The production cross section of inclusive J/$\psi$ pairs in pp collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV is measured with ALICE. The measurement is performed for J/$\psi$ in the rapidity interval $2.5 < y < 4.0$ and for transverse momentum $p_{\rm T} > 0$. The production cross section of inclusive J/$\psi$ pairs is reported to be $10.3 \pm 2.3 {\rm (stat.)} \pm 1.3 {\rm (syst.)}$ nb in this kinematic interval. The contribution from non-prompt J/$\psi$ (i.e. originated from beauty-hadron decays) to the inclusive sample is evaluated. The results are discussed and compared with data.
Inclusive JPSI pair cross section in $2.5 < y < 4.0$.
Several extensions of the Standard Model predict the production of dark matter particles at the LHC. A search for dark matter particles produced in association with a dark Higgs boson decaying into $W^{+}W^{-}$ in the $\ell^\pm\nu q \bar q'$ final states with $\ell=e,\mu$ is presented. This analysis uses 139 fb$^{-1}$ of $pp$ collisions recorded by the ATLAS detector at a centre-of-mass energy of 13 TeV. The $W^\pm \to q\bar q'$ decays are reconstructed from pairs of calorimeter-measured jets or from track-assisted reclustered jets, a technique aimed at resolving the dense topology from a pair of boosted quarks using jets in the calorimeter and tracking information. The observed data are found to agree with Standard Model predictions. Scenarios with dark Higgs boson masses ranging between 140 and 390 GeV are excluded.
Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>β=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=500 GeV, with the preselections applied.
Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>β=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=1000 GeV, with the preselections applied.
Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>β=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=1700 GeV, with the preselections applied.
A search for heavy right-handed Majorana or Dirac neutrinos $N_{\mathrm{R}}$ and heavy right-handed gauge bosons $W_{\mathrm{R}}$ is performed in events with energetic electrons or muons, with the same or opposite electric charge, and energetic jets. The search is carried out separately for topologies of clearly separated final-state products (``resolved'' channel) and topologies with boosted final states with hadronic products partially overlapping and reconstructed as a large-radius jet (``boosted'' channel). The events are selected from $pp$ collision data at the LHC with an integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector at $\sqrt{s}$ = 13 TeV. No significant deviations from the Standard Model predictions are observed. The results are interpreted within the theoretical framework of a left-right symmetric model, and lower limits are set on masses in the heavy right-handed $W_{\mathrm{R}}$ boson and $N_{\mathrm{R}}$ plane. The excluded region extends to about $m(W_{\mathrm{R}}) = 6.4$ TeV for both Majorana and Dirac $N_{\mathrm{R}}$ neutrinos at $m(N_{\mathrm{R}})<1$ TeV. $N_{\mathrm{R}}$ with masses of less than 3.5 (3.6) TeV are excluded in the electron (muon) channel at $m(W_{\mathrm{R}})=4.8$ TeV for the Majorana neutrinos, and limits of $m(N_{\mathrm{R}})$ up to 3.6 TeV for $m(W_{\mathrm{R}}) = 5.2$ ($5.0$) TeV in the electron (muon) channel are set for the Dirac neutrinos.
Observed 95% CL exclusion contours in the $(m(W_{R}), m(N_{R}))$ plane in the electron channel for boosted.
Expected 95% CL exclusion contours in the $(m(W_{R}), m(N_{R}))$ plane in the electron channel for boosted.
Observed 95% CL exclusion contours in the $(m(W_{R}), m(N_{R}))$ plane in the muon channel for boosted.
A search for dark matter produced in association with a Higgs boson in final states with two hadronically decaying $\tau$-leptons and missing transverse momentum is presented. The analysis uses $139$ fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment at the Large Hadron Collider between 2015 and 2018. No evidence for physics beyond the Standard Model is found. The results are interpreted in terms of a 2HDM+$a$ model. Exclusion limits at 95% confidence level are derived. Model-independent limits are also set on the visible cross section for processes beyond the Standard Model producing missing transverse momentum in association with a Higgs boson decaying to $\tau$-leptons.
<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>CLs and CLs+b values</b> <ul> <li><a href=?table=CLs_tanb_mA_grid_Expected>Expected CLs values in mA vs tanB grid, Low mA SR</a> <li><a href=?table=CLs_tanb_mA_grid_Observed>Observed CLs values in mA vs tanB grid, Low mA SR</a> <li><a href=?table=CLs_ma_mA_grid_HighmA_SR_Expected>Expected CLs values in mA vs ma grid, High mA SR</a> <li><a href=?table=CLs_ma_mA_grid_HighmA_SR_Observed>Observed CLs values in mA vs ma grid, High mA SR</a> <li><a href=?table=CLs_ma_mA_grid_LowmA_SR_Expected>Expected CLs values in mA vs ma grid, Low mA SR</a> <li><a href=?table=CLs_ma_mA_grid_LowmA_SR_Observed>Observed CLs values in mA vs ma grid, Low mA SR</a> <li><a href=?table=CLsplusb_tanb_mA_grid>CLs+b values in mA vs tanB grid, Low mA SR</a> <li><a href=?table=CLsplusb_ma_mA_grid_HighmA_SR>CLs+b values in mA vs ma grid, High mA SR</a> <li><a href=?table=CLsplusb_ma_mA_grid_LowmA_SR>CLs+b values in mA vs ma grid, Low mA SR</a> </ul> <b>Cutflow tables</b> <ul> <li><a href=?table=Cutflows_ggf_LowmA_SR>Low mA SR, ggF production</a> <li><a href=?table=Cutflows_ggf_HighmA_SR>High mA SR, ggF production</a> <li><a href=?table=Cutflows_bb_LowmA_SR>Low mA SR, bb production</a> <li><a href=?table=Cutflows_bb_HighmA_SR>High mA SR, bb production</a> </ul> <b>Kinematic Distributions</b> <ul> <li><a href=?table=KinDist_LowmA_SR>Low mA SR mTtau1+mTtau2 distribution</a> <li><a href=?table=KinDist_HighmA_SR>High mA SR mTtau1+mTtau2 distribution</a> </ul> <b>Limits</b> <ul> <li><a href=?table=Expected_95%_CL_exclusion_limit_mAma_grid>Expected 95% CL exclusion limit in mA vs ma grid</a> <li><a href=?table=Observed_95%_CL_exclusion_limit_mAma_grid>Observed 95% CL exclusion limit in mA vs ma grid</a> <li><a href=?table=Expected_pm1sigma_95%_CL_exclusion_limit_mAma_grid>Expected +-1 sigma 95% CL exclusion limit in mA vs ma grid</a> <li><a href=?table=Expected_95%_CL_exclusion_limit_mAtanB_grid>Expected 95% CL exclusion limit in mA vs tanB grid</a> <li><a href=?table=Observed_95%_CL_exclusion_limit_mAtanB_grid>Observed 95% CL exclusion limit in mA vs tanB grid</a> <li><a href=?table=Expected_pm1sigma_95%_CL_exclusion_limit_mAtanB_grid>Expected +-1 sigma 95% CL exclusion limit in tanB grid</a> </ul> <b>Acceptance and efficiency</b> <ul> <li><a href=?table=table1>Acceptance, High mA SR, mA vs tanB grid, 400-750 GeV, bb prod</a> <li><a href=?table=table2>Acceptance, High mA SR, mA vs tanB grid, >750 GeV, bb prod</a> <li><a href=?table=table3>Acceptance, Low mA SR, mA vs tanB grid, 100-250 GeV, bb prod</a> <li><a href=?table=table4>Acceptance, Low mA SR, mA vs tanB grid, 250-400 GeV, bb prod</a> <li><a href=?table=table5>Acceptance, Low mA SR, mA vs tanB grid, 400-550 GeV, bb prod</a> <li><a href=?table=table6>Acceptance, Low mA SR, mA vs tanB grid, >550 GeV, bb prod</a> <li><a href=?table=table7>Acceptance, High mA SR, mA vs ma grid, 400-750 GeV, bb prod</a> <li><a href=?table=table8>Acceptance, High mA SR, mA vs ma grid, >750 GeV, bb prod</a> <li><a href=?table=table9>Acceptance, Low mA SR, mA vs ma grid, 100-250 GeV, bb prod</a> <li><a href=?table=table10>Acceptance, Low mA SR, mA vs ma grid, 250-400 GeV, bb prod</a> <li><a href=?table=table11>Acceptance, Low mA SR, mA vs ma grid, 400-550 GeV, bb prod</a> <li><a href=?table=table12>Acceptance, Low mA SR, mA vs ma grid, >550 GeV, bb prod</a> <li><a href=?table=table13>Acceptance, High mA SR, mA vs tanB grid, 400-750 GeV, ggF prod</a> <li><a href=?table=table14>Acceptance, High mA SR, mA vs tanB grid, >750 GeV, ggF prod</a> <li><a href=?table=table15>Acceptance, Low mA SR, mA vs tanB grid, 100-250 GeV, ggF prod</a> <li><a href=?table=table16>Acceptance, Low mA SR, mA vs tanB grid, 250-400 GeV, ggF prod</a> <li><a href=?table=table17>Acceptance, Low mA SR, mA vs tanB grid, 400-550 GeV, ggF prod</a> <li><a href=?table=table18>Acceptance, Low mA SR, mA vs tanB grid, >550 GeV, ggF prod</a> <li><a href=?table=table19>Acceptance, High mA SR, mA vs ma grid, 400-750 GeV, ggF prod</a> <li><a href=?table=table20>Acceptance, High mA SR, mA vs ma grid, >750 GeV, ggF prod</a> <li><a href=?table=table21>Acceptance, Low mA SR, mA vs ma grid, 100-250 GeV, ggF prod</a> <li><a href=?table=table22>Acceptance, Low mA SR, mA vs ma grid, 250-400 GeV, ggF prod</a> <li><a href=?table=table23>Acceptance, Low mA SR, mA vs ma grid, 400-550 GeV, ggF prod</a> <li><a href=?table=table24>Acceptance, Low mA SR, mA vs ma grid, >550 GeV, ggF prod</a> <li><a href=?table=table25>Efficiency, High mA SR, mA vs tanB grid, 400-750 GeV, bb prod</a> <li><a href=?table=table26>Efficiency, High mA SR, mA vs tanB grid, >750 GeV, bb prod</a> <li><a href=?table=table27>Efficiency, Low mA SR, mA vs tanB grid, 100-250 GeV, bb prod</a> <li><a href=?table=table28>Efficiency, Low mA SR, mA vs tanB grid, 250-400 GeV, bb prod</a> <li><a href=?table=table29>Efficiency, Low mA SR, mA vs tanB grid, 400-550 GeV, bb prod</a> <li><a href=?table=table30>Efficiency, Low mA SR, mA vs tanB grid, >550 GeV, bb prod</a> <li><a href=?table=table31>Efficiency, High mA SR, mA vs ma grid, 400-750 GeV, bb prod</a> <li><a href=?table=table32>Efficiency, High mA SR, mA vs ma grid, >750 GeV, bb prod</a> <li><a href=?table=table33>Efficiency, Low mA SR, mA vs ma grid, 100-250 GeV, bb prod</a> <li><a href=?table=table34>Efficiency, Low mA SR, mA vs ma grid, 250-400 GeV, bb prod</a> <li><a href=?table=table35>Efficiency, Low mA SR, mA vs ma grid, 400-550 GeV, bb prod</a> <li><a href=?table=table36>Efficiency, Low mA SR, mA vs ma grid, >550 GeV, bb prod</a> <li><a href=?table=table37>Efficiency, High mA SR, mA vs tanB grid, 400-750 GeV, ggF prod</a> <li><a href=?table=table38>Efficiency, High mA SR, mA vs tanB grid, >750 GeV, ggF prod</a> <li><a href=?table=table39>Efficiency, Low mA SR, mA vs tanB grid, 100-250 GeV, ggF prod</a> <li><a href=?table=table40>Efficiency, Low mA SR, mA vs tanB grid, 250-400 GeV, ggF prod</a> <li><a href=?table=table41>Efficiency, Low mA SR, mA vs tanB grid, 400-550 GeV, ggF prod</a> <li><a href=?table=table42>Efficiency, Low mA SR, mA vs tanB grid, >550 GeV, ggF prod</a> <li><a href=?table=table43>Efficiency, High mA SR, mA vs ma grid, 400-750 GeV, ggF prod</a> <li><a href=?table=table44>Efficiency, High mA SR, mA vs ma grid, >750 GeV, ggF prod</a> <li><a href=?table=table45>Efficiency, Low mA SR, mA vs ma grid, 100-250 GeV, ggF prod</a> <li><a href=?table=table46>Efficiency, Low mA SR, mA vs ma grid, 250-400 GeV, ggF prod</a> <li><a href=?table=table47>Efficiency, Low mA SR, mA vs ma grid, 400-550 GeV, ggF prod</a> <li><a href=?table=table48>Efficiency, Low mA SR, mA vs ma grid, >550 GeV, ggF prod</a> </ul>
Expected CLs values in the Low mA SR, mA vs tanB signal grid.
Observed CLs values in the Low mA SR, mA vs tanB signal grid.
The production of electrons from beauty-hadron decays was measured at midrapidity in proton-proton (pp) and central Pb-Pb collisions at center-of-mass energy per nucleon-nucleon pair $\sqrt{s_{\rm NN}}$ = 5.02 TeV, using the ALICE detector at the LHC. The cross section measured in pp collisions in the transverse momentum interval $2 < p_{\rm T} < 8$ GeV/$c$ was compared with models based on perturbative quantum chromodynamics calculations. The yield in the 10% most central Pb-Pb collisions, measured in the interval $2 < p_{\rm T} < 26$ GeV/$c$, was used to compute the nuclear modification factor $R_{\rm AA}$, extrapolating the pp reference cross section to $p_{\rm T}$ larger than 8 GeV/$c$. The measured $R_{\rm AA}$ shows significant suppression of the yield of electrons from beauty-hadron decays at high $p_{\rm T}$ and does not show a significant dependence on $p_{\rm T}$ above 8 GeV/$c$ within uncertainties. The results are described by several theoretical models based on different implementations of the interaction of heavy quarks with a quark-gluon plasma, which predict a smaller energy loss for beauty quarks compared to light and charm quarks.
$p_{T}$-differential cross section of electrons from beauty-hadron decays in pp collisions at $\sqrt{s}=5.02$ TeV. The rapidity of electrons is |y| < 0.8.
Yield of beauty-hadron decay electrons in 0--10% central Pb--Pb collisions at $\sqrt{s_{\rm{NN}}} = 5.02$ TeV. The rapidity of electrons for $p_{T} < 8$ GeV/c is |y| < 0.8 and |y| < 0.6 for $p_{T} > 8$ GeV/c.
The nuclear modification factor for beauty-hadron decay electrons in 0--10% central Pb--Pb collisions at $\sqrt{s_{\rm{NN}}} = 5.02$ TeV. The rapidity of electrons for $p_{T} < 8$ GeV/c is |y| < 0.8 and |y| < 0.6 for $p_{T} > 8$ GeV/c.
The polarization of $\tau$ leptons is measured using leptonic and hadronic $\tau$ lepton decays in Z $\to\tau^+\tau^-$ events in proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded by CMS at the CERN LHC with an integrated luminosity of 36.3 fb$^{-1}$. The measured $\tau^-$ polarization at the Z boson mass pole is $\mathcal{P}_{\tau}$(Z) = $-$0.144$\pm$0.006 (stat) $\pm$ 0.014 (syst) = $-$0.144$\pm$0.015, in good agreement with the measurement of the $\tau$ lepton asymmetry parameter of $A_{\tau}$ = 0.1439$\pm$0.0043 = $-\mathcal{P}_{\tau}$(Z) at LEP. The $\tau$ polarization depends on the ratio of the vector to axial-vector couplings of the $\tau$ leptons in the neutral current expression, and thus on the effective weak mixing angle $\sin^{2}\theta_\mathrm{W}^{\text{eff}}$, independently of the Z boson production mechanism. The obtained value $\sin^{2}\theta_\mathrm{W}^{\text{eff}}$ = 0.2319$\pm$0.0008 (stat) $\pm$ 0.0018 (syst) = 0.2319$\pm$0.0019 is in good agreement with measurements at e$^+$e$^-$ colliders.
Fit results for the average $\tau^{-}$ lepton polarization for the 11 event categories and the combined fit as the lowest point in the figure
Fit results for the average $\tau^{-}$ lepton polarization for categories grouped into 4 channels.
A comparison of the $\tau$ lepton asymmetry, $A_{\tau}$ measured from the tau lepton polarization in this paper and other measurements.
Global polarizations ($P$) of $\Lambda$ ($\bar{\Lambda}$) hyperons have been observed in non-central heavy-ion collisions. The strong magnetic field primarily created by the spectator protons in such collisions would split the $\Lambda$ and $\bar{\Lambda}$ global polarizations ($\Delta P = P_{\Lambda} - P_{\bar{\Lambda}} < 0$). Additionally, quantum chromodynamics (QCD) predicts topological charge fluctuations in vacuum, resulting in a chirality imbalance or parity violation in a local domain. This would give rise to an imbalance ($\Delta n = \frac{N_{\text{L}} - N_{\text{R}}}{\langle N_{\text{L}} + N_{\text{R}} \rangle} \neq 0$) between left- and right-handed $\Lambda$ ($\bar{\Lambda}$) as well as a charge separation along the magnetic field, referred to as the chiral magnetic effect (CME). This charge separation can be characterized by the parity-even azimuthal correlator ($\Delta\gamma$) and parity-odd azimuthal harmonic observable ($\Delta a_{1}$). Measurements of $\Delta P$, $\Delta\gamma$, and $\Delta a_{1}$ have not led to definitive conclusions concerning the CME or the magnetic field, and $\Delta n$ has not been measured previously. Correlations among these observables may reveal new insights. This paper reports measurements of correlation between $\Delta n$ and $\Delta a_{1}$, which is sensitive to chirality fluctuations, and correlation between $\Delta P$ and $\Delta\gamma$ sensitive to magnetic field in Au+Au collisions at 27 GeV. For both measurements, no correlations have been observed beyond statistical fluctuations.
Figure 1
Figure 2ab
Figure 2c
In relativistic heavy-ion collisions, a global spin polarization, $P_\mathrm{H}$, of $\Lambda$ and $\bar{\Lambda}$ hyperons along the direction of the system angular momentum was discovered and measured across a broad range of collision energies and demonstrated a trend of increasing $P_\mathrm{H}$ with decreasing $\sqrt{s_{NN}}$. A splitting between $\Lambda$ and $\bar{\Lambda}$ polarization may be possible due to their different magnetic moments in a late-stage magnetic field sustained by the quark-gluon plasma which is formed in the collision. The results presented in this study find no significant splitting at the collision energies of $\sqrt{s_{NN}}=19.6$ and $27$ GeV in the RHIC Beam Energy Scan Phase II using the STAR detector, with an upper limit of $P_{\bar{\Lambda}}-P_{\Lambda}<0.24$% and $P_{\bar{\Lambda}}-P_{\Lambda}<0.35$%, respectively, at a 95% confidence level. We derive an upper limit on the na\"ive extraction of the late-stage magnetic field of $B<9.4\cdot10^{12}$ T and $B<1.4\cdot10^{13}$ T at $\sqrt{s_{NN}}=19.6$ and $27$ GeV, respectively, although more thorough derivations are needed. Differential measurements of $P_\mathrm{H}$ were performed with respect to collision centrality, transverse momentum, and rapidity. With our current acceptance of $|y|<1$ and uncertainties, we observe no dependence on transverse momentum and rapidity in this analysis. These results challenge multiple existing model calculations following a variety of different assumptions which have each predicted a strong dependence on rapidity in this collision-energy range.
The first-order event-plane resolution determined by the STAR EPD as a function of collision centrality is roughly doubled in comparison to previous analyses using the STAR BBC. We see $R_{\rm EP}^{(1)}$ peak for mid-central collisions.
The mid-central $P_{\rm H}$ measurements reported in this work are shown alongside previous measurements in the upper panel, and are consistent with previous measurements at the energies studied here. The difference between integrated $P_{\bar{\Lambda}}$ and $P_{\Lambda}$ is shown at $\sqrt{s_{\rm{NN}}}$=19.6 and 27 GeV alongside previous measurements in the lower panel. The splittings observed with these high-statistics data sets are consistent with zero. Statistical uncertainties are represented as lines while systematic uncertainties are represented as boxes. The previous $P_{\bar{\Lambda}}-P_{\Lambda}$ result at $\sqrt{s_{\rm NN}}=7.7$ GeV is outside the axis range, but is consistent with zero within $2\sigma$.
$P_{\rm H}$ measurements are shown as a function of collision centrality at $\sqrt{s_{\rm NN}}$=19.6 and 27 GeV. Statistical uncertainties are represented as lines while systematic uncertainties are represented as boxes. $P_{\rm H}$ increases with collision centrality at $\sqrt{s_{\rm NN}}$=19.6 and 27 GeV, as expected from an angular-momentum-driven phenomenon.
A search for supersymmetry targeting the direct production of winos and higgsinos is conducted in final states with either two leptons ($e$ or $\mu$) with the same electric charge, or three leptons. The analysis uses 139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13$ TeV collected with the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess over the Standard Model expectation is observed. Simplified and complete models with and without $R$-parity conservation are considered. In topologies with intermediate states including either $Wh$ or $WZ$ pairs, wino masses up to 525 GeV and 250 GeV are excluded, respectively, for a bino of vanishing mass. Higgsino masses smaller than 440 GeV are excluded in a natural $R$-parity-violating model with bilinear terms. Upper limits on the production cross section of generic events beyond the Standard Model as low as 40 ab are obtained in signal regions optimised for these models and also for an $R$-parity-violating scenario with baryon-number-violating higgsino decays into top quarks and jets. The analysis significantly improves sensitivity to supersymmetric models and other processes beyond the Standard Model that may contribute to the considered final states.
Observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).
positive one $\sigma$ observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).
negative $\sigma$ variation of observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).
The pseudorapidity density of charged particles with minimum transverse momentum ($p_{\rm T}$) thresholds of 0.15, 0.5, 1, and 2 GeV$/c$ was measured in pp collisions at centre-of-mass energies of $\sqrt{s} = 5.02$ and $13$ TeV with the ALICE detector. The study is carried out for inelastic collisions with at least one primary charged particle having a pseudorapidity ($\eta$) within $\pm0.8$ and $p_{\rm T}$ larger than the corresponding threshold. The measurements were also performed for inelastic and non-single-diffractive events as well as for inelastic events with at least one charged particle having $|\eta|<1$ in pp collisions at $\sqrt{s} = 5.02$ TeV for the first time at the LHC. The measurements are compared to the PYTHIA 6, PYTHIA 8, and EPOS-LHC models. In general, the models describe the pseudorapidity dependence of particle production well, however, discrepancies are observed for event classes including diffractive events and for the highest transverse momentum threshold ($p_{\rm T} > 2$ GeV$/c$), highlighting the importance of such measurements for tuning event generators. The new measurements agree within uncertainties with results from the ATLAS and CMS experiments.
The distributions of $\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$ for INEL event classes in pp collisions at $\sqrt{s} = 5.02$ TeV
The distributions of $\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$ for NSD event classes in pp collisions at $\sqrt{s} = 5.02$ TeV
The distributions of $\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$ for INEL>0 event classes in pp collisions at $\sqrt{s} = 5.02$ TeV
We report a new measurement of the production of electrons from open heavy-flavor hadron decays (HFEs) at mid-rapidity ($|y|<$ 0.7) in Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV. Invariant yields of HFEs are measured for the transverse momentum range of $3.5 < p_{\rm T} < 9$ GeV/$c$ in various configurations of the collision geometry. The HFE yields in head-on Au+Au collisions are suppressed by approximately a factor of 2 compared to that in $p$+$p$ collisions scaled by the average number of binary collisions, indicating strong interactions between heavy quarks and the hot and dense medium created in heavy-ion collisions. Comparison of these results with models provides additional tests of theoretical calculations of heavy quark energy loss in the quark-gluon plasma.
Ratios of NPE (non-photonic electron) to PHE (photonic electron) as a function of $p_{\rm T}$ in 0-10% central (yellow circles) and 40-80% peripheral (green squares) Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV. Vertical bars represent statistical uncertainties while boxes represent systematic uncertainties. Horizontal bars indicate the bin width.
Invariant yields of electrons from decays of prompt $J/\psi$ (dot-dashed line), $\Upsilon$ (dotted line), Drell-Yan (long dash-dotted line), light vector mesons (long dashed line) and the combined HDE (hadron decayed electron) contribution (solid line), estimated utilizing experimental measurements, theoretical calculations, and PYTHIA and $\rm E_{VT}G_{EN}$ event generators, in 0-10% central Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV. Color bands represent systematic uncertainties.
Invariant yields of electrons from decays of prompt $J/\psi$ (dot-dashed line), $\Upsilon$ (dotted line), Drell-Yan (long dash-dotted line), light vector mesons (long dashed line) and the combined HDE (hadron decayed electron) contribution (solid line), estimated utilizing experimental measurements, theoretical calculations, and PYTHIA and $\rm E_{VT}G_{EN}$ event generators, in 40-80% central Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV. Color bands represent systematic uncertainties.
We present a detailed measurement of charged two-pion correlation functions in 0%-30% centrality $\sqrt{s_{_{NN}}}=200$ GeV Au$+$Au collisions by the PHENIX experiment at the Relativistic Heavy Ion Collider. The data are well described by Bose-Einstein correlation functions stemming from L\'evy-stable source distributions. Using a fine transverse momentum binning, we extract the correlation strength parameter $\lambda$, the L\'evy index of stability $\alpha$ and the L\'evy length scale parameter $R$ as a function of average transverse mass of the pair $m_T$. We find that the positively and the negatively charged pion pairs yield consistent results, and their correlation functions are represented, within uncertainties, by the same L\'evy-stable source functions. The $\lambda(m_T)$ measurements indicate a decrease of the strength of the correlations at low $m_T$. The L\'evy length scale parameter $R(m_T)$ decreases with increasing $m_T$, following a hydrodynamically predicted type of scaling behavior. The values of the L\'evy index of stability $\alpha$ are found to be significantly lower than the Gaussian case of $\alpha=2$, but also significantly larger than the conjectured value that may characterize the critical point of a second-order quark-hadron phase transition.
Example fits of Bose-Einstein correlation functions of (a) $\pi^{-}\pi^{-}$ pair with $m_{T}$ between 0.331 and 0.349 GeV/$c^2$ and of (b) $\pi^{+}\pi^{+}$ pair with $m_T$ between 0.655 and 0.675 GeV/$c^2$, as a function $Q$ ≡ |$q_{LCMS}$|, defined in Eq. (26). Both fits show the measured correlation function and the complete fit function (described in VI A), while a Bose-Einstein fit function $C^{(0)}_{2} (Q)$ is also shown, with the Coulomb-corrected data, i.e. the raw data multiplied by $C^{(0)}_{2} (Q)/C_{2}(Q)$. In this analysis we measured 62 such correlation functions (for ++ and -- pairs, in 31 $m_T$ bins), and fitted all of them with the method described in VIA. The first visible point on both panels corresponds to $Q$ values below the accessible range (based on an evaluation of the two-track cuts), these were not taken into account in the fitting.
Example fits of Bose-Einstein correlation functions of (a) $\pi^{-}\pi^{-}$ pair with $m_{T}$ between 0.331 and 0.349 GeV/$c^2$ and of (b) $\pi^{+}\pi^{+}$ pair with $m_T$ between 0.655 and 0.675 GeV/$c^2$, as a function $Q$ ≡ |$q_{LCMS}$|, defined in Eq. (26). Both fits show the measured correlation function and the complete fit function (described in VI A), while a Bose-Einstein fit function $C^{(0)}_{2} (Q)$ is also shown, with the Coulomb-corrected data, i.e. the raw data multiplied by $C^{(0)}_{2} (Q)/C_{2}(Q)$. In this analysis we measured 62 such correlation functions (for ++ and -- pairs, in 31 $m_T$ bins), and fitted all of them with the method described in VIA. The first visible point on both panels corresponds to $Q$ values below the accessible range (based on an evaluation of the two-track cuts), these were not taken into account in the fitting.
Correlation strength parameter $\lambda$ versus average $m_T$ of the pair, for 0%-30% centrality collisions. Statistical and systematic uncertainties are shown as bars and boxes.
The first evidence for the Higgs boson decay to a $Z$ boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision data sets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140 fb$^{-1}$ for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is $2.2\pm0.7$ times the Standard Model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.
The negative profile log-likelihood test statistic, where $\Lambda$ represents the likelihood ratio, as a function of the signal strength $\mu$ derived from the ATLAS data, the CMS data, and the combined result.
A measurement of the Higgs boson (H) production via vector boson fusion (VBF) and its decay into a bottom quark-antiquark pair ($\mathrm{b\bar{b}}$) is presented using proton-proton collision data recorded by the CMS experiment at $\sqrt{s}$ = 13 TeV and corresponding to an integrated luminosity of 90.8 fb$^{-1}$. Treating the gluon-gluon fusion process as a background and constraining its rate to the value expected in the standard model (SM) within uncertainties, the signal strength of the VBF process, defined as the ratio of the observed signal rate to that predicted by the SM, is measured to be $\mu^\text{qqH}_\mathrm{Hb\bar{b}}$ = 1.01$^{+0.55}_{-0.46}$. The VBF signal is observed with a significance of 2.4 standard deviations relative to the background prediction, while the expected significance is 2.7 standard deviations. Considering inclusive Higgs boson production and decay into bottom quarks, the signal strength is measured to be $\mu^\text{incl.}_\mathrm{Hb\bar{b}}$ = 0.99$^{+0.48}_{-0.41}$, corresponding to an observed (expected) significance of 2.6 (2.9) standard deviations.
The mbb distribution after weighted combination of all categories in the analysis weighted with S/(S + B). where S is the total Hbb signal yield (both VBF and ggH) and B is the total background yield including QCD multijet and Z+jets
The best fit values of the signal strength modifier for the different processes. The uncertainties, corresponding to one standard deviation confidence intervals, include both statistical and systematic sources. The additional breakdown of the uncertainties into their separate statistical and systematic contributions is also shown.
The best fit values of the signal strength modifier for the different processes by floating the VBF and ggH production rates independently. The uncertainties, corresponding to one standard deviation confidence intervals, include both statistical and systematic sources. The additional breakdown of the uncertainties into their separate statistical and systematic contributions is also shown.
A search for supersymmetry is presented in events with a single charged lepton, electron or muon, and multiple hadronic jets. The data correspond to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13 TeV, recorded by the CMS experiment at the CERN LHC. The search targets gluino pair production, where the gluinos decay into final states with the lightest supersymmetric particle (LSP) and either a top quark-antiquark ($\mathrm{t\bar{t}}$) pair, or a light-flavor quark-antiquark ($\mathrm{q\bar{q}}$) pair and a virtual or on-shell W boson. The main backgrounds, $\mathrm{t\bar{t}}$ pair and W+jets production, are suppressed by requirements on the azimuthal angle between the momenta of the lepton and of its reconstructed parent W boson candidate, and by top quark and W boson identification based on a machine-learning technique. The number of observed events is consistent with the expectations from standard model processes. Limits are evaluated on supersymmetric particle masses in the context of two simplified models of gluino pair production. Exclusions for gluino masses reach up to 2120 (2050) GeV at 95% confidence level for a model with gluino decay to a $\mathrm{t\bar{t}}$ pair (a $\mathrm{q\bar{q}}$ pair and a W boson) and the LSP. For the same models, limits on the mass of the LSP reach up to 1250 (1070) GeV.
Signal and background distributions of the $\Delta \phi$ variable, as predicted by simulation, for the multi-b analysis, requiring $n_{\textrm{jet}}\geq6$, $L_T>250~\mathrm{GeV}$, $H_T>500~\mathrm{GeV}$. The predicted signal distributions are also shown for two representative combinations of (gluino, neutralino) masses with large (2.2, 0.1) $\mathrm{TeV}$ and small (1.8, 1.3) $\mathrm{TeV}$ mass differences.
Signal and background distributions of the $\Delta \phi$ variable, as predicted by simulation, for the zero-b analysis, requiring $n_{\textrm{jet}}\geq6$, $L_T>350~\mathrm{GeV}$, $H_T>750~\mathrm{GeV}$. The predicted signal distributions are also shown for two representative combinations of (gluino, neutralino) masses with large (2.2, 0.1) $\mathrm{TeV}$ and small (1.8, 1.3) $\mathrm{TeV}$ mass differences.
Distributions of $\Delta\phi$ as obtained from simulation, requiring various $\textrm{t}$ tag multiplicities for the total background.
Large parity violating longitudinal single spin asymmetries A^{e^-}_L= -0.86^{+0.14}_{-0.30} and A^{e^+}_L= 0.88^{+0.12}_{-0.71} are observed for inclusive high transverse momentum electrons and positrons in polarized pp collisions at a center of mass energy of \sqrt{s}=500\ GeV with the PHENIX detector at RHIC. These e^{+/-} come mainly from the decay of W^{+/-} and Z^0 bosons, and the asymmetries directly demonstrate parity violation in the couplings of the W^{\pm} to the light quarks. The observed electron and positron yields were used to estimate W^\pm boson production cross sections equal to \sigma(pp \to W^+ X) \times BR(W^ \to \nu_e)= 144.1+/-21.2(stat)^{+3.4}_{-10.3}(syst) +/- 15%(norm) pb, and \sigma(pp \to W^{-}X) \times BR(W^\to e^-\bar{\nu_e}) = 31.7+/-12.1(stat)^{+10.1}_{-8.2}(syst)+/-15%(norm) pb.
The spectra of positive and negative candidates before and after an isolation cut. The computation of the background before the isolation cut is described in the text. The background band after the isolation cut is computed by scaling the background before the isolation cut by the isolation cut efficiency measured in the background region (12< $p_T$ <20GeV/$c$). The systematic errors include uncertainties in the photon conversion probability, the background normalization, and the background extrapoltion to $p_T$ > 30 GeV/$c$.
Background subtracted spectra of positron candidates taken from all counts compared to the spectrum of W and Z decays from an NLO calculation.
Background subtracted spectra of electron candidates taken from all counts compared to the spectrum of W and Z decays from an NLO calculation.
The first measurement of event-by-event antideuteron number fluctuations in high energy heavy-ion collisions is presented. The measurements are carried out at midrapidity ($|\eta| < 0.8$) as a function of collision centrality in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV using the ALICE detector. A significant negative correlation between the produced antiprotons and antideuterons is observed in all collision centralities. The results are compared with coalescence calculations, which fail to describe the measurement, in particular if a correlated production of protons and neutrons is assumed. Thermal-statistical model calculations describe the data within uncertainties only for correlation volumes that are different with respect to those describing proton yields and a similar measurement of net-proton number fluctuations.
Second order to first order cumulant ratio of the $\overline{d}$ multiplicity distribution as a function of collision centrality in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV.
Pearson correlation between the measured $\overline{p}$ and $\overline{d}$ as a function of collision centrality in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV.
Dependence of $\overline{p}$-$\overline{d}$ correlation on pseudorapidity acceptance of $\overline{p}$ and $\overline{d}$ selection in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV. Results are for 0.0--10.0$\%$ collision centrality.
A search is presented for a heavy resonance $Y$ decaying into a Standard Model Higgs boson $H$ and a new particle $X$ in a fully hadronic final state. The full Large Hadron Collider Run 2 dataset of proton-proton collisions at $\sqrt{s}= 13$ TeV collected by the ATLAS detector from 2015 to 2018 is used, and corresponds to an integrated luminosity of 139 fb$^{-1}$. The search targets the high $Y$-mass region, where the $H$ and $X$ have a significant Lorentz boost in the laboratory frame. A novel signal region is implemented using anomaly detection, where events are selected solely because of their incompatibility with a learned background-only model. It is defined using a jet-level tagger for signal-model-independent selection of the boosted $X$ particle, representing the first application of fully unsupervised machine learning to an ATLAS analysis. Two additional signal regions are implemented to target a benchmark $X$ decay into two quarks, covering topologies where the $X$ is reconstructed as either a single large-radius jet or two small-radius jets. The analysis selects Higgs boson decays into $b\bar{b}$, and a dedicated neural-network-based tagger provides sensitivity to the boosted heavy-flavor topology. No significant excess of data over the expected background is observed, and the results are presented as upper limits on the production cross section $\sigma(pp \rightarrow Y \rightarrow XH \rightarrow q\bar{q}b\bar{b}$) for signals with $m_Y$ between 1.5 and 6 TeV and $m_X$ between 65 and 3000 GeV.
Acceptance times efficiency for signal grid in anomaly signal region.
Acceptance times efficiency for signal grid in merged two-prong signal region.
Acceptance times efficiency for signal grid in resolved two-prong signal region.
Differential and double-differential distributions of kinematic variables of leptons from decays of top-quark pairs ($t\bar{t}$) are measured using the full LHC Run 2 data sample collected with the ATLAS detector. The data were collected at a $pp$ collision energy of $\sqrt{s}=13$ TeV and correspond to an integrated luminosity of 140 fb$^{-1}$. The measurements use events containing an oppositely charged $e\mu$ pair and $b$-tagged jets. The results are compared with predictions from several Monte Carlo generators. While no prediction is found to be consistent with all distributions, a better agreement with measurements of the lepton $p_{\text{T}}$ distributions is obtained by reweighting the $t\bar{t}$ sample so as to reproduce the top-quark $p_{\text{T}}$ distribution from an NNLO calculation. The inclusive top-quark pair production cross-section is measured as well, both in a fiducial region and in the full phase-space. The total inclusive cross-section is found to be \[ \sigma_{t\bar{t}} = 829 \pm 1\;(\textrm{stat}) \pm 13\;(\textrm{syst}) \pm 8\;(\textrm{lumi}) \pm 2\; (\textrm{beam})\ \textrm{pb}, \] where the uncertainties are due to statistics, systematic effects, the integrated luminosity and the beam energy. This is in excellent agreement with the theoretical expectation.
Definition of the fiducial phase space with the lepton candidate, electron $e$ and muon $\mu$, and jets.
Definition of the fiducial phase space with the lepton candidate, electron $e$ and muon $\mu$, and jets.
Breakdown of systematic uncertainties in the measured fiducial cross-section. The impact of the top-quark mass on the cross-section is included in the table and not counted in the total uncertainty entry in the paper.
The strange quark content of the proton is probed through the measurement of the production cross section for a W boson and a charm (c) quark in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis uses a data sample corresponding to a total integrated luminosity of 138 fb$^{-1}$ collected with the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm jets are tagged using the presence of a muon or a secondary vertex inside the jet. The W+c production cross section and the cross section ratio $R^\pm_\text{c}$ = $\sigma$(W$^+$+$\bar{\text{c}}$)/$\sigma$(W$^-$+$\text{c}$) are measured inclusively and differentially as functions of the transverse momentum and the pseudorapidity of the lepton originating from the W boson decay. The precision of the measurements is improved with respect to previous studies, reaching 1% in $R^\pm_\text{c}$. The measurements are compared with theoretical predictions up to next-to-next-to-leading order in perturbative quantum chromodynamics.
Particle level efficiency*acceptance correction factors and cross section measurements for the four channels (W decay to muon or electron and charm identification via muon or secondary vertex inside a jet). The combined measurement is shown in the last row.
Parton level efficiency*acceptance correction factors and cross section measurements for the four channels (W decay to muon or electron and charm identification via muon or secondary vertex inside a jet). The combined measurement is shown in the last row.
Inclusive cross section predictions at QCD NLO accuracy from MCFM using different PDF sets
A search for charginos and neutralinos at the Large Hadron Collider is reported using fully hadronic final states and missing transverse momentum. Pair-produced charginos or neutralinos are explored, each decaying into a high-$p_{\text{T}}$ Standard Model weak boson. Fully-hadronic final states are studied to exploit the advantage of the large branching ratio, and the efficient background rejection by identifying the high-$p_{\text{T}}$ bosons using large-radius jets and jet substructure information. An integrated luminosity of 139 fb$^{-1}$ of proton-proton collision data collected by the ATLAS detector at a center-of-mass energy of 13 TeV is used. No significant excess is found beyond the Standard Model expectation. The 95% confidence level exclusion limits are set on wino or higgsino production with varying assumptions in the decay branching ratios and the type of the lightest supersymmetric particle. A wino (higgsino) mass up to 1060 (900) GeV is excluded when the lightest SUSY particle mass is below 400 (240) GeV and the mass splitting is larger than 400 (450) GeV. The sensitivity to high-mass wino and higgsino is significantly extended compared with the previous LHC searches using the other final states.
- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Cutflow:</b> <a href="104458?version=2&table=Cut flows for the representative signals">table</a><br/><br/> <b>Boson tagging:</b> <ul> <li><a href="104458?version=2&table=%24W%2FZ%5Crightarrow%20qq%24%20tagging%20efficiency">$W/Z\rightarrow qq$ tagging efficiency</a> <li><a href="104458?version=2&table=%24W%2FZ%5Crightarrow%20qq%24%20tagging%20rejection">$W/Z\rightarrow qq$ tagging rejection</a> <li><a href="104458?version=2&table=%24Z%2Fh%20%5Crightarrow%20bb%24%20tagging%20efficiency">$Z/h\rightarrow bb$ tagging efficiency</a> <li><a href="104458?version=2&table=%24Z%2Fh%20%5Crightarrow%20bb%24%20tagging%20rejection">$Z/h\rightarrow bb$ tagging rejection</a> <li><a href="104458?version=2&table=%24W%5Crightarrow%20qq%24%20tagging%20efficiency%20(vs%20official%20WP)">$W\rightarrow qq$ tagging efficiency (vs official WP)</a> <li><a href="104458?version=2&table=%24W%5Crightarrow%20qq%24%20tagging%20rejection%20(vs%20official%20WP)">$W\rightarrow qq$ tagging rejection (vs official WP)</a> <li><a href="104458?version=2&table=%24Z%5Crightarrow%20qq%24%20tagging%20efficiency%20(vs%20official%20WP)">$Z\rightarrow qq$ tagging efficiency (vs official WP)</a> <li><a href="104458?version=2&table=%24Z%5Crightarrow%20qq%24%20tagging%20rejection%20(vs%20official%20WP)">$Z\rightarrow qq$ tagging rejection (vs official WP)</a> </ul> <b>Systematic uncertainty:</b> <a href="104458?version=2&table=Total%20systematic%20uncertainties">table</a><br/><br/> <b>Summary of SR yields:</b> <a href="104458?version=2&table=Data%20yields%20and%20background%20expectation%20in%20the%20SRs">table</a><br/><br/> <b>Expected background yields and the breakdown:</b> <ul> <li><a href="104458?version=2&table=Data%20yields%20and%20background%20breakdown%20in%20SR">CR0L / SR</a> <li><a href="104458?version=2&table=Data%20yields%20and%20background%20breakdown%20in%20CR%2FVR%201L(1Y)">CR1L / VR1L /CR1Y / VR1Y</a> </ul> <b>SR distributions:</b> <ul> <li><a href="104458?version=2&table=Effective mass distribution in SR-4Q-VV">SR-4Q-VV: Effective mass</a> <li><a href="104458?version=2&table=Leading large-$R$ jet mass distribution in SR-4Q-VV">SR-4Q-VV: Leading jet mass</a> <li><a href="104458?version=2&table=Leading large-$R$ jet $D_{2}$ distribution in SR-4Q-VV">SR-4Q-VV: Leading jet $D_{2}$</a> <li><a href="104458?version=2&table=Sub-leading large-$R$ jet mass distribution in SR-4Q-VV">SR-4Q-VV: Sub-leading jet mass</a> <li><a href="104458?version=2&table=Sub-leading large-$R$ jet $D_{2}$ distribution in SR-4Q-VV">SR-4Q-VV: Sub-leading jet $D_{2}$</a> <li><a href="104458?version=2&table=$m_{T2}$ distribution in SR-2B2Q-VZ">SR-2B2Q-VZ: $m_{\textrm{T2}}$</a> <li><a href="104458?version=2&table=bb-tagged jet mass distribution in SR-2B2Q-VZ">SR-2B2Q-VZ: bb-tagged jet mass</a> <li><a href="104458?version=2&table=Effective mass distribution in SR-2B2Q-VZ">SR-2B2Q-VZ: Effective mass</a> <li><a href="104458?version=2&table=$m_{T2}$ distribution in SR-2B2Q-Vh">SR-2B2Q-Vh: $m_{\textrm{T2}}$</a> <li><a href="104458?version=2&table=bb-tagged jet mass distribution in SR-2B2Q-Vh">SR-2B2Q-Vh: bb-tagged jet mass</a> <li><a href="104458?version=2&table=Effective mass distribution in SR-2B2Q-Vh">SR-2B2Q-Vh: Effective mass</a> </ul> <b>Exclusion limit:</b> <ul> <li>$(\tilde{W},~\tilde{B})$-SIM model (C1C1-WW): <ul> <li><a href="104458?version=2&table=Exp limit on (W~, B~) simplified model (C1C1-WW)">Expected limit</a> <li><a href="104458?version=2&table=Exp%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1C1-WW)">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li>Expected limit ($-1\sigma_{\textrm{exp}}$): (No mass point could be excluded) <li><a href="104458?version=2&table=Obs limit on (W~, B~) simplified model (C1C1-WW)">Observed limit</a> <li><a href="104458?version=2&table=Obs%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1C1-WW)">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=2&table=Obs%20limit%20(-1sig)%20on%20(W~, B~) simplified model (C1C1-WW)">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ): <ul> <li><a href="104458?version=2&table=Exp limit on (W~, B~) simplified model (C1N2-WZ)">Expected limit</a> <li><a href="104458?version=2&table=Exp%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1N2-WZ)">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=2&table=Exp%20limit%20(-1sig)%20on%20(W~, B~) simplified model (C1N2-WZ)">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=2&table=Obs limit on (W~, B~) simplified model (C1N2-WZ)">Observed limit</a> <li><a href="104458?version=2&table=Obs%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1N2-WZ)">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=2&table=Obs%20limit%20(-1sig)%20on%20(W~, B~) simplified model (C1N2-WZ)">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{B})$-SIM model (C1N2-Wh): <ul> <li><a href="104458?version=2&table=Exp limit on (W~, B~) simplified model (C1N2-Wh)">Expected limit</a> <li><a href="104458?version=2&table=Exp%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1N2-Wh)">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=2&table=Exp%20limit%20(-1sig)%20on%20(W~, B~) simplified model (C1N2-Wh)">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=2&table=Obs limit on (W~, B~) simplified model (C1N2-Wh)">Observed limit</a> <li><a href="104458?version=2&table=Obs%20limit%20(%2B1sig)%20on%20(W~, B~) simplified model (C1N2-Wh)">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=2&table=Obs%20limit%20(-1sig)%20on%20(W~, B~) simplified model (C1N2-Wh)">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=0\%$): <ul> <li><a href="104458?version=2&table=Exp limit on (W~, B~) B(N2->ZN1) = 0%">Expected limit</a> <li><a href="104458?version=2&table=Obs limit on (W~, B~) B(N2->ZN1) = 0%">Observed limit</a> </ul> <li>$(\tilde{W},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=25\%$): <ul> <li><a href="104458?version=2&table=Exp limit on (W~, B~) B(N2->ZN1) = 25%">Expected limit</a> <li><a href="104458?version=2&table=Obs limit on (W~, B~) B(N2->ZN1) = 25%">Observed limit</a> </ul> <li>$(\tilde{W},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=50\%$): <ul> <li><a href="104458?version=2&table=Exp limit on (W~, B~) B(N2->ZN1) = 50%">Expected limit</a> <li><a href="104458?version=2&table=Exp%20limit%20(%2B1sig)%20on%20(W~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%25">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=2&table=Exp%20limit%20(-1sig)%20on%20(W~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%25">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=2&table=Obs limit on (W~, B~) B(N2->ZN1) = 50%">Observed limit</a> <li><a href="104458?version=2&table=Obs%20limit%20(%2B1sig)%20on%20(W~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=2&table=Obs%20limit%20(-1sig)%20on%20(W~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%25">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=75\%$): <ul> <li><a href="104458?version=2&table=Exp limit on (W~, B~) B(N2->ZN1) = 75%">Expected limit</a> <li><a href="104458?version=2&table=Obs limit on (W~, B~) B(N2->ZN1) = 75%">Observed limit</a> </ul> <li>$(\tilde{W},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=100\%$): <ul> <li><a href="104458?version=2&table=Exp limit on (W~, B~) B(N2->ZN1) = 100%">Expected limit</a> <li><a href="104458?version=2&table=Obs limit on (W~, B~) B(N2->ZN1) = 100%">Observed limit</a> </ul> <li>$(\tilde{H},~\tilde{B})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})=50\%$): <ul> <li><a href="104458?version=2&table=Exp limit on (H~, B~) B(N2->ZN1) = 50%">Expected limit</a> <li><a href="104458?version=2&table=Exp%20limit%20(%2B1sig)%20on%20(H~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%25">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li>Expected limit ($-1\sigma_{\textrm{exp}}$): (No mass point could be excluded) <li><a href="104458?version=2&table=Obs limit on (H~, B~) B(N2->ZN1) = 50%">Observed limit</a> <li><a href="104458?version=2&table=Obs%20limit%20(%2B1sig)%20on%20(H~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=2&table=Obs%20limit%20(-1sig)%20on%20(H~%2C%20B~)%20B(N2-%3EZN1)%20%3D%2050%25">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{H})$ model ($\textrm{tan}\beta=10,~\mu>0$): <ul> <li><a href="104458?version=2&table=Exp limit on (W~, H~), tanb = 10, mu>0">Expected limit</a> <li><a href="104458?version=2&table=Exp%20limit%20(%2B1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=2&table=Exp%20limit%20(-1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=2&table=Obs limit on (W~, H~), tanb = 10, mu>0">Observed limit</a> <li><a href="104458?version=2&table=Obs%20limit%20(%2B1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=2&table=Obs%20limit%20(-1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{H},~\tilde{W})$ model ($\textrm{tan}\beta=10,~\mu>0$): <ul> <li><a href="104458?version=2&table=Exp limit on (H~, W~), tanb = 10, mu>0">Expected limit</a> <li><a href="104458?version=2&table=Exp%20limit%20(%2B1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li>Expected limit ($-1\sigma_{\textrm{exp}}$): (No mass point could be excluded) <li><a href="104458?version=2&table=Obs limit on (H~, W~), tanb = 10, mu>0">Observed limit</a> <li><a href="104458?version=2&table=Obs%20limit%20(%2B1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=2&table=Obs%20limit%20(-1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20mu%3E0">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{W},~\tilde{H})$ model ($\textrm{tan}\beta=10$) on ($\mu$,$M_{2}$) plane: <ul> <li><a href="104458?version=2&table=Exp limit on (W~, H~), tanb = 10, M2 vs mu">Expected limit</a> <li><a href="104458?version=2&table=Exp%20limit%20(%2B1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=2&table=Exp%20limit%20(-1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=2&table=Obs limit on (W~, H~), tanb = 10, M2 vs mu">Observed limit</a> <li><a href="104458?version=2&table=Obs%20limit%20(%2B1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=2&table=Obs%20limit%20(-1sig)%20on%20(W~%2C%20H~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{H},~\tilde{W})$ model ($\textrm{tan}\beta=10$) on ($\mu$,$M_{2}$) plane: <ul> <li><a href="104458?version=2&table=Exp limit on (H~, W~), tanb = 10, M2 vs mu">Expected limit</a> <li><a href="104458?version=2&table=Exp%20limit%20(%2B1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li>Expected limit ($-1\sigma_{\textrm{exp}}$): (No mass point could be excluded) <li><a href="104458?version=2&table=Obs limit on (H~, W~), tanb = 10, M2 vs mu">Observed limit</a> <li><a href="104458?version=2&table=Obs%20limit%20(%2B1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=2&table=Obs%20limit%20(-1sig)%20on%20(H~%2C%20W~)%2C%20tanb%20%3D%2010%2C%20M2%20vs%20mu">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{H},~\tilde{G})$ model: <ul> <li><a href="104458?version=2&table=Exp limit on (H~, G~)">Expected limit</a> <li><a href="104458?version=2&table=Exp%20limit%20(%2B1sig)%20on%20(H~%2C%20G~)">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=2&table=Exp%20limit%20(-1sig)%20on%20(H~%2C%20G~)">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=2&table=Obs limit on (H~, G~)">Observed limit</a> <li><a href="104458?version=2&table=Obs%20limit%20(%2B1sig)%20on%20(H~%2C%20G~)">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=2&table=Obs%20limit%20(-1sig)%20on%20(H~%2C%20G~)">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{H},~\tilde{a})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{a})=100\%$): <ul> <li><a href="104458?version=2&table=Exp limit on (H~, a~) B(N1->Za~) = 100%">Expected limit</a> <li><a href="104458?version=2&table=Exp%20limit%20(%2B1sig)%20on%20(H~%2C%20a~)%20B(N1-%3EZa~)%20%3D%20100%25">Expected limit ($+1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=2&table=Exp%20limit%20(-1sig)%20on%20(H~%2C%20a~)%20B(N1-%3EZa~)%20%3D%20100%25">Expected limit ($-1\sigma_{\textrm{exp}}$)</a> <li><a href="104458?version=2&table=Obs limit on (H~, a~) B(N1->Za~) = 100%">Observed limit</a> <li><a href="104458?version=2&table=Obs%20limit%20(%2B1sig)%20on%20(H~%2C%20a~)%20B(N1-%3EZa~)%20%3D%20100%25">Observed limit ($+1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> <li><a href="104458?version=2&table=Obs%20limit%20(-1sig)%20on%20(H~%2C%20a~)%20B(N1-%3EZa~)%20%3D%20100%">Observed limit ($-1\sigma_{\textrm{theory}}^{\textrm{SUSY}}$)</a> </ul> <li>$(\tilde{H},~\tilde{a})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{a})=75\%$): <ul> <li><a href="104458?version=2&table=Exp limit on (H~, a~) B(N1->Za~) = 75%">Expected limit</a> <li><a href="104458?version=2&table=Obs limit on (H~, a~) B(N1->Za~) = 75%">Observed limit</a> </ul> <li>$(\tilde{H},~\tilde{a})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{a})=50\%$): <ul> <li><a href="104458?version=2&table=Exp limit on (H~, a~) B(N1->Za~) = 50%">Expected limit</a> <li><a href="104458?version=2&table=Obs limit on (H~, a~) B(N1->Za~) = 50%">Observed limit</a> </ul> <li>$(\tilde{H},~\tilde{a})$ model ($\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{a})=25\%$): <ul> <li>Expected limit : (No mass point could be excluded) <li><a href="104458?version=2&table=Obs limit on (H~, a~) B(N1->Za~) = 25%">Observed limit</a> </ul> </ul> <b>EWKino branching ratios:</b> <ul> <li>$(\tilde{W},~\tilde{H})$ model: <ul> <li><a href="104458?version=2&table=B(C2-%3EW%2BN1%2CN2)%20in%20(W~%2C%20H~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow W\tilde{\chi}_{1,2}^{0})$</a> <li><a href="104458?version=2&table=B(C2-%3EZ%2BC1)%20in%20(W~%2C%20H~)%2C%20tanb=10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow Z\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=2&table=B(C2-%3Eh%2BC1)%20in%20(W~%2C%20H~)%2C%20tanb=10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow h\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=2&table=B(N3-%3EW%2BC1)%20in%20(W~%2C%20H~)%2C%20tanb=10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow W\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=2&table=B(N3-%3EZ%2BN1%2CN2)%20in%20(W~%2C%20H~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow Z\tilde{\chi}_{1,2}^{0})$</a> <li><a href="104458?version=2&table=B(N3-%3Eh%2BN1%2CN2)%20in%20(W~%2C%20H~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow h\tilde{\chi}_{1,2}^{0})$</a> </ul> <li>$(\tilde{H},~\tilde{W})$ model: <ul> <li><a href="104458?version=2&table=B(C2-%3EW%2BN1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow W\tilde{\chi}_{1}^{0})$</a> <li><a href="104458?version=2&table=B(C2-%3EZ%2BC1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow Z\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=2&table=B(C2-%3Eh%2BC1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{\pm}\rightarrow h\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=2&table=B(N2-%3EW%2BC1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow W\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=2&table=B(N2-%3EZ%2BN1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})$</a> <li><a href="104458?version=2&table=B(N2-%3Eh%2BN1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{2}^{0}\rightarrow h\tilde{\chi}_{1}^{0})$</a> <li><a href="104458?version=2&table=B(N3-%3EW%2BC1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow W\tilde{\chi}_{1}^{\pm})$</a> <li><a href="104458?version=2&table=B(N3-%3EZ%2BN1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow Z\tilde{\chi}_{1}^{0})$</a> <li><a href="104458?version=2&table=B(N3-%3Eh%2BN1)%20in%20(H~%2C%20W~)%2C%20tanb%3D10%2C%20mu%3E0">$\textrm{B}(\tilde{\chi}_{3}^{0}\rightarrow h\tilde{\chi}_{1}^{0})$</a> </ul> </ul> <b>Cross-section upper limit:</b> <ul> <li>Expected: <ul> <li><a href="104458?version=2&table=Expected cross-section upper limit on C1C1-WW">$(\tilde{W},~\tilde{B})$-SIM model (C1C1-WW)</a> <li><a href="104458?version=2&table=Expected cross-section upper limit on C1N2-WZ">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ)</a> <li><a href="104458?version=2&table=Expected cross-section upper limit on C1N2-Wh">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-Wh)</a> <li><a href="104458?version=2&table=Expected cross-section upper limit on (H~, G~)">$(\tilde{H},~\tilde{G})$ model</a> </ul> <li>Observed: <ul> <li><a href="104458?version=2&table=Observed cross-section upper limit on C1C1-WW">$(\tilde{W},~\tilde{B})$-SIM model (C1C1-WW)</a> <li><a href="104458?version=2&table=Observed cross-section upper limit on C1N2-WZ">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ)</a> <li><a href="104458?version=2&table=Observed cross-section upper limit on C1N2-Wh">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-Wh)</a> <li><a href="104458?version=2&table=Observed cross-section upper limit on (H~, G~)">$(\tilde{H},~\tilde{G})$ model</a> </ul> </ul> <b>Acceptance:</b> <ul> <li><a href="104458?version=2&table=Acceptance of C1C1-WW signals by SR-4Q-VV">$(\tilde{W},~\tilde{B})$-SIM model (C1C1-WW) in SR-4Q-VV</a> <li><a href="104458?version=2&table=Acceptance of C1N2-WZ signals by SR-4Q-VV">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ) in SR-4Q-VV</a> <li><a href="104458?version=2&table=Acceptance of C1N2-WZ signals by SR-2B2Q-VZ">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ) in SR-2B2Q-VZ</a> <li><a href="104458?version=2&table=Acceptance of C1N2-Wh signals by SR-2B2Q-Vh">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ) in SR-2B2Q-Vh</a> <li><a href="104458?version=2&table=Acceptance of N2N3-ZZ signals by SR-4Q-VV">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-ZZ) in SR-4Q-VV</a> <li><a href="104458?version=2&table=Acceptance of N2N3-ZZ signals by SR-2B2Q-VZ">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-ZZ) in SR-2B2Q-VZ</a> <li><a href="104458?version=2&table=Acceptance of N2N3-Zh signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-Zh) in SR-2B2Q-Vh</a> <li><a href="104458?version=2&table=Acceptance of N2N3-hh signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-hh) in SR-2B2Q-Vh</a> <li><a href="104458?version=2&table=Acceptance of (H~, G~) signals by SR-4Q-VV">$(\tilde{H},~\tilde{G})$ model in SR-4Q-VV</a> <li><a href="104458?version=2&table=Acceptance of (H~, G~) signals by SR-2B2Q-VZ">$(\tilde{H},~\tilde{G})$ model in SR-2B2Q-VZ</a> <li><a href="104458?version=2&table=Acceptance of (H~, G~) signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{G})$ model in SR-2B2Q-Vh</a> </ul> <b>Efficiency:</b> <ul> <li><a href="104458?version=2&table=Efficiency of C1C1-WW signals by SR-4Q-VV">$(\tilde{W},~\tilde{B})$-SIM model (C1C1-WW) in SR-4Q-VV</a> <li><a href="104458?version=2&table=Efficiency of C1N2-WZ signals by SR-4Q-VV">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ) in SR-4Q-VV</a> <li><a href="104458?version=2&table=Efficiency of C1N2-WZ signals by SR-2B2Q-VZ">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-WZ) in SR-2B2Q-VZ</a> <li><a href="104458?version=2&table=Efficiency of C1N2-Wh signals by SR-2B2Q-Vh">$(\tilde{W},~\tilde{B})$-SIM model (C1N2-Wh) in SR-2B2Q-Vh</a> <li><a href="104458?version=2&table=Efficiency of N2N3-ZZ signals by SR-4Q-VV">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-ZZ) in SR-4Q-VV</a> <li><a href="104458?version=2&table=Efficiency of N2N3-ZZ signals by SR-2B2Q-VZ">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-ZZ) in SR-2B2Q-VZ</a> <li><a href="104458?version=2&table=Efficiency of N2N3-Zh signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-Zh) in SR-2B2Q-Vh</a> <li><a href="104458?version=2&table=Efficiency of N2N3-hh signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{B})$-SIM model (N2N3-hh) in SR-2B2Q-Vh</a> <li><a href="104458?version=2&table=Efficiency of (H~, G~) signals by SR-4Q-VV">$(\tilde{H},~\tilde{G})$ model in SR-4Q-VV</a> <li><a href="104458?version=2&table=Efficiency of (H~, G~) signals by SR-2B2Q-VZ">$(\tilde{H},~\tilde{G})$ model in SR-2B2Q-VZ</a> <li><a href="104458?version=2&table=Efficiency of (H~, G~) signals by SR-2B2Q-Vh">$(\tilde{H},~\tilde{G})$ model in SR-2B2Q-Vh</a> </ul>
Cut flows of some representative signals up to SR-4Q-VV, SR-2B2Q-VZ, and SR-2B2Q-Vh. One signal point from the $(\tilde{W},~\tilde{B})$ simplified models (C1C1-WW, C1N2-WZ, and C1N2-Wh) and $(\tilde{H},~\tilde{G})$ is chosen. The "preliminary event reduction" is a technical selection applied for reducing the sample size, which is fully efficient after the $n_{\textrm{Large}-R~\textrm{jets}}\geq 2$ selection.
The boson-tagging efficiency for jets arising from $W/Z$ bosons decaying into $q\bar{q}$ (signal jets) are shown. The signal jet efficiency of $W_{qq}$/$Z_{qq}$-tagging is evaluated using a sample of pre-selected large-$R$ jets ($p_{\textrm{T}}>200~\textrm{GeV}, |\eta|<2.0, m_{J} > 40~\textrm{GeV}$) in the simulated $(\tilde{W},\tilde{B})$ simplified model signal events with $\Delta m (\tilde{\chi}_{\textrm{heavy}},~\tilde{\chi}_{\textrm{light}}) \ge 400~\textrm{GeV}$. The jets are matched with generator-level $W/Z$-bosons by $\Delta R<1.0$ which decay into $q\bar{q}$. The efficiency correction factors are applied on the signal efficiency rejection for the $W_{qq}$/$Z_{qq}$-tagging. The systematic uncertainty is represented by the hashed bands.