Showing 10 of 91 results
Multiplicity ($N_{\rm ch}$) distributions and transverse momentum ($p_{\rm T}$) spectra of inclusive primary charged particles in the kinematic range of $|\eta| < 0.8$ and 0.15 GeV/$c$$< p_{T} <$ 10 GeV/$c$ are reported for pp, p-Pb, Xe-Xe and Pb-Pb collisions at centre-of-mass energies per nucleon pair ranging from $\sqrt{s_{\rm NN}} = 2.76$ TeV up to $13$ TeV. A sequential two-dimensional unfolding procedure is used to extract the correlation between the transverse momentum of primary charged particles and the charged-particle multiplicity of the corresponding collision. This correlation sharply characterises important features of the final state of a collision and, therefore, can be used as a stringent test of theoretical models. The multiplicity distributions as well as the mean and standard deviation derived from the $p_{\rm T}$ spectra are compared to state-of-the-art model predictions. Providing these fundamental observables of bulk particle production consistently across a wide range of collision energies and system sizes can serve as an important input for tuning Monte Carlo event generators.
Charged-particle multiplicity distribution for pp collisions at 2.76 TeV.
Charged-particle multiplicity distribution for pp collisions at 2.76 TeV.
Koba-Nielsen-Olesen scaled charged-particle multiplicity distribution for pp collisions at 2.76 TeV.
Koba-Nielsen-Olesen scaled charged-particle multiplicity distribution for pp collisions at 2.76 TeV.
Charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 2.76 TeV.
Charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 2.76 TeV.
Charged-particle mean transverse momentum as a function of charged-particle multiplicity for pp collisions at 2.76 TeV.
Charged-particle mean transverse momentum as a function of charged-particle multiplicity for pp collisions at 2.76 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 2.76 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 2.76 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 2.76 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 2.76 TeV.
Charged-particle transverse momentum spectra integrated over charged-particle multipliciy for pp collisions at 2.76 TeV.
Charged-particle transverse momentum spectra integrated over charged-particle multipliciy for pp collisions at 2.76 TeV.
Charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 2.76 TeV.
Charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 2.76 TeV.
Charged-particle mean transverse momentum as a function of relative charged-particle multiplicity for pp collisions at 2.76 TeV.
Charged-particle mean transverse momentum as a function of relative charged-particle multiplicity for pp collisions at 2.76 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 2.76 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 2.76 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 2.76 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 2.76 TeV.
Charged-particle mean transverse momentum divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pp collisions at 2.76 TeV.
Charged-particle mean transverse momentum divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pp collisions at 2.76 TeV.
Standard deviation of charged-particle transverse momentum spectra divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pp collisions at 2.76 TeV.
Standard deviation of charged-particle transverse momentum spectra divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pp collisions at 2.76 TeV.
Charged-particle multiplicity distribution for pp collisions at 5.02 TeV.
Charged-particle multiplicity distribution for pp collisions at 5.02 TeV.
Koba-Nielsen-Olesen scaled charged-particle multiplicity distribution for pp collisions at 5.02 TeV.
Koba-Nielsen-Olesen scaled charged-particle multiplicity distribution for pp collisions at 5.02 TeV.
Charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 5.02 TeV.
Charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 5.02 TeV.
Charged-particle mean transverse momentum as a function of charged-particle multiplicity for pp collisions at 5.02 TeV.
Charged-particle mean transverse momentum as a function of charged-particle multiplicity for pp collisions at 5.02 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 5.02 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 5.02 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 5.02 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 5.02 TeV.
Charged-particle transverse momentum spectra integrated over charged-particle multipliciy for pp collisions at 5.02 TeV.
Charged-particle transverse momentum spectra integrated over charged-particle multipliciy for pp collisions at 5.02 TeV.
Charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 5.02 TeV.
Charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 5.02 TeV.
Charged-particle mean transverse momentum as a function of relative charged-particle multiplicity for pp collisions at 5.02 TeV.
Charged-particle mean transverse momentum as a function of relative charged-particle multiplicity for pp collisions at 5.02 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 5.02 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 5.02 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 5.02 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 5.02 TeV.
Charged-particle mean transverse momentum divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pp collisions at 5.02 TeV.
Charged-particle mean transverse momentum divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pp collisions at 5.02 TeV.
Standard deviation of charged-particle transverse momentum spectra divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pp collisions at 5.02 TeV.
Standard deviation of charged-particle transverse momentum spectra divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pp collisions at 5.02 TeV.
Charged-particle multiplicity distribution for pp collisions at 7.0 TeV.
Charged-particle multiplicity distribution for pp collisions at 7.0 TeV.
Koba-Nielsen-Olesen scaled charged-particle multiplicity distribution for pp collisions at 7.0 TeV.
Koba-Nielsen-Olesen scaled charged-particle multiplicity distribution for pp collisions at 7.0 TeV.
Charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 7.0 TeV.
Charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 7.0 TeV.
Charged-particle mean transverse momentum as a function of charged-particle multiplicity for pp collisions at 7.0 TeV.
Charged-particle mean transverse momentum as a function of charged-particle multiplicity for pp collisions at 7.0 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 7.0 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 7.0 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 7.0 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 7.0 TeV.
Charged-particle transverse momentum spectra integrated over charged-particle multipliciy for pp collisions at 7.0 TeV.
Charged-particle transverse momentum spectra integrated over charged-particle multipliciy for pp collisions at 7.0 TeV.
Charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 7.0 TeV.
Charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 7.0 TeV.
Charged-particle mean transverse momentum as a function of relative charged-particle multiplicity for pp collisions at 7.0 TeV.
Charged-particle mean transverse momentum as a function of relative charged-particle multiplicity for pp collisions at 7.0 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 7.0 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 7.0 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 7.0 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 7.0 TeV.
Charged-particle mean transverse momentum divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pp collisions at 7.0 TeV.
Charged-particle mean transverse momentum divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pp collisions at 7.0 TeV.
Standard deviation of charged-particle transverse momentum spectra divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pp collisions at 7.0 TeV.
Standard deviation of charged-particle transverse momentum spectra divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pp collisions at 7.0 TeV.
Charged-particle multiplicity distribution for pp collisions at 8.0 TeV.
Charged-particle multiplicity distribution for pp collisions at 8.0 TeV.
Koba-Nielsen-Olesen scaled charged-particle multiplicity distribution for pp collisions at 8.0 TeV.
Koba-Nielsen-Olesen scaled charged-particle multiplicity distribution for pp collisions at 8.0 TeV.
Charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 8.0 TeV.
Charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 8.0 TeV.
Charged-particle mean transverse momentum as a function of charged-particle multiplicity for pp collisions at 8.0 TeV.
Charged-particle mean transverse momentum as a function of charged-particle multiplicity for pp collisions at 8.0 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 8.0 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 8.0 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 8.0 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 8.0 TeV.
Charged-particle transverse momentum spectra integrated over charged-particle multipliciy for pp collisions at 8.0 TeV.
Charged-particle transverse momentum spectra integrated over charged-particle multipliciy for pp collisions at 8.0 TeV.
Charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 8.0 TeV.
Charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 8.0 TeV.
Charged-particle mean transverse momentum as a function of relative charged-particle multiplicity for pp collisions at 8.0 TeV.
Charged-particle mean transverse momentum as a function of relative charged-particle multiplicity for pp collisions at 8.0 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 8.0 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 8.0 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 8.0 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 8.0 TeV.
Charged-particle mean transverse momentum divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pp collisions at 8.0 TeV.
Charged-particle mean transverse momentum divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pp collisions at 8.0 TeV.
Standard deviation of charged-particle transverse momentum spectra divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pp collisions at 8.0 TeV.
Standard deviation of charged-particle transverse momentum spectra divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pp collisions at 8.0 TeV.
Charged-particle multiplicity distribution for pp collisions at 13.0 TeV.
Charged-particle multiplicity distribution for pp collisions at 13.0 TeV.
Koba-Nielsen-Olesen scaled charged-particle multiplicity distribution for pp collisions at 13.0 TeV.
Koba-Nielsen-Olesen scaled charged-particle multiplicity distribution for pp collisions at 13.0 TeV.
Charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 13.0 TeV.
Charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 13.0 TeV.
Charged-particle mean transverse momentum as a function of charged-particle multiplicity for pp collisions at 13.0 TeV.
Charged-particle mean transverse momentum as a function of charged-particle multiplicity for pp collisions at 13.0 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 13.0 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 13.0 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 13.0 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 13.0 TeV.
Charged-particle transverse momentum spectra integrated over charged-particle multipliciy for pp collisions at 13.0 TeV.
Charged-particle transverse momentum spectra integrated over charged-particle multipliciy for pp collisions at 13.0 TeV.
Charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 13.0 TeV.
Charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 13.0 TeV.
Charged-particle mean transverse momentum as a function of relative charged-particle multiplicity for pp collisions at 13.0 TeV.
Charged-particle mean transverse momentum as a function of relative charged-particle multiplicity for pp collisions at 13.0 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 13.0 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 13.0 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 13.0 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pp collisions at 13.0 TeV.
Charged-particle mean transverse momentum divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pp collisions at 13.0 TeV.
Charged-particle mean transverse momentum divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pp collisions at 13.0 TeV.
Standard deviation of charged-particle transverse momentum spectra divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pp collisions at 13.0 TeV.
Standard deviation of charged-particle transverse momentum spectra divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pp collisions at 13.0 TeV.
Charged-particle multiplicity distribution for pPb collisions at 5.02 TeV.
Charged-particle multiplicity distribution for pPb collisions at 5.02 TeV.
Koba-Nielsen-Olesen scaled charged-particle multiplicity distribution for pPb collisions at 5.02 TeV.
Koba-Nielsen-Olesen scaled charged-particle multiplicity distribution for pPb collisions at 5.02 TeV.
Charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pPb collisions at 5.02 TeV.
Charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pPb collisions at 5.02 TeV.
Charged-particle mean transverse momentum as a function of charged-particle multiplicity for pPb collisions at 5.02 TeV.
Charged-particle mean transverse momentum as a function of charged-particle multiplicity for pPb collisions at 5.02 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pPb collisions at 5.02 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pPb collisions at 5.02 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pPb collisions at 5.02 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pPb collisions at 5.02 TeV.
Charged-particle transverse momentum spectra integrated over charged-particle multipliciy for pPb collisions at 5.02 TeV.
Charged-particle transverse momentum spectra integrated over charged-particle multipliciy for pPb collisions at 5.02 TeV.
Charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pPb collisions at 5.02 TeV.
Charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pPb collisions at 5.02 TeV.
Charged-particle mean transverse momentum as a function of relative charged-particle multiplicity for pPb collisions at 5.02 TeV.
Charged-particle mean transverse momentum as a function of relative charged-particle multiplicity for pPb collisions at 5.02 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pPb collisions at 5.02 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pPb collisions at 5.02 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pPb collisions at 5.02 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pPb collisions at 5.02 TeV.
Charged-particle mean transverse momentum divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pPb collisions at 5.02 TeV.
Charged-particle mean transverse momentum divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pPb collisions at 5.02 TeV.
Standard deviation of charged-particle transverse momentum spectra divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pPb collisions at 5.02 TeV.
Standard deviation of charged-particle transverse momentum spectra divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pPb collisions at 5.02 TeV.
Charged-particle multiplicity distribution for pPb collisions at 8.16 TeV.
Charged-particle multiplicity distribution for pPb collisions at 8.16 TeV.
Koba-Nielsen-Olesen scaled charged-particle multiplicity distribution for pPb collisions at 8.16 TeV.
Koba-Nielsen-Olesen scaled charged-particle multiplicity distribution for pPb collisions at 8.16 TeV.
Charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pPb collisions at 8.16 TeV.
Charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pPb collisions at 8.16 TeV.
Charged-particle mean transverse momentum as a function of charged-particle multiplicity for pPb collisions at 8.16 TeV.
Charged-particle mean transverse momentum as a function of charged-particle multiplicity for pPb collisions at 8.16 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pPb collisions at 8.16 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pPb collisions at 8.16 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pPb collisions at 8.16 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pPb collisions at 8.16 TeV.
Charged-particle transverse momentum spectra integrated over charged-particle multipliciy for pPb collisions at 8.16 TeV.
Charged-particle transverse momentum spectra integrated over charged-particle multipliciy for pPb collisions at 8.16 TeV.
Charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pPb collisions at 8.16 TeV.
Charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pPb collisions at 8.16 TeV.
Charged-particle mean transverse momentum as a function of relative charged-particle multiplicity for pPb collisions at 8.16 TeV.
Charged-particle mean transverse momentum as a function of relative charged-particle multiplicity for pPb collisions at 8.16 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pPb collisions at 8.16 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pPb collisions at 8.16 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pPb collisions at 8.16 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for pPb collisions at 8.16 TeV.
Charged-particle mean transverse momentum divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pPb collisions at 8.16 TeV.
Charged-particle mean transverse momentum divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pPb collisions at 8.16 TeV.
Standard deviation of charged-particle transverse momentum spectra divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pPb collisions at 8.16 TeV.
Standard deviation of charged-particle transverse momentum spectra divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for pPb collisions at 8.16 TeV.
Charged-particle multiplicity distribution for XeXe collisions at 5.44 TeV.
Charged-particle multiplicity distribution for XeXe collisions at 5.44 TeV.
Koba-Nielsen-Olesen scaled charged-particle multiplicity distribution for XeXe collisions at 5.44 TeV.
Koba-Nielsen-Olesen scaled charged-particle multiplicity distribution for XeXe collisions at 5.44 TeV.
Charged-particle transverse momentum spectra as a function of charged-particle multiplicity for XeXe collisions at 5.44 TeV.
Charged-particle transverse momentum spectra as a function of charged-particle multiplicity for XeXe collisions at 5.44 TeV.
Charged-particle mean transverse momentum as a function of charged-particle multiplicity for XeXe collisions at 5.44 TeV.
Charged-particle mean transverse momentum as a function of charged-particle multiplicity for XeXe collisions at 5.44 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for XeXe collisions at 5.44 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for XeXe collisions at 5.44 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for XeXe collisions at 5.44 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for XeXe collisions at 5.44 TeV.
Charged-particle transverse momentum spectra integrated over charged-particle multipliciy for XeXe collisions at 5.44 TeV.
Charged-particle transverse momentum spectra integrated over charged-particle multipliciy for XeXe collisions at 5.44 TeV.
Charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for XeXe collisions at 5.44 TeV.
Charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for XeXe collisions at 5.44 TeV.
Charged-particle mean transverse momentum as a function of relative charged-particle multiplicity for XeXe collisions at 5.44 TeV.
Charged-particle mean transverse momentum as a function of relative charged-particle multiplicity for XeXe collisions at 5.44 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for XeXe collisions at 5.44 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for XeXe collisions at 5.44 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for XeXe collisions at 5.44 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for XeXe collisions at 5.44 TeV.
Charged-particle mean transverse momentum divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for XeXe collisions at 5.44 TeV.
Charged-particle mean transverse momentum divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for XeXe collisions at 5.44 TeV.
Standard deviation of charged-particle transverse momentum spectra divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for XeXe collisions at 5.44 TeV.
Standard deviation of charged-particle transverse momentum spectra divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for XeXe collisions at 5.44 TeV.
Charged-particle multiplicity distribution for PbPb collisions at 2.76 TeV.
Charged-particle multiplicity distribution for PbPb collisions at 2.76 TeV.
Koba-Nielsen-Olesen scaled charged-particle multiplicity distribution for PbPb collisions at 2.76 TeV.
Koba-Nielsen-Olesen scaled charged-particle multiplicity distribution for PbPb collisions at 2.76 TeV.
Charged-particle transverse momentum spectra as a function of charged-particle multiplicity for PbPb collisions at 2.76 TeV.
Charged-particle transverse momentum spectra as a function of charged-particle multiplicity for PbPb collisions at 2.76 TeV.
Charged-particle mean transverse momentum as a function of charged-particle multiplicity for PbPb collisions at 2.76 TeV.
Charged-particle mean transverse momentum as a function of charged-particle multiplicity for PbPb collisions at 2.76 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for PbPb collisions at 2.76 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for PbPb collisions at 2.76 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for PbPb collisions at 2.76 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for PbPb collisions at 2.76 TeV.
Charged-particle transverse momentum spectra integrated over charged-particle multipliciy for PbPb collisions at 2.76 TeV.
Charged-particle transverse momentum spectra integrated over charged-particle multipliciy for PbPb collisions at 2.76 TeV.
Charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for PbPb collisions at 2.76 TeV.
Charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for PbPb collisions at 2.76 TeV.
Charged-particle mean transverse momentum as a function of relative charged-particle multiplicity for PbPb collisions at 2.76 TeV.
Charged-particle mean transverse momentum as a function of relative charged-particle multiplicity for PbPb collisions at 2.76 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for PbPb collisions at 2.76 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for PbPb collisions at 2.76 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for PbPb collisions at 2.76 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for PbPb collisions at 2.76 TeV.
Charged-particle mean transverse momentum divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for PbPb collisions at 2.76 TeV.
Charged-particle mean transverse momentum divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for PbPb collisions at 2.76 TeV.
Standard deviation of charged-particle transverse momentum spectra divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for PbPb collisions at 2.76 TeV.
Standard deviation of charged-particle transverse momentum spectra divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for PbPb collisions at 2.76 TeV.
Charged-particle multiplicity distribution for PbPb collisions at 5.02 TeV.
Charged-particle multiplicity distribution for PbPb collisions at 5.02 TeV.
Koba-Nielsen-Olesen scaled charged-particle multiplicity distribution for PbPb collisions at 5.02 TeV.
Koba-Nielsen-Olesen scaled charged-particle multiplicity distribution for PbPb collisions at 5.02 TeV.
Charged-particle transverse momentum spectra as a function of charged-particle multiplicity for PbPb collisions at 5.02 TeV.
Charged-particle transverse momentum spectra as a function of charged-particle multiplicity for PbPb collisions at 5.02 TeV.
Charged-particle mean transverse momentum as a function of charged-particle multiplicity for PbPb collisions at 5.02 TeV.
Charged-particle mean transverse momentum as a function of charged-particle multiplicity for PbPb collisions at 5.02 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for PbPb collisions at 5.02 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for PbPb collisions at 5.02 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for PbPb collisions at 5.02 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of charged-particle multiplicity for PbPb collisions at 5.02 TeV.
Charged-particle transverse momentum spectra integrated over charged-particle multipliciy for PbPb collisions at 5.02 TeV.
Charged-particle transverse momentum spectra integrated over charged-particle multipliciy for PbPb collisions at 5.02 TeV.
Charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for PbPb collisions at 5.02 TeV.
Charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for PbPb collisions at 5.02 TeV.
Charged-particle mean transverse momentum as a function of relative charged-particle multiplicity for PbPb collisions at 5.02 TeV.
Charged-particle mean transverse momentum as a function of relative charged-particle multiplicity for PbPb collisions at 5.02 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for PbPb collisions at 5.02 TeV.
Standard deviation of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for PbPb collisions at 5.02 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for PbPb collisions at 5.02 TeV.
Standard deviation over mean of charged-particle transverse momentum spectra as a function of relative charged-particle multiplicity for PbPb collisions at 5.02 TeV.
Charged-particle mean transverse momentum divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for PbPb collisions at 5.02 TeV.
Charged-particle mean transverse momentum divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for PbPb collisions at 5.02 TeV.
Standard deviation of charged-particle transverse momentum spectra divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for PbPb collisions at 5.02 TeV.
Standard deviation of charged-particle transverse momentum spectra divided by its multiplicity-integrated value as a function of relative charged-particle multiplicity for PbPb collisions at 5.02 TeV.
Transverse momentum ($p_{\rm T}$) spectra of charged particles at mid-pseudorapidity in Xe-Xe collisions at $\sqrt{s_{\rm NN}}$ = 5.44 TeV measured with the ALICE apparatus at the Large Hadron Collider are reported. The kinematic range $0.15 < p_{\rm T} < 50$ GeV/$c$ and $|\eta| < 0.8$ is covered. Results are presented in nine classes of collision centrality in the 0-80% range. For comparison, a pp reference at the collision energy of $\sqrt{s}$ = 5.44 TeV is obtained by interpolating between existing \pp measurements at $\sqrt{s}$ = 5.02 and 7 TeV. The nuclear modification factors in central Xe-Xe collisions and Pb-Pb collisions at a similar center-of-mass energy of $\sqrt{s_{\rm NN}}$ = 5.02 TeV, and in addition at 2.76 TeV, at analogous ranges of charged particle multiplicity density $\left\langle\rm{d}N_{\rm ch}/\rm{d}\eta\right\rangle$ show a remarkable similarity at $p_{\rm T}> 10$ GeV/$c$. The comparison of the measured $R_{\rm AA}$ values in the two colliding systems could provide insight on the path length dependence of medium-induced parton energy loss. The centrality dependence of the ratio of the average transverse momentum $\left\langle p_{\rm{T}}\right\rangle$ in Xe-Xe collisions over Pb-Pb collision at $\sqrt{s}$ = 5.02 TeV is compared to hydrodynamical model calculations.
Transverse momentum spectra of charged particles in XeXe collisions in nine centrality classes.
Interpolated pp reference spectrum and invariant cross section.
Nuclear modification factor for XeXe. Additional systematic error: 0-5 pct data: +6.1 pct -6.1 pct 5-10 pct data: +6.6 pct -6.6 pct 10-20 pct data: +7.4 pct -7.4 pct 20-30 pct data: +9.8 pct -9.8 pct 30-40 pct data: +11.5 pct -11.5 pct 40-50 pct data: +12.9 pct -12.9 pct 50-60 pct data: +13.8 pct -13.8 pct 60-70 pct data: +14.0 pct -14.0 pct 70-80 pct data: +12.9 pct -12.9 pct
Ratio of transverse momentum spectra in Xe-Xe and Pb-Pb.
Raa vs $\langle dNch/d\eta \rangle$.
Raa vs $\langle dNch/d\eta \rangle$.
Raa vs $\langle dNch/d\eta \rangle$.
Average transverse momentum vs centrality percentage for PbPb and XeXe. And the ratio between collision systems.
The production of prompt charged particles in proton-lead collisions and in proton-proton collisions at the nucleon-nucleon centre-of-mass energy ${\sqrt{s_{\scriptscriptstyle\mathrm{NN}}}=5\,\mathrm{TeV}}$ is studied at LHCb as a function of pseudorapidity ($\eta$) and transverse momentum ($p_{\mathrm{T}}$) with respect to the proton beam direction. The nuclear modification factor for charged particles is determined as a function of $\eta$ between ${-4.8<\eta<-2.5}$ (backward region) and ${2.0<\eta<4.8}$ (forward region), and $p_{\mathrm{T}}$ between ${0.2<p_{\mathrm{T}}<8.0\,\mathrm{GeV}/c}$. The results show a suppression of charged particle production in proton-lead collisions relative to proton-proton collisions in the forward region and an enhancement in the backward region for $p_{\mathrm{T}}$ larger than $1.5\,\mathrm{GeV}/c$. This measurement constrains nuclear PDFs and saturation models at previously unexplored values of the parton momentum fraction down to $10^{-6}$.
Double-differential production cross-section for prompt charged particles in pp collisions at 5TeV with respect to pseudorapidity and transverse momentum. First uncertainty is statistical, the second is systematic and the third is from the luminosity. Luminosity uncertainty is fully correlated among the different kinematic ranges.
Double-differential production cross-section for prompt charged particles in pPb collisions at 5TeV with respect to pseudorapidity and transverse momentum in the forward region. The pseudorapidity is expressed in the nucleon-nucleon center-of-mass system. First uncertainty is statistical, the second is systematic and the third is from the luminosity. Luminosity uncertainty is fully correlated among the different kinematic ranges.
Double-differential production cross-section for prompt charged particles in pPb collisions at 5TeV with respect to pseudorapidity and transverse momentum in the backward region. The pseudorapidity is expressed in the nucleon-nucleon center-of-mass system. First uncertainty is statistical, the second is systematic and the third is from the luminosity. Luminosity uncertainty is fully correlated among the different kinematic ranges.
Nuclear modification factor for prompt charged particles at 5TeV with respect to pseudorapidity and transverse momentum in the forward region region. The pseudorapidity is expressed in the nucleon-nucleon center-of-mass system. First uncertainty is statistical, the second is systematic and the third is from the luminosity. Luminosity uncertainty is fully correlated among the different kinematic ranges.
Nuclear modification factor for prompt charged particles at 5TeV with respect to pseudorapidity and transverse momentum in the backward region region. The pseudorapidity is expressed in the nucleon-nucleon center-of-mass system. First uncertainty is statistical, the second is systematic and the third is from the luminosity. Luminosity uncertainty is fully correlated among the different kinematic ranges.
This paper presents measurements of charged-hadron spectra obtained in $pp$, $p$+Pb, and Pb+Pb collisions at $\sqrt{s}$ or $\sqrt{s_{_\text{NN}}}=5.02$ TeV, and in Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5.44$ TeV. The data recorded by the ATLAS detector at the LHC have total integrated luminosities of 25 pb${}^{-1}$, 28 nb${}^{-1}$, 0.50 nb${}^{-1}$, and 3 $\mu$b${}^{-1}$, respectively. The nuclear modification factors $R_{p\text{Pb}}$ and $R_\text{AA}$ are obtained by comparing the spectra in heavy-ion and $pp$ collisions in a wide range of charged-particle transverse momenta and pseudorapidity. The nuclear modification factor $R_{p\text{Pb}}$ shows a moderate enhancement above unity with a maximum at $p_{\mathrm{T}} \approx 3$ GeV; the enhancement is stronger in the Pb-going direction. The nuclear modification factors in both Pb+Pb and Xe+Xe collisions feature a significant, centrality-dependent suppression. They show a similar distinct $p_{\mathrm{T}}$-dependence with a local maximum at $p_{\mathrm{T}} \approx 2$ GeV and a local minimum at $p_{\mathrm{T}} \approx 7$ GeV. This dependence is more distinguishable in more central collisions. No significant $|\eta|$-dependence is found. A comprehensive comparison with several theoretical predictions is also provided. They typically describe $R_\text{AA}$ better in central collisions and in the $p_{\mathrm{T}}$ range from about 10 to 100 GeV.
- - - - - - - - - - - - - - - - - - - - <br><b>charged-hadron spectra:</b> <br><i>pp reference:</i> <a href="?version=1&table=Table1">for p+Pb</a> <a href="?version=1&table=Table10">for Pb+Pb</a> <a href="?version=1&table=Table19">for Xe+Xe</a> <br><i>p+Pb:</i> <a href="?version=1&table=Table2">0-5%</a> <a href="?version=1&table=Table3">5-10%</a> <a href="?version=1&table=Table4">10-20%</a> <a href="?version=1&table=Table5">20-30%</a> <a href="?version=1&table=Table6">30-40%</a> <a href="?version=1&table=Table7">40-60%</a> <a href="?version=1&table=Table8">60-90%</a> <a href="?version=1&table=Table9">0-90%</a> <br><i>Pb+Pb:</i> <a href="?version=1&table=Table11">0-5%</a> <a href="?version=1&table=Table12">5-10%</a> <a href="?version=1&table=Table13">10-20%</a> <a href="?version=1&table=Table14">20-30%</a> <a href="?version=1&table=Table15">30-40%</a> <a href="?version=1&table=Table16">40-50%</a> <a href="?version=1&table=Table17">50-60%</a> <a href="?version=1&table=Table18">60-80%</a> <br><i>Xe+Xe:</i> <a href="?version=1&table=Table20">0-5%</a> <a href="?version=1&table=Table21">5-10%</a> <a href="?version=1&table=Table22">10-20%</a> <a href="?version=1&table=Table23">20-30%</a> <a href="?version=1&table=Table24">30-40%</a> <a href="?version=1&table=Table25">40-50%</a> <a href="?version=1&table=Table26">50-60%</a> <a href="?version=1&table=Table27">60-80%</a> </br>- - - - - - - - - - - - - - - - - - - - <br><b>nuclear modification factors (p<sub>T</sub>):</b> <br><i>R<sub>pPb</sub>:</i> <a href="?version=1&table=Table28">0-5%</a> <a href="?version=1&table=Table29">5-10%</a> <a href="?version=1&table=Table30">10-20%</a> <a href="?version=1&table=Table31">20-30%</a> <a href="?version=1&table=Table32">30-40%</a> <a href="?version=1&table=Table33">40-60%</a> <a href="?version=1&table=Table34">60-90%</a> <a href="?version=1&table=Table35">0-90%</a> <br><i>R<sub>AA</sub> (Pb+Pb):</i> <a href="?version=1&table=Table36">0-5%</a> <a href="?version=1&table=Table37">5-10%</a> <a href="?version=1&table=Table38">10-20%</a> <a href="?version=1&table=Table39">20-30%</a> <a href="?version=1&table=Table40">30-40%</a> <a href="?version=1&table=Table41">40-50%</a> <a href="?version=1&table=Table42">50-60%</a> <a href="?version=1&table=Table43">60-80%</a> <br><i>R<sub>AA</sub> (Xe+Xe):</i> <a href="?version=1&table=Table44">0-5%</a> <a href="?version=1&table=Table45">5-10%</a> <a href="?version=1&table=Table46">10-20%</a> <a href="?version=1&table=Table47">20-30%</a> <a href="?version=1&table=Table48">30-40%</a> <a href="?version=1&table=Table49">40-50%</a> <a href="?version=1&table=Table50">50-60%</a> <a href="?version=1&table=Table51">60-80%</a> </br>- - - - - - - - - - - - - - - - - - - - <br><b>nuclear modification factors (y*/eta):</b> <br><i>R<sub>pPb</sub>:</i> <br> 0-5%: <a href="?version=1&table=Table52">0.66-0.755GeV</a> <a href="?version=1&table=Table53">2.95-3.35GeV</a> <a href="?version=1&table=Table54">7.65-8.8GeV</a> <a href="?version=1&table=Table55">15.1-17.3GeV</a> <br> 5-10%: <a href="?version=1&table=Table56">0.66-0.755GeV</a> <a href="?version=1&table=Table57">2.95-3.35GeV</a> <a href="?version=1&table=Table58">7.65-8.8GeV</a> <a href="?version=1&table=Table59">15.1-17.3GeV</a> <br> 10-20%: <a href="?version=1&table=Table60">0.66-0.755GeV</a> <a href="?version=1&table=Table61">2.95-3.35GeV</a> <a href="?version=1&table=Table62">7.65-8.8GeV</a> <a href="?version=1&table=Table63">15.1-17.3GeV</a> <br> 20-30%: <a href="?version=1&table=Table64">0.66-0.755GeV</a> <a href="?version=1&table=Table65">2.95-3.35GeV</a> <a href="?version=1&table=Table66">7.65-8.8GeV</a> <a href="?version=1&table=Table67">15.1-17.3GeV</a> <br> 30-40%: <a href="?version=1&table=Table68">0.66-0.755GeV</a> <a href="?version=1&table=Table69">2.95-3.35GeV</a> <a href="?version=1&table=Table70">7.65-8.8GeV</a> <a href="?version=1&table=Table71">15.1-17.3GeV</a> <br> 40-60%: <a href="?version=1&table=Table72">0.66-0.755GeV</a> <a href="?version=1&table=Table73">2.95-3.35GeV</a> <a href="?version=1&table=Table74">7.65-8.8GeV</a> <a href="?version=1&table=Table75">15.1-17.3GeV</a> <br> 60-90%: <a href="?version=1&table=Table76">0.66-0.755GeV</a> <a href="?version=1&table=Table77">2.95-3.35GeV</a> <a href="?version=1&table=Table78">7.65-8.8GeV</a> <a href="?version=1&table=Table79">15.1-17.3GeV</a> <br> 0-90%: <a href="?version=1&table=Table80">0.66-0.755GeV</a> <a href="?version=1&table=Table81">2.95-3.35GeV</a> <a href="?version=1&table=Table82">7.65-8.8GeV</a> <a href="?version=1&table=Table83">15.1-17.3GeV</a> <br><i>R<sub>AA</sub> (Pb+Pb):</i> <br> 0-5%: <a href="?version=1&table=Table84">1.7-1.95GeV</a> <a href="?version=1&table=Table85">6.7-7.65GeV</a> <a href="?version=1&table=Table86">20-23GeV</a> <a href="?version=1&table=Table87">60-95GeV</a> <br> 5-10%: <a href="?version=1&table=Table88">1.7-1.95GeV</a> <a href="?version=1&table=Table89">6.7-7.65GeV</a> <a href="?version=1&table=Table90">20-23GeV</a> <a href="?version=1&table=Table91">60-95GeV</a> <br> 10-20%: <a href="?version=1&table=Table92">1.7-1.95GeV</a> <a href="?version=1&table=Table93">6.7-7.65GeV</a> <a href="?version=1&table=Table94">20-23GeV</a> <a href="?version=1&table=Table95">60-95GeV</a> <br> 20-30%: <a href="?version=1&table=Table96">1.7-1.95GeV</a> <a href="?version=1&table=Table97">6.7-7.65GeV</a> <a href="?version=1&table=Table98">20-23GeV</a> <a href="?version=1&table=Table99">60-95GeV</a> <br> 30-40%: <a href="?version=1&table=Table100">1.7-1.95GeV</a> <a href="?version=1&table=Table101">6.7-7.65GeV</a> <a href="?version=1&table=Table102">20-23GeV</a> <a href="?version=1&table=Table103">60-95GeV</a> <br> 40-50%: <a href="?version=1&table=Table104">1.7-1.95GeV</a> <a href="?version=1&table=Table105">6.7-7.65GeV</a> <a href="?version=1&table=Table106">20-23GeV</a> <a href="?version=1&table=Table107">60-95GeV</a> <br> 50-60%: <a href="?version=1&table=Table108">1.7-1.95GeV</a> <a href="?version=1&table=Table109">6.7-7.65GeV</a> <a href="?version=1&table=Table110">20-23GeV</a> <a href="?version=1&table=Table111">60-95GeV</a> <br> 60-80%: <a href="?version=1&table=Table112">1.7-1.95GeV</a> <a href="?version=1&table=Table113">6.7-7.65GeV</a> <a href="?version=1&table=Table114">20-23GeV</a> <a href="?version=1&table=Table115">60-95GeV</a> <br><i>R<sub>AA</sub> (Xe+Xe):</i> <br> 0-5%: <a href="?version=1&table=Table116">1.7-1.95GeV</a> <a href="?version=1&table=Table117">6.7-7.65GeV</a> <a href="?version=1&table=Table118">20-23GeV</a> <br> 5-10%: <a href="?version=1&table=Table119">1.7-1.95GeV</a> <a href="?version=1&table=Table120">6.7-7.65GeV</a> <a href="?version=1&table=Table121">20-23GeV</a> <br> 10-20%: <a href="?version=1&table=Table122">1.7-1.95GeV</a> <a href="?version=1&table=Table123">6.7-7.65GeV</a> <a href="?version=1&table=Table124">20-23GeV</a> <br> 20-30%: <a href="?version=1&table=Table125">1.7-1.95GeV</a> <a href="?version=1&table=Table126">6.7-7.65GeV</a> <a href="?version=1&table=Table127">20-23GeV</a> <br> 30-40%: <a href="?version=1&table=Table128">1.7-1.95GeV</a> <a href="?version=1&table=Table129">6.7-7.65GeV</a> <a href="?version=1&table=Table130">20-23GeV</a> <br> 40-50%: <a href="?version=1&table=Table131">1.7-1.95GeV</a> <a href="?version=1&table=Table132">6.7-7.65GeV</a> <a href="?version=1&table=Table133">20-23GeV</a> <br> 50-60%: <a href="?version=1&table=Table134">1.7-1.95GeV</a> <a href="?version=1&table=Table135">6.7-7.65GeV</a> <a href="?version=1&table=Table136">20-23GeV</a> <br> 60-80%: <a href="?version=1&table=Table137">1.7-1.95GeV</a> <a href="?version=1&table=Table138">6.7-7.65GeV</a> <a href="?version=1&table=Table139">20-23GeV</a> <br>- - - - - - - - - - - - - - - - - - - -
Charged-hadron cross-section in pp collisions. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Charged-hadron spectrum in the centrality interval 0-5% for p+Pb, divided by 〈TPPB〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Charged-hadron spectrum in the centrality interval 5-10% for p+Pb, divided by 〈TPPB〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Charged-hadron spectrum in the centrality interval 10-20% for p+Pb, divided by 〈TPPB〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Charged-hadron spectrum in the centrality interval 20-30% for p+Pb, divided by 〈TPPB〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Charged-hadron spectrum in the centrality interval 30-40% for p+Pb, divided by 〈TPPB〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Charged-hadron spectrum in the centrality interval 40-60% for p+Pb, divided by 〈TPPB〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Charged-hadron spectrum in the centrality interval 60-90% for p+Pb, divided by 〈TPPB〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Charged-hadron spectrum in the centrality interval 0-90% for p+Pb, divided by 〈TPPB〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Charged-hadron cross-section in pp collisions. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Charged-hadron spectrum in the centrality interval 0-5% for Pb+Pb, divided by 〈TAA〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature. The systematic uncertainty on momentum bias is negligible at low pT; in such cases, it is omitted in the table below.
Charged-hadron spectrum in the centrality interval 5-10% for Pb+Pb, divided by 〈TAA〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature. The systematic uncertainty on momentum bias is negligible at low pT; in such cases, it is omitted in the table below.
Charged-hadron spectrum in the centrality interval 10-20% for Pb+Pb, divided by 〈TAA〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature. The systematic uncertainty on momentum bias is negligible at low pT; in such cases, it is omitted in the table below.
Charged-hadron spectrum in the centrality interval 20-30% for Pb+Pb, divided by 〈TAA〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature. The systematic uncertainty on momentum bias is negligible at low pT; in such cases, it is omitted in the table below.
Charged-hadron spectrum in the centrality interval 30-40% for Pb+Pb, divided by 〈TAA〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature. The systematic uncertainty on momentum bias is negligible at low pT; in such cases, it is omitted in the table below.
Charged-hadron spectrum in the centrality interval 40-50% for Pb+Pb, divided by 〈TAA〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature. The systematic uncertainty on momentum bias is negligible at low pT; in such cases, it is omitted in the table below.
Charged-hadron spectrum in the centrality interval 50-60% for Pb+Pb, divided by 〈TAA〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature. The systematic uncertainty on momentum bias is negligible at low pT; in such cases, it is omitted in the table below.
Charged-hadron spectrum in the centrality interval 60-80% for Pb+Pb, divided by 〈TAA〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature. The systematic uncertainty on momentum bias is negligible at low pT; in such cases, it is omitted in the table below.
Charged-hadron cross-section in pp collisions. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Charged-hadron spectrum in the centrality interval 0-5% for Xe+Xe, divided by 〈TAA〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Charged-hadron spectrum in the centrality interval 5-10% for Xe+Xe, divided by 〈TAA〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Charged-hadron spectrum in the centrality interval 10-20% for Xe+Xe, divided by 〈TAA〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Charged-hadron spectrum in the centrality interval 20-30% for Xe+Xe, divided by 〈TAA〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Charged-hadron spectrum in the centrality interval 30-40% for Xe+Xe, divided by 〈TAA〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Charged-hadron spectrum in the centrality interval 40-50% for Xe+Xe, divided by 〈TAA〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Charged-hadron spectrum in the centrality interval 50-60% for Xe+Xe, divided by 〈TAA〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Charged-hadron spectrum in the centrality interval 60-80% for Xe+Xe, divided by 〈TAA〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 0-5% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 5-10% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 10-20% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 20-30% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 30-40% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 40-60% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 60-90% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 0-90% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 0-5% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature. The systematic uncertainty on momentum bias is negligible at low pT; in such cases, it is omitted in the table below.
Nuclear modification factor in centrality interval 5-10% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature. The systematic uncertainty on momentum bias is negligible at low pT; in such cases, it is omitted in the table below.
Nuclear modification factor in centrality interval 10-20% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature. The systematic uncertainty on momentum bias is negligible at low pT; in such cases, it is omitted in the table below.
Nuclear modification factor in centrality interval 20-30% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature. The systematic uncertainty on momentum bias is negligible at low pT; in such cases, it is omitted in the table below.
Nuclear modification factor in centrality interval 30-40% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature. The systematic uncertainty on momentum bias is negligible at low pT; in such cases, it is omitted in the table below.
Nuclear modification factor in centrality interval 40-50% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature. The systematic uncertainty on momentum bias is negligible at low pT; in such cases, it is omitted in the table below.
Nuclear modification factor in centrality interval 50-60% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature. The systematic uncertainty on momentum bias is negligible at low pT; in such cases, it is omitted in the table below.
Nuclear modification factor in centrality interval 60-80% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature. The systematic uncertainty on momentum bias is negligible at low pT; in such cases, it is omitted in the table below.
Nuclear modification factor in centrality interval 0-5% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 5-10% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 10-20% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 20-30% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 30-40% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 40-50% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 50-60% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 60-80% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 0-5% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 0-5% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 0-5% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 0-5% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 5-10% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 5-10% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 5-10% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 5-10% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 10-20% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 10-20% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 10-20% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 10-20% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 20-30% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 20-30% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 20-30% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 20-30% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 30-40% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 30-40% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 30-40% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 30-40% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 40-60% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 40-60% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 40-60% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 40-60% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 60-90% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 60-90% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 60-90% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 60-90% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 0-90% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 0-90% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 0-90% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 0-90% for p+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 0-5% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 0-5% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 0-5% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 0-5% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 5-10% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 5-10% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 5-10% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 5-10% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 10-20% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 10-20% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 10-20% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 10-20% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 20-30% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 20-30% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 20-30% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 20-30% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 30-40% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 30-40% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 30-40% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 30-40% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 40-50% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 40-50% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 40-50% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 40-50% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 50-60% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 50-60% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 50-60% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 50-60% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 60-80% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 60-80% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 60-80% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 60-80% for Pb+Pb. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 0-5% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 0-5% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 0-5% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 5-10% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 5-10% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 5-10% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 10-20% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 10-20% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 10-20% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 20-30% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 20-30% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 20-30% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 30-40% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 30-40% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 30-40% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 40-50% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 40-50% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 40-50% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 50-60% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 50-60% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 50-60% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 60-80% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 60-80% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Nuclear modification factor in centrality interval 60-80% for Xe+Xe. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Measurements of distributions of charged particles produced in proton-proton collisions with a centre-of-mass energy of 13 TeV are presented. The data were recorded by the ATLAS detector at the LHC and correspond to an integrated luminosity of 151 $\mu$b$^{-1}$. The particles are required to have a transverse momentum greater than 100 MeV and an absolute pseudorapidity less than 2.5. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on multiplicity are measured in events containing at least two charged particles satisfying the above kinematic criteria. The results are corrected for detector effects and compared to the predictions from several Monte Carlo event generators.
The average charged-particle muliplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.
The average charged-particle muliplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.
The extrapolated ($\tau > 30$ ps) average charged-particle muliplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.
The extrapolated ($\tau > 30$ ps) average charged-particle muliplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 13000 GeV as a function of pseudorapidity for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 13000 GeV as a function of pseudorapidity for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 13000 GeV as a function of transverse momentum for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 13000 GeV as a function of transverse momentum for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distribution in proton-proton collisions at a centre-of mass energy of 13000 GeV for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distribution in proton-proton collisions at a centre-of mass energy of 13000 GeV for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Average transverse momentum in proton-proton collisions at a centre-of mass energy of 13000 GeV as a function of the number of charged particles in the event for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Average transverse momentum in proton-proton collisions at a centre-of mass energy of 13000 GeV as a function of the number of charged particles in the event for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Extrapolated ($\tau > 30$ ps) charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 13000 GeV as a function of pseudorapidity for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Extrapolated ($\tau > 30$ ps) charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 13000 GeV as a function of pseudorapidity for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Extrapolated ($\tau > 30$ ps) charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 13000 GeV as a function of transverse momentum for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Extrapolated ($\tau > 30$ ps) charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 13000 GeV as a function of transverse momentum for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Extrapolated ($\tau > 30$ ps) charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 13000 GeV for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Extrapolated ($\tau > 30$ ps) charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 13000 GeV for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Extrapolated ($\tau > 30$ ps) average transverse momentum in proton-proton collisions at a centre-of mass energy of 13000 GeV as a function of the number of charged particles in the event for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Extrapolated ($\tau > 30$ ps) average transverse momentum in proton-proton collisions at a centre-of mass energy of 13000 GeV as a function of the number of charged particles in the event for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
This paper presents studies of Bose-Einstein correlations (BEC) in proton-proton collisions at a centre-of-mass energy of 13 TeV, using data from the ATLAS detector at the CERN Large Hadron Collider. Data were collected in a special low-luminosity configuration with a minimum-bias trigger and a high-multiplicity track trigger, accumulating integrated luminosities of 151 $\mu$b$^{-1}$ and 8.4 nb$^{-1}$ respectively. The BEC are measured for pairs of like-sign charged particles, each with $|\eta|$ < 2.5, for two kinematic ranges: the first with particle $p_T$ > 100 MeV and the second with particle $p_T$ > 500 MeV. The BEC parameters, characterizing the source radius and particle correlation strength, are investigated as functions of charged-particle multiplicity (up to 300) and average transverse momentum of the pair (up to 1.5 GeV). The double-differential dependence on charged-particle multiplicity and average transverse momentum of the pair is also studied. The BEC radius is found to be independent of the charged-particle multiplicity for high charged-particle multiplicity (above 100), confirming a previous observation at lower energy. This saturation occurs independent of the transverse momentum of the pair.
Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the opposite hemisphere (OHP) like-charge particles pairs reference sample for k<sub>T</sub> - interval 1000 < k<sub>T</sub> ≤ 1500 MeV.
Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - interval 1000 < k<sub>T</sub> ≤ 1500 MeV.
The Bose-Einstein correlation (BEC) parameter R as a function of n<sub>ch</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameter R as a function of n<sub>ch</sub> for HMT events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameter R as a function of k<sub>T</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameter λ as a function of k<sub>T</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The two-particle double-ratio correlation function, R<sub>2</sub>(Q), for pp collisions for track p<sub>T</sub> >100 MeV at √s=13 TeV in the multiplicity interval 71 ≤ n<sub>ch</sub> < 80 for the minimum-bias (MB) events. The blue dashed and red solid lines show the results of the exponential and Gaussian fits, respectively. The region excluded from the fits is shown. The statistical uncertainty and the systematic uncertainty for imperfections in the data reconstruction procedure are added in quadrature.
The two-particle double-ratio correlation function, R<sub>2</sub>(Q), for pp collisions for track p<sub>T</sub> >100 MeV at √s=13 TeV in the multiplicity interval 231 ≤ n<sub>ch</sub> < 300 for the high-multiplicity track (HMT) events. The blue dashed and red solid lines show the results of the exponential and Gaussian fits, respectively. The region excluded from the fits is shown. The statistical uncertainty and the systematic uncertainty for imperfections in the data reconstruction procedure are added in quadrature.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the correlation strength, λ(m<sub>ch</sub>), on rescaled multiplicity, m<sub>ch</sub>, obtained from the exponential fit of the R<sub>2</sub>(Q) correlation functions for tracks with p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and high multiplicity track (HMT) data. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the exponential fit of λ(m<sub>ch</sub>) for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the source radius, R(m<sub>ch</sub>), on m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively.
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
The dependence of the R(m<sub>ch</sub>) on ∛m<sub>ch</sub>. The uncertainties represent the sum in quadrature of the statistical and asymmetric systematic contributions. The black and blue solid curves represent the fit of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> < 1.2 for p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV, respectively. The black and blue dotted curves are extensions of the black and blue solid curves beyond ∛m<sub>ch</sub> > 1.2, respectively. The black and brown dashed curves represent the saturation value of R(m<sub>ch</sub>) for ∛m<sub>ch</sub> > 1.45 with p<sub>T</sub> >100 MeV and for ∛m<sub>ch</sub> > 1.6 with p<sub>T</sub> >500 MeV, respectively
Comparison of single-ratio two-particle correlation functions, using the unlike-charge particle (UCP) pair reference sample, for minimum-bias (MB) events, showing C<sub>2</sub><sup>data</sup>(Q) (top panel) at 13 TeV (black circles) and 7 TeV (open blue circles), and the ratio of C<sub>2</sub><sup>7 TeV</sup> (Q) to C<sub>2</sub><sup>13 TeV</sup> (Q) (bottom panel). Comparison of C<sub>2</sub><sup>data</sup> (Q) for representative multiplicity region 3.09 < m<sub>ch</sub> ≤ 3.86. The statistical and systematic uncertainties, combined in quadrature, are presented. The systematic uncertainties include track efficiency, Coulomb correction, non-closure and multiplicity-unfolding uncertainties.
Comparison of single-ratio two-particle correlation functions, using the unlike-charge particle (UCP) pair reference sample, for minimum-bias (MB) events, showing C<sub>2</sub><sup>data</sup>(Q) (top panel) at 13 TeV (black circles) and 7 TeV (open blue circles), and the ratio of C<sub>2</sub><sup>7 TeV</sup> (Q) to C<sub>2</sub><sup>13 TeV</sup> (Q) (bottom panel). Comparison of C<sub>2</sub><sup>data</sup> (Q) for representative k<sub>T</sub> region 400 < k<sub>T</sub> ≤500 MeV. The statistical and systematic uncertainties, combined in quadrature, are presented. The systematic uncertainties include track efficiency, Coulomb correction, non-closure and multiplicity-unfolding uncertainties.
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the correlation strength, λ(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to λ(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The k<sub>T</sub> dependence of the source radius, R(k<sub>T</sub>), obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions for events with multiplicity n<sub>ch</sub> ≥ 2 and transfer momentum of tracks with p<sub>T</sub> >100 MeV and p<sub>T</sub> >500 MeV at √s=13 TeV for the minimum-bias (MB) and high-multiplicity track (HMT) events. The uncertainties represent the sum in quadrature of the statistical and systematic contributions. The curves represent the exponential fits to R(k<sub>T</sub>).
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 100 MeV for the correlation strength, λ, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 100 MeV for the source radius, R, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.1 and 0.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 100 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter μ describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter μ on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The fit parameter ν describing the dependence of the correlation strength, λ, on charged-particle scaled multiplicity, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid (blue dashed) curve represents the exponential fit of the dependence of parameter ν on m<sub>ch</sub> for tracks with p<sub>T</sub> >100 MeV (p<sub>T</sub> >500 MeV).
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter ξ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the saturated value of the parameter ξ for m<sub>ch</sub> > 3.0 for tracks with p<sub>T</sub> >100 MeV and for m<sub>ch</sub> > 2.8 for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The parameter κ describing the dependence of the source radius, R, on charged-particle scaled multiplicity, m<sub>ch</sub>, for track p<sub>T</sub>>100 MeV and track p<sub>T</sub>>500 MeV in the minimum-bias (MB) and high-multiplicity track (HMT) samples at √s = 13 TeV. The error bars and boxes represent the statistical and systematic contributions, respectively. The black solid and blue dashed curves represent the exponential fit to the parameter κ for tracks with p<sub>T</sub> >100 MeV and for tracks with p<sub>T</sub> >500 MeV, respectively.
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 500 MeV for the correlation strength, λ, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The two-dimensional dependence on m<sub>ch</sub> and k<sub>T</sub> for p<sub>T</sub> > 500 MeV for the source radius, R, obtained from the exponential fit to the R<sub>2</sub>(Q) correlation functions using the MB sample for m<sub>ch</sub> ≤ 3.08 and the HMT sample for m<sub>ch</sub> > 3.08.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter λ for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected low m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of k<sub>T</sub> in selected high m<sub>ch</sub> intervals. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
The parameter R for p<sub>T</sub> > 500 MeV as a function of m<sub>ch</sub> in k<sub>T</sub> intervals between 0.5 and 1.5 GeV. The error bars and boxes represent the statistical and systematic contributions, respectively.
ATLAS and CMS results for the source radius R as a function of n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of ∛n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of ∛n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
ATLAS and CMS results for the source radius R as a function of ∛n<sub>ch</sub> in pp interactions at 13 TeV. The CMS results (open circles) have been adjusted (by the CMS collaboration) to the ATLAS kinematic region∶ p<sub>T</sub> > 100 MeV and |η|<2.5. The ATLAS uncertainties are the sum in quadrature of the statistical and asymmetric systematic uncertainties. For CMS, only the systematic uncertainties are shown since the statistical uncertainties are smaller than the marker size. The dashed blue (ATLAS) and black (CMS) lines represent the fit to ∛n<sub>ch</sub> at low multiplicity, continued as dotted lines beyond the fit range. The solid green (ATLAS) and broken black (CMS) lines indicate the plateau level at high multiplicity.
Systematic uncertainties (in percent) in the correlation strength, λ, and source radius, R, for the exponential fit of the two-particle double-ratio correlation functions, R<sub>2</sub>(Q), for p<sub>T</sub> > 100 MeV at √s= 13 TeV for the MB and HMT events. The choice of MC generator gives rise to asymmetric uncertainties, denoted by uparrow and downarrow. This asymmetry propagates through to the cumulative uncertainty. The columns under ‘Uncertainty range’ show the range of systematic uncertainty from the fits in the various n<sub>ch</sub> intervals.
The results of the fits to the dependencies of the correlation strength, λ, and source radius, R, on the average rescaled charged-particle multiplicity, m<sub>ch</sub>, for |η| < 2.5 and both p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV for the minimum-bias (MB) and the high-multiplicity track (HMT) events. The parameters γ and δ resulting from a joint fit to the MB and HMT data are presented. The total uncertainties are shown.
The results of the fits to the dependencies of the correlation strength, λ, and source radius, R, on the pair average transverse momentum, k<sub>T</sub>, for various functional forms and for minimum-bias (MB) and high-multiplicity track (HMT) events for p<sub>T</sub> > 100 MeV and p<sub>T</sub> > 500 MeV at √s = 13 TeV. The total uncertainties are shown.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The Bose-Einstein correlation (BEC) parameters λ and R as a function of n<sub>ch</sub> and k<sub>T</sub> using different MC generators in the calculation of R<sub>2</sub>(Q). (a) λ versus n<sub>ch</sub> for MB events, (b) λ versus n<sub>ch</sub> for HMT events, (c) λ versus k<sub>T</sub> and (d) R versus k<sub>T</sub> for MB events. The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 10, (b) 11 < n<sub>ch</sub> ≤ 20, (c) 21 < n<sub>ch</sub> ≤ 30, (d) 31 < n<sub>ch</sub> ≤ 40, (e) 41 < n<sub>ch</sub> ≤ 50, (f) 51 < n<sub>ch</sub> ≤ 60, (g) 61 < n<sub>ch</sub> ≤ 70, (h) 71 < n<sub>ch</sub> ≤ 80 and (i) 81 < n<sub>ch</sub> ≤ 90. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 91 < n<sub>ch</sub> ≤ 100, (b) 101 < n<sub>ch</sub> ≤ 125, (c) 126 < n<sub>ch</sub> ≤ 150, (d) 151 < n<sub>ch</sub> ≤ 200, (e) 201 < n<sub>ch</sub> ≤ 250. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 101 < n<sub>ch</sub> ≤ 110, (b) 111 < n<sub>ch</sub> ≤ 120, (c) 121 < n<sub>ch</sub> ≤ 130, (d) 131 < n<sub>ch</sub> ≤ 140, (e) 141 < n<sub>ch</sub> ≤ 155, (f) 156 < n<sub>ch</sub> ≤ 175, (g) 176 < n<sub>ch</sub> ≤ 200, (h) 201 < n<sub>ch</sub> ≤ 230 and (i) 231 < n<sub>ch</sub> ≤ 300. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - intervals∶ (a) 100 < k<sub>T</sub> ≤ 200 MeV, (b) 200 < k<sub>T</sub> ≤ 300 MeV, (c) 300 < k<sub>T</sub> ≤ 400 MeV, (d) 400 < k<sub>T</sub> ≤ 500 MeV, (e) 500 < k<sub>T</sub> ≤ 600 MeV, (f) 600 < k<sub>T</sub> ≤ 700 MeV, (g) 700 < k<sub>T</sub> ≤ 1000 MeV, and (h) 1000 < k<sub>T</sub> ≤ 1500 MeV. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (i) 73 < n<sub>ch</sub> ≤ 81, (j) 82 < n<sub>ch</sub> ≤ 90, (k) 91 < n<sub>ch</sub> ≤ 113, and (l) 114 < n<sub>ch</sub> ≤ 136. The error bars represent the statistical uncertainties. The boxes represent the systematic uncertainties, which are the sum in quadrature of a variation of the Coulomb correction, the track reconstruction efficiency and the unfolding matrix.
The single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q), at 7 TeV for the minimum-bias (MB) events using the unlike-charge particle (UCP) pairs reference sample for n<sub>ch</sub> - intervals∶ (a) 2 < n<sub>ch</sub> ≤ 9, (b) 10 < n<sub>ch</sub> ≤ 18, (c) 19 < n<sub>ch</sub> ≤ 27, (d) 28 < n<sub>ch</sub> ≤ 36, (e) 37 < n<sub>ch</sub> ≤ 45, (f) 46 < n<sub>ch</sub> ≤ 54, (g) 55 < n<sub>ch</sub> ≤ 63, (h) 64 < n<sub>ch</sub> ≤ 72, (