential production cross section in rapidity for prompt J/PSI mesons (assuming no polarisation) and from J/PSI from b-hadron decays.;.

The double-differential cross sections for prompt J/PSI production (assuming no polarisation) and production of J/PSI from b-hadron decays as a function of transverse momentum for the rapidity range 2.0-2.5. Also shown in the final column is the fraction (in %) of J/PSIs from the latter.

More…

Measurement of Upsilon production in 7 TeV pp collisions at ATLAS

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Rev.D 87 (2013) 052004, 2013.
Inspire Record 1204994 DOI 10.17182/hepdata.60219

Using 1.8 fb-1 of pp collisions at a center-of-mass energy of 7 TeV recorded by the ATLAS detector at the Large Hadron Collider, we present measurements of the production cross sections of Upsilon(1S,2S,3S) mesons. Upsilon mesons are reconstructed using the di-muon decay mode. Total production cross sections for p_T<70 GeV and in the rapidity interval |Upsilon|<2.25 are measured to be 8.01+-0.02+-0.36+-0.31 nb, 2.05+-0.01+-0.12+-0.08 nb, 0.92+-0.01+-0.07+-0.04 nb respectively, with uncertainties separated into statistical, systematic, and luminosity measurement effects. In addition, differential cross section times di-muon branching fractions for Upsilon(1S), Upsilon(2S), and Upsilon(3S) as a function of Upsilon transverse momentum p_T and rapidity are presented. These cross sections are obtained assuming unpolarized production. If the production polarization is fully transverse or longitudinal with no azimuthal dependence in the helicity frame the cross section may vary by approximately +-20%. If a non-trivial azimuthal dependence is considered, integrated cross sections may be significantly enhanced by a factor of two or more. We compare our results to several theoretical models of Upsilon meson production, finding that none provide an accurate description of our data over the full range of Upsilon transverse momenta accessible with this dataset.

12 data tables

Corrected cross-section measurements in the isotopic spin-alignment scenario. The second (sys) error is the uncertainty in the luminosity.

Fiducial Upsilon(1S) production cross-section, where pT>4 GeV and |eta|<2.3 for both muons, as a function of Upsilon(1S) pT in the Upsilon(1S) rapidity (|y|) bins 0-1.2 and 1.2-2.25. The first uncertainty is statistical, the second is systematic.

Fiducial Upsilon(2S) production cross-section, where pT>4 GeV and |eta|<2.3 for both muons, as a function of Upsilon(2S) pT in the Upsilon(2S) rapidity (|y|) bins 0-1.2 and 1.2-2.25. The first uncertainty is statistical, the second is systematic.

More…

Muon Pairs and Upper Limit for $\Upsilon$ Production by 280-{GeV} Muons

Bollini, D. ; Frabetti, P.L. ; Heiman, G. ; et al.
Nucl.Phys.B 199 (1982) 27, 1982.
Inspire Record 169127 DOI 10.17182/hepdata.34208

The high mass μ + μ − pairs produced by 280 GeV μ + on a carbon target are studied in a search for the Y production. The high mass continuum in the region 2–18 GeV is interpreted in terms of QED pair production and of μ pairs originating from the decay of hidden and open charm particles as well as of hadrons ( π , K) from deep inelastic interactions. The upper limit for the upsilon production by muons is found to be, at the 90% confidence level, σ γ ·(γ→μ + μ − )<13·10 −39 cm 2 /nucleon.

8 data tables
More…

Measurement of Upsilon production in pp collisions at {\surd}s = 7 TeV

The LHCb collaboration Aaij, R. ; Abellan Beteta, C. ; Adeva, B. ; et al.
Eur.Phys.J.C 72 (2012) 2025, 2012.
Inspire Record 1091071 DOI 10.17182/hepdata.58651

The production of Upsilon(1S), Upsilon(2S) and Upsilon(3S) mesons in proton-proton collisions at the centre-of-mass energy of sqrt(s)=7 TeV is studied with the LHCb detector. The analysis is based on a data sample of 25 pb-1 collected at the Large Hadron Collider. The Upsilon mesons are reconstructed in the decay mode Upsilon -&gt; mu+ mu- and the signal yields are extracted from a fit to the mu+ mu- invariant mass distributions. The differential production cross-sections times dimuon branching fractions are measured as a function of the Upsilon transverse momentum pT and rapidity y, over the range pT &lt; 15 GeV/c and 2.0 &lt; y &lt; 4.5. The cross-sections times branching fractions, integrated over these kinematic ranges, are measured to be sigma(pp -&gt; Upsilon(1S) X) x B(Upsilon(1S)-&gt;mu+ mu-) = 2.29 {\pm} 0.01 {\pm} 0.10 -0.37 +0.19 nb, sigma(pp -&gt; Upsilon(2S) X) x B(Upsilon(2S)-&gt;mu+ mu-) = 0.562 {\pm} 0.007 {\pm} 0.023 -0.092 +0.048 nb, sigma(pp -&gt; Upsilon(3S) X) x B(Upsilon(3S)-&gt;mu+ mu-) = 0.283 {\pm} 0.005 {\pm} 0.012 -0.048 +0.025 nb, where the first uncertainty is statistical, the second systematic and the third is due to the unknown polarisation of the three Upsilon states.

17 data tables

Integrated cross-sections times dimuon branching fractions in the PT range < 15 GeV/c and rapidity in the range 2.0-4.0. The second systematic (sys) error is due to the unknown polarisation of the three states.

Double differential cross section for UPSI(1S) production times the dimuon branching fraction as a function of PT for the rapidity region 2.0-2.5. The second systematic (sys) error is due to the unknown polarisation of the UPSI(1S).

Double differential cross section for UPSI(1S) production times the dimuon branching fraction as a function of PT for the rapidity region 2.5-3.0. The second systematic (sys) error is due to the unknown polarisation of the UPSI(1S).

More…

Upsilon Production Cross-Section in pp Collisions at $sqrt{s}=7$ TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Phys.Rev.D 83 (2011) 112004, 2011.
Inspire Record 882871 DOI 10.17182/hepdata.57722

The Upsilon production cross section in proton-proton collisions at sqrt(s) = 7 TeV is measured using a data sample collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 3.1 +/- 0.3 inverse picobarns. Integrated over the rapidity range |y|<2, we find the product of the Upsilon(1S) production cross section and branching fraction to dimuons to be sigma(pp to Upsilon(1S) X) B(Upsilon(1S) to mu+ mu-) = 7.37 +/- 0.13^{+0.61}_{-0.42}\pm 0.81 nb, where the first uncertainty is statistical, the second is systematic, and the third is associated with the estimation of the integrated luminosity of the data sample. This cross section is obtained assuming unpolarized Upsilon(1S) production. If the Upsilon(1S) production polarization is fully transverse or fully longitudinal the cross section changes by about 20%. We also report the measurement of the Upsilon(1S), Upsilon(2S), and Upsilon(3S) differential cross sections as a function of transverse momentum and rapidity.

15 data tables

Production cross sections integrated over the range |eta| < 2 and PT < 30 GeV. The second systematic error is the uncertainty on the luminosity.

UPSI(1S) differential cross sections for |y| < 2.

UPSI(2S) differential cross sections for |y| < 2.

More…

Measurement of the Upsilon production cross-section in 920-GeV fixed-target proton-nucleus collisions

The HERA-B collaboration Abt, I. ; Adams, M. ; Agari, M. ; et al.
Phys.Lett.B 638 (2006) 13-21, 2006.
Inspire Record 711926 DOI 10.17182/hepdata.57495

The proton-nucleon cross section ratio $R=Br(\Upsilon\to l^+l^-) d\sigma(\Upsilon)/dy|_{y=0} / {\sigma(J/\psi)}$ has been measured with the HERA-B spectrometer in fixed-target proton-nucleus collisions at 920 GeV proton beam energy corresponding to a proton-nucleon cms energy of sqrt{s}=41.6 GeV. The combined results for the Upsilon decay channels Upsilon $\to e^+e^-$ and Upsilon $\to\mu^+\mu^-$ yield a ratio $R=(9.0 \pm 2.1) 10^{-6}$. The corresponding Upsilon production cross section per nucleon at mid-rapidity (y=0) has been determined to be $Br(\Upsilon\to{}l^+l^-) {d\sigma(\Upsilon)/dy}|_{y=0}= 4.5 \pm 1.1 $ pb/nucleon.

2 data tables

Ratio of the UPSILON production cross section to the total J/PSI production cross section in P NUCLEON interactions for the E+ E- and MU+ MU- channels separately and combined. The total uncertainty is indicated for the combined results.

UPSILON production cross section at midrapidity in P NUCLEON interactions for the E+ E- and MU+ MU- channels separately and combined. The total uncertainty is indicated for the combined results.


Measurement of inclusive production of neutral pions from Upsilon(4S) decays.

The Belle collaboration Abe, Kazuo ; Abe, K. ; Adachi, I. ; et al.
Phys.Rev.D 64 (2001) 072001, 2001.
Inspire Record 554520 DOI 10.17182/hepdata.31475

Using the Belle detector operating at the KEKB e+e- storage ring, we have measured the mean multiplicity and the momentum spectrum of neutral pions from the decays of the Upsilon(4S) resonance. We measure a mean of 4.70 +/- 0.04 +/- 0.22 neutral pions per Upsilon(4S) decay.

2 data tables

No description provided.

No description provided.


Inclusive Lambda/c production in e+ e- annihilations at s**(1/2) = 10.54-GeV and in Upsilon(4S) decays.

The BaBar collaboration Aubert, Bernard ; Bona, M. ; Boutigny, D. ; et al.
Phys.Rev.D 75 (2007) 012003, 2007.
Inspire Record 725377 DOI 10.17182/hepdata.22089

We present measurements of the total production rates and momentum distributions of the charmed baryon $\Lambda_c^+$ in $e^+e^- \to$ hadrons at a center-of-mass energy of 10.54 GeV and in $\Upsilon(4S)$ decays. In hadronic events at 10.54 GeV, charmed hadrons are almost exclusively leading particles in $e^+e^- \to c\bar{c}$ events, allowing direct studies of $c$-quark fragmentation. We measure a momentum distribution for $\Lambda_c^+$ baryons that differs significantly from those measured previously for charmed mesons. Comparing with a number of models, we find none that can describe the distribution completely. We measure an average scaled momentum of $\left< x_p \right> = 0.574\pm$0.009 and a total rate of $N_{\Lambda c}^{q\bar{q}} = 0.057\pm$0.002(exp.)$\pm$0.015(BF) $\Lambda_c^+$ per hadronic event, where the experimental error is much smaller than that due to the branching fraction into the reconstructed decay mode, $pK^-\pi^+$. In $\Upsilon (4S)$ decays we measure a total rate of $N_{\Lambda c}^{\Upsilon} = 0.091\pm$0.006(exp.)$\pm$0.024(BF) per $\Upsilon(4S)$ decay, and find a much softer momentum distribution than expected from B decays into a $\Lambda_c^+$ plus an antinucleon and one to three pions.

4 data tables

LAMBDA/C+ differential production rate per hadronic event for the continuum at cm energy 10.54 GeV.

The integrated number of LAMBDA/C+'s per hadronic event for the continuum at cm energy 10.54 GeV.

LAMBDA/C+ differential production rate per UPSILON(4S) decay at cm energy 10.58 GeV.

More…

Observation of anomalous $\Upsilon(1S) \pi^+ \pi^-$ and $\Upsilon(2S) \pi^+ \pi^-$ production near the $\Upsilon(5S)$ resonance

The Belle collaboration Chen, K.F. ; Hou, W.S. ; Shapkin, M. ; et al.
Phys.Rev.Lett. 100 (2008) 112001, 2008.
Inspire Record 764099 DOI 10.17182/hepdata.50307

We report the first observation of e+e- -> Upsilon(1S)pi+pi-, Upsilon(2S)pi+pi-, and first evidence for e+e- -> Upsilon(3S)pi+pi-, Upsilon(1S)K+K-, near the peak of the Upsilon(5S) resonance at sqrt{s}~10.87 GeV. The results are based on a data sample of 21.7 fb^-1 collected with the Belle detector at the KEKB e+e- collider. The observed cross-sections are sigma(Upsilon(1S)pi+pi-) = 1.61+-0.10(stat)+-0.12(sys) pb and sigma(Upsilon(2S)pi+pi-) = 2.35+-0.19(stat)+-0.32(sys) pb. Attributing these signals to the Upsilon(5S) resonance, the partial widths Gamma(Upsilon(5S)->Upsilon(1S)pi+pi-) = 0.59+-0.04(stat)+-0.09(sys) MeV and Gamma(Upsilon(5S)->Upsilon(2S)pi+pi-) = 0.85+-0.07(stat)+-0.16(sys) MeV are inferred. These are much larger than any partial widths for previously observed Upsilon(nS) -> Upsilon(1S)pi+pi-, Upsilon(2S)pi+pi- decays.

4 data tables

Cross section for the final state UPSI(1S) PI+ PI-.

Cross section for the final state UPSI(2S) PI+ PI-.

Cross section for the final state UPSI(3S) PI+ PI-.

More…