Search For Higgs Boson Pair Production in the $\gamma\gamma b\bar{b}$ Final State using $pp$ Collision Data at $\sqrt{s}=8$ TeV from the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 114 (2015) 081802, 2015.
Inspire Record 1301558 DOI 10.17182/hepdata.64171

Searches are performed for resonant and non-resonant Higgs boson pair production in the $\gamma\gamma b\bar{b}$ final state using 20 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 8 TeV recorded with the ATLAS detector at the CERN Large Hadron Collider. A 95% confidence level upper limit on the cross section times branching ratio of non-resonant production is set at 2.2 pb, while the expected limit is 1.0 pb. The difference derives from a modest excess of events, corresponding to 2.4 standard deviations from the background-only hypothesis. The limit observed in the search for a narrow $X \to hh$ resonance ranges between 0.7 and 3.5 pb as a function of the resonance mass.

2 data tables

The observed and expected limit on non-resonant Higgs boson pair production, measured in the GAMMA GAMMA B BBAR final state.

A 95% CL upper limit on the cross section times branching ratio of a narrow resonance decaying to pairs of Higgs bosons as a function of MX (see text for more details). The measurement is made in the GAMMA GAMMA B BBAR final state.


Measurement of the ratio B(t to Wb)/B(t to Wq) in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 736 (2014) 33-57, 2014.
Inspire Record 1289223 DOI 10.17182/hepdata.64489

The ratio of the top-quark branching fractions $R = B(t \to Wb)/B(t \to Wq)$, where the denominator includes the sum over all down-type quarks (q = b, s, d), is measured in the $t\bar{t}$ dilepton final state with proton-proton collision data at $\sqrt{s}$ = 8 TeV from an integrated luminosity of 19.7 inverse-femtobarns, collected with the CMS detector. In order to quantify the purity of the signal sample, the cross section is measured by fitting the observed jet multiplicity, thereby constraining the signal and background contributions. By counting the number of b jets per event, an unconstrained value of R = 1.014 $\pm$ 0.003 (stat) $\pm$ 0.032 (syst) is measured, in good agreement with the standard model prediction. A lower limit R greater than 0.955 at the 95% confidence level is obtained after requiring R lower than one, and a lower limit on the Cabibbo-Kobayashi-Maskawa matrix element |$V_tb$| greater than 0.975 is set at 95% confidence level. The result is combined with a previous CMS measurement of the t-channel single-top-quark cross section to determine the top-quark total decay width, $\Gamma_t$ = 1.36 $\pm$ 0.02 (stat)$^{+0.14}_{-0.11}$ (syst) GeV.

3 data tables

The measured TOP TOPBAR production cross section.

The measured ratio of branching fractions, R = BR(TOP --> W BOTTOM) / BR(TOP --> W QUARK) where the denominator includes the sum over all down-type quarks (QUARK = BOTTOM, STRANGE, DOWN). The combined measurement and the individual measurements from the three channels considered are presented.

An indirect measurement of the top-quark total decay width.


Measurement of WZ and ZZ production in pp collisions at sqrt(s) = 8 TeV in final states with b-tagged jets

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 74 (2014) 2973, 2014.
Inspire Record 1285492 DOI 10.17182/hepdata.64619

Measurements are reported of the WZ and ZZ production cross sections in proton-proton collisions at $\sqrt{s}$ = 8 TeV in final states where one Z boson decays to b-tagged jets. The other gauge boson, either W or Z, is detected through its leptonic decay (either $W \to e\nu, \mu\nu$ or $Z \to e^+ e^-, \mu^+ \mu^-$, or $\nu\bar{\nu})$. The results are based on data corresponding to an integrated luminosity of 18.9 inverse-femtobarns collected with the CMS detector at the Large Hadron Collider. The measured cross sections, $\sigma(pp \to WZ)$ = 30.7 $\pm$ 9.3 (stat.) $\pm$ 7.1 (syst.) $\pm$ 4.1 (th.) $\pm$ 1.0 (lum.) pb and $\sigma(pp \to ZZ)$ = 6.5 $\pm$ 1.7 (stat.) $\pm$ 1.0 (syst.) $\pm$ 0.9 (th.) $\pm$ 0.2 (lum.) pb, are consistent with next-to-leading order quantum chromodynamics calculations.

4 data tables

The cross section for inclusive WZ production for the mass range 60 < M(Z) < 120 GeV.

The cross section for inclusive ZZ production for the mass range 60 < M(Z) < 120 GeV.

The cross section for inclusive WZ production in the region defined by 60 < M(Z) < 120 GeV and PT(W) > 100 GeV.

More…

Search for Scalar Diphoton Resonances in the Mass Range $65-600$ GeV with the ATLAS Detector in $pp$ Collision Data at $\sqrt{s}$ = 8 $TeV$

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 113 (2014) 171801, 2014.
Inspire Record 1307756 DOI 10.17182/hepdata.64620

A search for scalar particles decaying via narrow resonances into two photons in the mass range $65-600$ GeV is performed using 20.3 fb$^{-1}$ of $\sqrt{s}$ = 8 TeV $pp$ collision data collected with the ATLAS detector at the Large Hadron Collider. The recently discovered Higgs boson is treated as a background. No significant evidence for an additional signal is observed. The results are presented as limits at the 95 % confidence level on the production cross-section of a scalar boson times branching ratio into two photons, in a fiducial volume where the reconstruction efficiency is approximately independent of the event topology. The upper limits set extend over a considerably wider mass range than previous searches.

1 data table

The measured fiducial cross section limit.


Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2014) 015, 2014.
Inspire Record 1299143 DOI 10.17182/hepdata.64630

The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of $20.1 \rm{fb}^{-1}$ of proton-proton collision data at $\sqrt{s}=8$ TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$ or $\tilde{t}\rightarrow b\tilde{\chi}_{1}^{\pm} \rightarrow b W^{\left(\ast\right)} \tilde{\chi}_{1}^{0}$, where $\tilde{\chi}_{1}^{0}$ ($\tilde{\chi}_{1}^{\pm}$) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$. For a branching fraction of 100%, top squark masses in the range 270-645 GeV are excluded for $\tilde{\chi}_{1}^{0}$ masses below 30 GeV. For a branching fraction of 50% to either $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$ or $\tilde{t}\rightarrow b\tilde{\chi}_{1}^{\pm}$, and assuming the $\tilde{\chi}_{1}^{\pm}$ mass to be twice the $\tilde{\chi}_{1}^{0}$ mass, top squark masses in the range 250-550 GeV are excluded for $\tilde{\chi}_{1}^{0}$ masses below 60 GeV.

42 data tables

Etmiss distribution for SRA1 and SRA2 after all selection requirements except those on Etmiss.

Etmiss distribution for SRA3 and SRA4 after all selection requirements except those on Etmiss.

Etmiss distribution for SRB after all selection requirements except those on Etmiss.

More…

Measurement of the $t\bar{t}$ production cross-section using $e\mu$ events with $b$-tagged jets in $pp$ collisions at $\sqrt{s}=7$ and 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 74 (2014) 3109, 2014.
Inspire Record 1301856 DOI 10.17182/hepdata.65210

The inclusive top quark pair ($t\bar{t}$) production cross-section $\sigma_{t\bar{t}}$ has been measured in $pp$ collisions at $\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV with the ATLAS experiment at the LHC, using $t\bar{t}$ events with an opposite-charge $e\mu$ pair in the final state. The measurement was performed with the 2011 7 TeV dataset corresponding to an integrated luminosity of 4.6 fb$^{-1}$ and the 2012 8 TeV dataset of 20.3 fb$^{-1}$. The cross-section was measured to be: $\sigma_{t\bar{t}}=182.9\pm 3.1\pm 4.2\pm 3.6 \pm 3.3$ pb ($\sqrt{s}=7$ TeV) and $\sigma_{t\bar{t}}=242.9\pm 1.7\pm 5.5\pm 5.1\pm 4.2$ pb ($\sqrt{s}=8$ TeV, updated as described in the Addendum), where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the knowledge of the integrated luminosity and of the LHC beam energy. The results are consistent with recent theoretical QCD calculations at next-to-next-to-leading order. Fiducial measurements corresponding to the experimental acceptance of the leptons are also reported, together with the ratio of cross-sections measured at the two centre-of-mass energies. The inclusive cross-section results were used to determine the top quark pole mass via the dependence of the theoretically-predicted cross-section on $m_t^{\rm pole}$, giving a result of $m_t^{\rm pole}=172.9^{+2.5}_{-2.6}$ GeV. By looking for an excess of $t\bar{t}$ production with respect to the QCD prediction, the results were also used to place limits on the pair-production of supersymmetric top squarks $\tilde{t}_1$ with masses close to the top quark mass decaying via $\tilde{t}_1\rightarrow t\tilde{\chi}^0_1$ to predominantly right-handed top quarks and a light neutralino $\tilde{\chi}_0^1$, the lightest supersymmetric particle. Top squarks with masses between the top quark mass and 177 GeV are excluded at the 95% confidence level.

3 data tables

95% CL exclusion limit on signal strength.

95% CL exclusion limit on signal cross section for the 7 TeV dataset.

95% CL exclusion limit on signal cross section for the 8 TeV dataset.


Measurement of the t t-bar production cross section in the dilepton channel in pp collisions at sqrt(s)=8 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 02 (2014) 024, 2014.
Inspire Record 1275617 DOI 10.17182/hepdata.64868

The top-antitop quark (t t-bar) production cross section is measured in proton-proton collisions at sqrt(s) = 8 TeV with the CMS experiment at the LHC, using a data sample corresponding to an integrated luminosity of 5.3 inverse femtobarns. The measurement is performed by analysing events with a pair of electrons or muons, or one electron and one muon, and at least two jets, one of which is identified as originating from hadronisation of a bottom quark. The measured cross section is 239 +/- 2 (stat.) +/- 11 (syst.) +/- 6 (lum.) pb, for an assumed top-quark mass of 172.5 GeV, in agreement with the prediction of the standard model.

2 data tables

The total efficiencies etotal, i.e. the products of event acceptance, selection efficiency and branching fraction for the respective TOP TOPBAR final states, as estimated from simulation for a top-quark mass of 172.5 GeV, and the measured TOP TOPBAR production cross sections, where the uncertainties are from statistical, systematic and integrated luminosity components, respectively.

The TOP TOPBAR cross section obtained by combining all final states.


Search for new phenomena in events with a photon and missing transverse momentum in $pp$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 91 (2015) 012008, 2015.
Inspire Record 1326409 DOI 10.17182/hepdata.66788

Results of a search for new phenomena in events with an energetic photon and large missing transverse momentum with the ATLAS experiment at the LHC are reported. Data were collected in proton--proton collisions at a center-of-mass energy of 8 TeV and correspond to an integrated luminosity of 20.3 fb$^{-1}$. The observed data are well described by the expected Standard Model backgrounds. The expected (observed) upper limit on the fiducial cross section for the production of such events is 6.1 (5.3) fb at 95% confidence level. Exclusion limits are presented on models of new phenomena with large extra spatial dimensions, supersymmetric quarks, and direct pair production of dark-matter candidates.

14 data tables

Distribution of ETmiss in the data and for the expected background in the single-muon control region. The total background expectation has been normalized to the observed number of events in this control region. Overflow is included in the final bin.

Distribution of ETmiss in the data and for the expected background in the two-muon control region. The total background expectation is normalized to the observed number of events in this control region. Overflows are included in the final bin.

Distribution of ETmiss in the data and for the expected background in the two-electron control region. The total background expectation is normalized to the observed number of events in this control region. Overflows are included in the final bin.

More…

Search for pair production of third-generation scalar leptoquarks and top squarks in proton-proton collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 739 (2014) 229-249, 2014.
Inspire Record 1309874 DOI 10.17182/hepdata.66933

A search for pair production of third-generation scalar leptoquarks and supersymmetric top quark partners, top squarks, in final states involving tau leptons and bottom quarks is presented. The search uses events from a data sample of proton-proton collisions corresponding to an integrated luminosity of 19.7 inverse femtobarns, collected with the CMS detector at the LHC with sqrt(s) = 8 TeV. The number of observed events is found to be in agreement with the expected standard model background. Third-generation scalar leptoquarks with masses below 740 GeV are excluded at 95% confidence level, assuming a 100% branching fraction for the leptoquark decay to a tau lepton and a bottom quark. In addition, this mass limit applies directly to top squarks decaying via an R-parity violating coupling lambda'[333]. The search also considers a similar signature from top squarks undergoing a chargino-mediated decay involving the R-parity violating coupling lambda'[3jk]. Each top squark decays to a tau lepton, a bottom quark, and two light quarks. Top squarks in this model with masses below 580 GeV are excluded at 95% confidence level. The constraint on the leptoquark mass is the most stringent to date, and this is the first search for top squarks decaying via lambda'[3jk].

9 data tables

The estimated backgrounds, observed event yields, and expected number of signal events for the leptoquark search. For the simulation-based entries, the statistical and systematic uncertainties are shown separately, in that order.

The estimated backgrounds, observed event yields, and expected number of signal events for the top squark search. For the simulation-based entries, the statistical and systematic uncertainties are shown separately, in that order.

Selection efficiencies in % for the signal in the leptoquark search, estimated from the simulation.

More…

Search for low-scale gravity signatures in multi-jet final states with the ATLAS detector at $\sqrt{s} = 8$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 07 (2015) 032, 2015.
Inspire Record 1357199 DOI 10.17182/hepdata.67127

We search for evidence of physics beyond the Standard Model in the production of final states with multiple high transverse momentum jets, using 20.3 fb$^{-1}$ of proton-proton collision data recorded by the ATLAS detector at $\sqrt{s} = 8$ TeV. No excess of events beyond Standard Model expectations is observed, and upper limits on the visible cross-section for non-Standard Model production of multi-jet final states are set. Using a wide variety of models for black hole and string ball production and decay, the limit on the cross-section times acceptance is as low as 0.16 fb at the 95% CL for a minimum scalar sum of jet transverse momentum in the event of about 4.3 TeV. Using models for black hole and string ball production and decay, exclusion contours are determined as a function of the production mass threshold and the gravity scale. These limits can be interpreted in terms of lower-mass limits on black hole and string ball production that range from 4.6 to 6.2 TeV.

13 data tables

Number of data events (20.3 fb$^{-1}$), number of predicted events from the fit, statistical uncertainty on the fit, systematic uncertainty on the choice of control region, and on the choice of fit function versus inclusive $H_{\textrm{T}}^{\textrm{min}}$ lower bin edge for inclusive jet multiplicity $N_{\textrm{Jet}} \geq 3$. The total uncertainty is obtained by adding the three uncertainties linearly.

Number of data events (20.3 fb$^{-1}$), number of predicted events from the fit, statistical uncertainty on the fit, systematic uncertainty on the choice of control region, and on the choice of fit function versus inclusive $H_{\textrm{T}}^{\textrm{min}}$ lower bin edge for inclusive jet multiplicity $N_{\textrm{Jet}} \geq 4$. The total uncertainty is obtained by adding the three uncertainties linearly.

Number of data events (20.3 fb$^{-1}$), number of predicted events from the fit, statistical uncertainty on the fit, systematic uncertainty on the choice of control region, and on the choice of fit function versus inclusive $H_{\textrm{T}}^{\textrm{min}}$ lower bin edge for inclusive jet multiplicity $N_{\textrm{Jet}} \geq 5$. The total uncertainty is obtained by adding the three uncertainties linearly.

More…