A Search For the $\rho^0$ Meson and a Check of the Dispersion Relations in π-N Scattering

Zinov, V.G. ; Konin, A.D. ; Korenchenko, S.M. ; et al.
Sov.Phys.JETP 11 (1960) 1233-1238, 1960.
Inspire Record 1407582 DOI 10.17182/hepdata.70224

The total 1r- -p interaction cross sections (of) were measured with an accuracy of 1.5-2% for about 50 pion energies between 140 and 360 Mev. The pion energy was known to within ± 1%. No anomalies in the energy dependence of Of were found which could indicate the existence of a p0meson with a mass in the range of 270 to 410 Mev/c2• The data are inconsistent with the energy value E2 = 650 Mev for the second maximum of Of found by Frisch et al. 7 but agree with the conclusion drawn by Brisson et al. 8 that it should be located at a lower energy ( E2 :::::: 610 Mev). The data are in agreement with the dispersion relations for 1r- -p scattering. It is thus demonstrated that the PuppiStanghellini problem as such no longer exists and that it arose only as a result of an inaccurate knowledge of the total 1r--p interaction cross section.

1 data table

No description provided.


Measurement of the left-right asymmetry in pi- p ---> gamma n from 301-GeV/c to 625-MeV/c at backward angles

Kim, G.J. ; Engelage, J. ; Nefkens, B.M.K. ; et al.
Phys.Rev.D 43 (1991) 687-695, 1991.
Inspire Record 316108 DOI 10.17182/hepdata.22828

The left-right asymmetry of π−p→γn has been measured using a transversely polarized target at seven pion momenta from 301 to 625 MeV/c, mostly at photon angles of 90° and 110° c.m. The final-state γ and neutron were detected in coincidence. Neutrons were recorded in two arrays of plastic scintillators and the γ's in two matching sets of lead-glass counters. The results are compared with the predictions from the two most recent single-pion photoproduction partial-wave analyses. The agreement with the analysis of Arai and Fujii is poor, casting some doubt on the correctness of their values for the radiative decay amplitude of the neutral Roper resonance which are used widely. The agreement is much better with the results of the VPI analysis. Also, a comparison is made with the recoil-proton polarization data from the inverse reaction measured at 90° with a deuterium target. It reveals substantial discrepancies, indicating the shortcomings of the deuterium experiments for neutron target experiments. Our data are also compared with several bag-model calculations.

7 data tables

No description provided.

No description provided.

No description provided.

More…

Experimental study of the near threshold pi+ p ---> pi+ pi+ n cross-section and chiral symmetry

Sevior, M.E. ; Ambardar, A. ; Brack, J.T. ; et al.
Phys.Rev.D 48 (1993) 3987-3995, 1993.
Inspire Record 364198 DOI 10.17182/hepdata.22551

Total cross-section measurements of the π+p→π+π+n reaction at pion kinetic energies of 180, 184, 190, and 200 MeV are reported. The threshold value for the amplitude a(π+π+) as well as the s-wave, isospin 2, ππ scattering length a20 were determined. The results were found to be in agreement with chiral perturbation theory and inconsistent with the calculations of Jacob and Scadron and the model of dominance by quark loop anomalies.

1 data table

No description provided.


The total cross-sections for pion-proton scattering between 70 mev and 290 mev

Carter, A.A. ; Williams, J.R. ; Bugg, D.V. ; et al.
Nucl.Phys.B 26 (1971) 445-460, 1971.
Inspire Record 68771 DOI 10.17182/hepdata.21874

Measurements have been made of the π ∓ proton total cross sections over the laboratory kinetic energy range 70 to 290 MeV. The absolute accuracy of the data is generally 0.5 %, but decreases to 1 % for some points where applied corrections are large or where low particle fluxes limit the statistical accuracy.

8 data tables

No description provided.

No description provided.

No description provided.

More…

The pi- p ---> pi0 n charge-exchange cross-sections between 90 mev and 290 mev

Bugg, D.V. ; Bussey, P.J. ; Dance, D.R. ; et al.
Nucl.Phys.B 26 (1971) 588-596, 1971.
Inspire Record 68770 DOI 10.17182/hepdata.21877

Measurements have been made of the total charge-exchange cross section π − p to π 0 n over the laboratory kinetic energy range 90 to 290 MeV. The data have an absolute accuracy of typically 1%, and have here been used to determine the pion-nucleon P 13 phase shift.

4 data tables

QUADRATIC INTERPOLATION.

No description provided.

No description provided.

More…

Measurement of $\pi^- p \to \pi^- p \pi^0$ Reaction Near Threshold and Breaking of Chiral Symmetry

The OMICRON collaboration Kernel, G. ; Korbar, D. ; Krizan, P. ; et al.
Phys.Lett.B 225 (1989) 198-202, 1989.
Inspire Record 278272 DOI 10.17182/hepdata.29804

A full-kinematics measurement of the π − p→ π − p π 0 reaction in the incident π − momentum region from 295 to 450 MeV/ c is presented. The measurement was performed with the OMICRON spectrometer at the CERN synchrocyclotron.

1 data table

Integrated cross section.


OBSERVATION OF INVERSE ELECTROPRODUCTION OF PIONS ON C-12 NUCLEUS AT 164-MeV PION ENERGY AND DETERMINATION OF F1(v) NUCLEON FORM-FACTOR

Alekseev, G.D. ; Blokhintseva, T.D. ; Karpukhin, V.V. ; et al.
Sov.J.Nucl.Phys. 46 (1987) 801, 1987.
Inspire Record 247868 DOI 10.17182/hepdata.38865

None

3 data tables

No description provided.

No description provided.

No description provided.


Differential Cross-Sections for pi- p --> gamma n in the First Resonance Region

Guex, L.H. ; Joseph, C. ; Tran, M.T. ; et al.
Phys.Lett.B 55 (1975) 101-106, 1975.
Inspire Record 90715 DOI 10.17182/hepdata.27879

Differential cross-sections for negative pion radiative capture on protons at c.m. angles of 60°, 90°, and 120° have been measured at nine incident laboratory energies between 110 and 270 MeV. Comparison with measured cross-sections for pion photoproduction and with conventional multipole analyses shows neither evidence for a violation of time reversal invariance nor for an isotensor component of the electromagnetic current of hardrons.

7 data tables

Axis error includes +- 0.0/0.0 contribution (QUOTED ERRORS INCLUDE THE 5 PCT AND 3 PCT UNCERTAINTIES IN THE NEUTRON AND PHOTON DETECTOR EFFICIENCIES).

Axis error includes +- 0.0/0.0 contribution (QUOTED ERRORS INCLUDE THE 5 PCT AND 3 PCT UNCERTAINTIES IN THE NEUTRON AND PHOTON DETECTOR EFFICIENCIES).

Axis error includes +- 0.0/0.0 contribution (QUOTED ERRORS INCLUDE THE 5 PCT AND 3 PCT UNCERTAINTIES IN THE NEUTRON AND PHOTON DETECTOR EFFICIENCIES).

More…

Pi p elastic scattering from 88 to 292 mev

Bussey, P.J. ; Carter, J.R. ; Dance, D.R. ; et al.
Nucl.Phys.B 58 (1973) 363-377, 1973.
Inspire Record 83985 DOI 10.17182/hepdata.6770

Differential cross sections for π + p and π − p elastic scattering have been measured with an accuracy of typically ±2% at 10 and 9 energies respectively in the range 88 to 292 MeV of lab kinetic energy.

38 data tables

No description provided.

No description provided.

No description provided.

More…

Analyzing power for pi- p charge exchange in the backward hemisphere from 301-MeV/c to 625-MeV/c and a test of pi N partial wave analyses

Kim, G.J. ; Arends, J. ; Engelage, J. ; et al.
Phys.Rev.D 41 (1990) 733-743, 1990.
Inspire Record 301242 DOI 10.17182/hepdata.22935

The analyzing power of π−p→π0n has been measured for pπ=301−625 MeV/c with a transversely polarized target, mainly in the backward hemisphere. The final-state neutron and a γ from the π0 were detected in coincidence with two counter arrays. Our results are compared with predictions of recent πN partial-wave analyses by the groups of Karlsruhe-Helsinki, Carnegie-Mellon University-Lawrence Berkeley Laboratory (CMU-LBL), and Virginia Polytechnic Institute (VPI). At the lower incident energies little difference is seen among the three analyses, and there is excellent agreement with our data. At 547 MeV/c and above, our data strongly favor the VPI phases, and disagree with Karlsruhe-Helsinki and CMU-LBL analyses, which are the source of the πN resonance parameters given in the Particle Data Group table.

7 data tables

Axis error includes +- 5/5 contribution (Uncertainty in background normalisation).

Axis error includes +- 5/5 contribution (Uncertainty in background normalisation).

Axis error includes +- 5/5 contribution (Uncertainty in background normalisation).

More…