Cross-section measurements of the Higgs boson decaying to a pair of tau leptons in proton--proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration
ATLAS-CONF-2018-021, 2018.
Inspire Record 1676647 DOI 10.17182/hepdata.84820

A measurement of total production cross sections of the Higgs boson in proton--proton collisions is presented in the $H\rightarrow\tau\tau$ decay channel. The analysis is performed using $36.1\,\rm{fb}^{-1}$ of data recorded by the ATLAS experiment at the Large Hadron Collider at a center-of-mass energy of $\sqrt{s}=13\,\rm{TeV}$. All combinations of leptonic ($\tau \rightarrow \ell \nu \bar{\nu}$ with $\ell = e, \mu$) and hadronic ($\tau \to \rm{hadrons}~ \nu$) tau decays are considered. The $H\rightarrow\tau\tau$ signal over the expected background from other Standard Model processes is established with an observed (expected) significance of 4.4 (4.1) standard deviations. Combined with results using data taken at 7 and 8 TeV centre-of-mass energies, the observed (expected) significance amounts to 6.4 (5.4) standard deviations and constitutes an observation of $H\rightarrow\tau\tau$ decays by the ATLAS experiment. Using the data taken at $\sqrt{s}=13\,\rm{TeV}$, the total cross section in the $H\rightarrow\tau\tau$ decay channel is measured to be $3.71\pm 0.59\,\text{(stat.)}\,^{+0.87}_{-0.74}\,\text{(syst.)}\,\rm{pb}$, for a Higgs boson of mass 125 GeV. Total cross sections in the $H\rightarrow\tau\tau$ decay channel are measured separately for vector boson fusion production and gluon--gluon fusion production to be $0.28 \pm 0.09\,\text{(stat.)}\,^{+0.11}_{-0.09}\,\text{(syst.)}\,\rm{pb}$ and $3.0 \pm 1.0\,\text{(stat.)}\,^{+1.6}_{-1.2}\,\text{(syst.)}\,\rm{pb}$, respectively. All measurements are in agreement with Standard Model expectations.

25 data tables

“Yields in the leplep boost loose category“

“Yields in the leplep boost tight category“

“Yields in the leplep boost top control region“

More…

Differential cross-section measurements of the production of four charged leptons in association with two jets using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 01 (2024) 004, 2024.
Inspire Record 2690799 DOI 10.17182/hepdata.144086

Differential cross-sections are measured for the production of four charged leptons in association with two jets. These measurements are sensitive to final states in which the jets are produced via the strong interaction as well as to the purely-electroweak vector boson scattering process. The analysis is performed using proton-proton collision data collected by ATLAS at $\sqrt{s}=13$ TeV and with an integrated luminosity of 140 fb$^{-1}$. The data are corrected for the effects of detector inefficiency and resolution and are compared to state-of-the-art Monte Carlo event generator predictions. The differential cross-sections are used to search for anomalous weak-boson self-interactions that are induced by dimension-six and dimension-eight operators in Standard Model effective field theory.

28 data tables

Predicted and observed yields as a function of $m_{jj}$ in the VBS-Enhanced region. Overflow events are included in the last bin of the distribution.

Predicted and observed yields as a function of $m_{jj}$ in the VBS-Suppressed region. Overflow events are included in the last bin of the distribution.

Predicted and observed yields as a function of $m_{4\ell}$ in the VBS-Enhanced region. Overflow events are included in the last bin of the distribution.

More…

Version 2
Measurement of Higgs boson decay into $b$-quarks in associated production with a top-quark pair in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 06 (2022) 097, 2022.
Inspire Record 1967501 DOI 10.17182/hepdata.114360

The associated production of a Higgs boson and a top-quark pair is measured in events characterised by the presence of one or two electrons or muons. The Higgs boson decay into a $b$-quark pair is used. The analysed data, corresponding to an integrated luminosity of 139 fb$^{-1}$, were collected in proton-proton collisions at the Large Hadron Collider between 2015 and 2018 at a centre-of-mass energy of $\sqrt{s}=13$ TeV. The measured signal strength, defined as the ratio of the measured signal yield to that predicted by the Standard Model, is $0.35^{+0.36}_{-0.34}$. This result is compatible with the Standard Model prediction and corresponds to an observed (expected) significance of 1.0 (2.7) standard deviations. The signal strength is also measured differentially in bins of the Higgs boson transverse momentum in the simplified template cross-section framework, including a bin for specially selected boosted Higgs bosons with transverse momentum above 300 GeV.

74 data tables

Comparison between data and prediction for the DNN $P(H)$ output for the Higgs boson candidate prior to any fit to the data in the single-lepton boosted channel for $300\le p_T^H<450$ GeV. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.

Comparison between data and prediction for the DNN $P(H)$ output for the Higgs boson candidate prior to any fit to the data in the single-lepton boosted channel for $p_{{T}}^{H}\ge 450$ GeV. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.

Performance of the Higgs boson reconstruction algorithms. For each row of `truth' ${\hat{p}_{{T}}^{H}}$, the matrix shows (in percentages) the fraction of all Higgs boson candidates with reconstructed $p_T^H$ in the various bins of the dilepton (left), single-lepton resolved (middle) and boosted (right) channels.

More…

Measurement of fiducial and differential $W^+W^-$ production cross-sections at $\sqrt{s}=$13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 79 (2019) 884, 2019.
Inspire Record 1734263 DOI 10.17182/hepdata.89225

A measurement of fiducial and differential cross-sections for $W^+W^-$ production in proton-proton collisions at $\sqrt{s}=$13 TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of $36.1$ fb$^{-1}$ is presented. Events with one electron and one muon are selected, corresponding to the decay of the diboson system as $WW\rightarrow e^{\pm}\nu\mu^{\mp}\nu$. To suppress top-quark background, events containing jets with a transverse momentum exceeding 35 GeV are not included in the measurement phase space. The fiducial cross-section, six differential distributions and the cross-section as a function of the jet-veto transverse momentum threshold are measured and compared with several theoretical predictions. Constraints on anomalous electroweak gauge boson self-interactions are also presented in the framework of a dimension-six effective field theory.

43 data tables

Measured fiducial cross-section as a function of the jet-veto $p_{T}$ threshold. The value at the jet-veto $p_{T}$ threshold of 35GeV corresponds to the nominal fiducial cross section measured in this publication.

Statistical correlation between bins in data for the measured fiducial cross-section as a function of the jet-veto $p_{T}$ threshold. The value at the jet-veto $p_{T}$ threshold of 35GeV corresponds to the nominal fiducial cross section measured in this publication.

Total correlation between bins in data for the measured fiducial cross-section as a function of the jet-veto $p_{T}$ threshold. The value at the jet-veto $p_{T}$ threshold of 35GeV corresponds to the nominal fiducial cross section measured in this publication.

More…

Measurement of multi-particle azimuthal correlations in $pp$, $p$+Pb and low-multiplicity Pb+Pb collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 428, 2017.
Inspire Record 1599077 DOI 10.17182/hepdata.77996

Multi-particle cumulants and corresponding Fourier harmonics are measured for azimuthal angle distributions of charged particles in $pp$ collisions at $\sqrt{s}$ = 5.02 and 13 TeV and in $p$+Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV, and compared to the results obtained for low-multiplicity Pb+Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV. These measurements aim to assess the collective nature of particle production. The measurements of multi-particle cumulants confirm the evidence for collective phenomena in $p$+Pb and low-multiplicity Pb+Pb collisions. On the other hand, the $pp$ results for four-particle cumulants do not demonstrate collective behaviour, indicating that they may be biased by contributions from non-flow correlations. A comparison of multi-particle cumulants and derived Fourier harmonics across different collision systems is presented as a function of the charged-particle multiplicity. For a given multiplicity, the measured Fourier harmonics are largest in Pb+Pb, smaller in $p$+Pb and smallest in $pp$ collisions. The $pp$ results show no dependence on the collision energy, nor on the multiplicity.

95 data tables

$c_2\{4\}$ cumulants for reference particles with 0.3 $< p_T <$ 3.0 GeV selected according to $M_{ref}$ (EvSel_$M_{ref}$) for pp collisions at $\sqrt{s}$= 5.02 TeV.

$c_2\{4\}$ cumulants for reference particles with 0.3 $< p_T <$ 3.0 GeV selected according to $M_{ref}$ (EvSel_$M_{ref}$) for pp collisions at $\sqrt{s}$= 13 TeV.

$c_2\{4\}$ cumulants for reference particles with 0.3 $< p_T <$ 3.0 GeV selected according to $M_{ref}$ (EvSel_$M_{ref}$) for pPb collisions at $\sqrt{ s_{NN} }$= 5.02 TeV.

More…

Measurement of single top-quark production in the s-channel in proton$-$proton collisions at $\mathrm{\sqrt{s}=13}$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 191, 2023.
Inspire Record 2153660 DOI 10.17182/hepdata.133620

A measurement of single top-quark production in the s-channel is performed in proton$-$proton collisions at a centre-of-mass energy of 13 TeV with the ATLAS detector at the CERN Large Hadron Collider. The dataset corresponds to an integrated luminosity of 139 fb$^{-1}$. The analysis is performed on events with an electron or muon, missing transverse momentum and exactly two $b$-tagged jets in the final state. A discriminant based on matrix element calculations is used to separate single-top-quark s-channel events from the main background contributions, which are top-quark pair production and $W$-boson production in association with jets. The observed (expected) signal significance over the background-only hypothesis is 3.3 (3.9) standard deviations, and the measured cross-section is $\sigma=8.2^{+3.5}_{-2.9}$ pb, consistent with the Standard Model prediction of $\sigma^{\mathrm{SM}}=10.32^{+0.40}_{-0.36}$ pb.

35 data tables

Result of the s-channel single-top cross-section measurement, in pb. The statistical and systematic uncertainties are given, as well as the total uncertainty. The normalisation factors for the $t\bar{t}$ and $W$+jets backgrounds are also shown, with their total uncertainties.

Distribution of ${E}_{T}^{miss}$ after the fit of the multijet backgrounds, in the electron channel, in the signal region, without applying the cut on ${E}_{T}^{miss}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.

Distribution of ${E}_{T}^{miss}$ after the fit of the multijet backgrounds, in the electron channel, in the $W$+jets VR, without applying the cut on ${E}_{T}^{miss}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.

More…

Measurement of the $t\bar{t}$ production cross-section and lepton differential distributions in $e\mu $ dilepton events from $pp$ collisions at $\sqrt{s}=13\,\text {TeV}$ with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 528, 2020.
Inspire Record 1759875 DOI 10.17182/hepdata.91242

The inclusive top quark pair ($t\bar{t}$) production cross-section $\sigma_{t\bar{t}}$ has been measured in proton$-$proton collisions at $\sqrt{s}=13$ TeV, using $36.1$ fb$^{-1}$ of data collected in 2015$-$16 by the ATLAS experiment at the LHC. Using events with an opposite-charge $e\mu$ pair and $b$-tagged jets, the cross-section is measured to be: \begin{equation}\nonumber \sigma_{t\bar{t}} = 826.4 \pm 3.6\,\mathrm{(stat)}\ \pm 11.5\,\mathrm{(syst)}\ \pm 15.7\,\mathrm{(lumi)}\ \pm 1.9\,\mathrm{(beam)}\,\mathrm{pb}, \end{equation} where the uncertainties reflect the limited size of the data sample, experimental and theoretical systematic effects, the integrated luminosity, and the LHC beam energy, giving a total uncertainty of 2.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. It is used to determine the top quark pole mass via the dependence of the predicted cross-section on $m_t^{\mathrm{pole}}$, giving $m_t^{\mathrm{pole}}=173.1^{+2.0}_{-2.1}$ GeV. It is also combined with measurements at $\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV to derive ratios and double ratios of $t\bar{t}$ and $Z$ cross-sections at different energies. The same event sample is used to measure absolute and normalised differential cross-sections as functions of single-lepton and dilepton kinematic variables, and the results compared with predictions from various Monte Carlo event generators.

59 data tables

Absolute differential cross-section in the fiducial region as a function of lepton pT. The first column gives the cross-section including contributions from leptonic tau decays, the second without. Systematic uncertainties are given for ttbar modelling (ttmod), lepton calibration (lept), jet and b-tagging calibration (jet), backgrounds (bkg) and integrated luminosity and beam energy (leb). The last bin includes overflow beyond the upper bin boundary. The corresponding correlation matrices are given in Tables 23 and 24.

Normalised differential cross-section in the fiducial region as a function of lepton pT. The first column gives the cross-section including contributions from leptonic tau decays, the second without. Systematic uncertainties are given for ttbar modelling (ttmod), lepton calibration (lept), jet and b-tagging calibration (jet), backgrounds (bkg) and integrated luminosity and beam energy (leb). The last bin includes overflow beyond the upper bin boundary. The corresponding correlation matrices are given in Tables 25 and 26.

Absolute differential cross-section in the fiducial region as a function of lepton |eta|. The first column gives the cross-section including contributions from leptonic tau decays, the second without. Systematic uncertainties are given for ttbar modelling (ttmod), lepton calibration (lept), jet and b-tagging calibration (jet), backgrounds (bkg) and integrated luminosity and beam energy (leb). The corresponding correlation matrices are given in Tables 27 and 28.

More…

Measurement of the associated production of a Higgs boson decaying into $b$-quarks with a vector boson at high transverse momentum in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 816 (2021) 136204, 2021.
Inspire Record 1810348 DOI 10.17182/hepdata.94801

The associated production of a Higgs boson with a $W$ or $Z$ boson decaying into leptons and where the Higgs boson decays to a $b\bar{b}$ pair is measured in the high vector-boson transverse momentum regime, above 250 GeV, with the ATLAS detector. The analysed data, corresponding to an integrated luminosity of 139 fb$^{-1}$, were collected in proton-proton collisions at the Large Hadron Collider between 2015 and 2018 at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. The measured signal strength, defined as the ratio of the measured signal yield to that predicted by the Standard Model, is $0.72 ^{+0.39}_{-0.36}$ corresponding to an observed (expected) significance of 2.1 (2.7) standard deviations. Cross-sections of associated production of a Higgs boson decaying into $b$ quark pairs with a $W$ or $Z$ gauge boson, decaying into leptons, are measured in two exclusive vector boson transverse momentum regions, 250-400 GeV and above 400 GeV, and interpreted as constraints on anomalous couplings in the framework of a Standard Model effective field theory.

3 data tables

Observed correlations between the measured reduced stage-1.2 simplified template VH, V->leptons and H->bb cross sections, including both the statistical and systematic uncertainties.

Measured and predicted VH, V->leptons reduced stage-1.2 simplified template cross sections times the H->bb and V->leptons branching fractions with corresponding uncertainties. All possible Z decays into neutral and charged leptons are considered.

Linear combinations of Wilson coefficients corresponding to the principal component decomposition eigenvectors. The corresponding eigenvalues, representing in the gaussian approximation the inverse uncertainty square of the measured eigenvector, is also indicated.


Version 2
Measurements of $WH$ and $ZH$ production in the $H \rightarrow b\bar{b}$ decay channel in $pp$ collisions at 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 81 (2021) 178, 2021.
Inspire Record 1805282 DOI 10.17182/hepdata.94800

Measurements of the Standard Model Higgs boson decaying into a $b\bar{b}$ pair and produced in association with a $W$ or $Z$ boson decaying into leptons, using proton-proton collision data collected between 2015 and 2018 by the ATLAS detector, are presented. The measurements use collisions produced by the Large Hadron Collider at a centre-of-mass energy of $\sqrt{s} = $13 TeV, corresponding to an integrated luminosity of 139 fb$^{-1}$. The production of a Higgs boson in association with a $W$ or $Z$ boson is established with observed (expected) significances of 4.0 (4.1) and 5.3 (5.1) standard deviations, respectively. Cross-sections of associated production of a Higgs boson decaying into bottom quark pairs with an electroweak gauge boson, $W$ or $Z$, decaying into leptons are measured as a function of the gauge boson transverse momentum in kinematic fiducial volumes. The cross-section measurements are all consistent with the Standard Model expectations, and the total uncertainties vary from 30% in the high gauge boson transverse momentum regions to 85% in the low regions. Limits are subsequently set on the parameters of an effective Lagrangian sensitive to modifications of the $WH$ and $ZH$ processes as well as the Higgs boson decay into $b\bar{b}$.

6 data tables

Best-fit values and uncertainties for $VH, V\rightarrow\mathrm{leptons}$ for the cross-section times the $H\rightarrow b\bar{b}$ branching fraction, in the reduced stage-1.2 simplififed template cross-sections (STXS) scheme. The SM predictions for each region is also shown. They are obtained from the samples of simulated events scaled to the inclusive cross-sections calculated at NNLO(QCD)+NLO(EW) accuracy for the $qq\rightarrow WH$ and $qq\rightarrow ZH$ processes, and at NLO+NLL accuracy for the $gg\rightarrow ZH$ process. The contributions to the total uncertainty in the measurements from statistical (Stat.) or systematic uncertainties in the signal modelling (Th. sig.), background modelling (Th. bkg.) and in experimental performance (Exp.) are given separately. All leptonic decays of the $V$ bosons (including those to $\tau$ leptons, $\ell = e, \mu, \tau$) are considered.

Best-fit values and uncertainties for $VH, V\rightarrow\mathrm{leptons}$ for the cross-section times the $H\rightarrow b\bar{b}$ branching fraction, in the reduced stage-1.2 simplififed template cross-sections (STXS) scheme. The SM predictions for each region is also shown. They are obtained from the samples of simulated events scaled to the inclusive cross-sections calculated at NNLO(QCD)+NLO(EW) accuracy for the $qq\rightarrow WH$ and $qq\rightarrow ZH$ processes, and at NLO+NLL accuracy for the $gg\rightarrow ZH$ process. The contributions to the total uncertainty in the measurements from statistical (Stat.) or systematic uncertainties in the signal modelling (Th. sig.), background modelling (Th. bkg.) and in experimental performance (Exp.) are given separately. All leptonic decays of the $V$ bosons (including those to $\tau$ leptons, $\ell = e, \mu, \tau$) are considered.

Observed correlations between the measured reduced stage-1.2 simplified template $VH, H \rightarrow b\bar{b}$ cross-sections (STXS), including both the statistical and systematic uncertainties. All leptonic decays of the $V$ bosons (including those to $\tau$ leptons, $\ell = e, \mu, \tau$) are considered.

More…

Measurements of $W^{+}W^{-}$ production in decay topologies inspired by searches for electroweak supersymmetry

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 718, 2023.
Inspire Record 2103950 DOI 10.17182/hepdata.132115

This paper presents a measurement of fiducial and differential cross-sections for $W^{+}W^{-}$ production in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS experiment at the Large Hadron Collider using a dataset corresponding to an integrated luminosity of 139 fb$^{-1}$. Events with exactly one electron, one muon and no hadronic jets are studied. The fiducial region in which the measurements are performed is inspired by searches for the electroweak production of supersymmetric charginos decaying to two-lepton final states. The selected events have moderate values of missing transverse momentum and the `stransverse mass' variable $m_{\textrm{T2}}$, which is widely used in searches for supersymmetry at the LHC. The ranges of these variables are chosen so that the acceptance is enhanced for direct $W^{+}W^{-}$ production and suppressed for production via top quarks, which is treated as a background. The fiducial cross-section and particle-level differential cross-sections for six variables are measured and compared with two theoretical SM predictions from perturbative QCD calculations.

30 data tables

Signal region detector-level distribution for the observable $|y_{e\mu}|$.

Signal region detector-level distribution for the observable $|\Delta \phi(e \mu)|$.

Signal region detector-level distribution for the observable $ \cos\theta^{\ast}$.

More…