Measurement of inclusive forward neutron production cross section in proton-proton collisions at $\mathrm{\sqrt{s} = 13~TeV}$ with the LHCf Arm2 detector

The LHCf collaboration Adriani, O. ; Berti, E. ; Bonechi, L. ; et al.
JHEP 11 (2018) 073, 2018.
Inspire Record 1692008 DOI 10.17182/hepdata.87099

In this paper, we report the measurement relative to the production of forward neutrons in proton-proton collisions at $\mathrm{\sqrt{s} = 13~TeV}$ obtained using the LHCf Arm2 detector at the Large Hadron Collider. The results for the inclusive differential production cross section are presented as a function of energy in three different pseudorapidity regions: $\eta > 10.76$, $8.99 < \eta < 9.22$ and $8.81 < \eta < 8.99$. The analysis was performed using a data set acquired in June 2015 that corresponds to an integrated luminosity of $\mathrm{0.194~nb^{-1}}$. The measurements were compared with the predictions of several hadronic interaction models used to simulate air showers generated by Ultra High Energy Cosmic Rays. None of these generators showed good agreement with the data for all pseudorapidity intervals. For $\eta > 10.76$, no model is able to reproduce the observed peak structure at around $\mathrm{5~TeV}$ and all models underestimate the total production cross section: among them, QGSJET II-04 shows the smallest deficit with respect to data for the whole energy range. For $8.99 < \eta < 9.22$ and $8.81 < \eta < 8.99$, the models having the best overall agreement with data are SIBYLL 2.3 and EPOS-LHC, respectively: in particular, in both regions SIBYLL 2.3 is able to reproduce the observed peak structure at around $\mathrm{1.5-2.5~TeV}$.

3 data tables match query

Inclusive neutron (and antineutron) production cross section in $\eta > 10.76$

Inclusive neutron (and antineutron) production cross section in $8.99 < \eta < 9.22$

Inclusive neutron (and antineutron) production cross section in $8.81 < \eta < 8.99$


Measurement of forward photon production cross-section in proton–proton collisions at $\sqrt{s}$ = 13 TeV with the LHCf detector

The LHCf collaboration Adriani, O. ; Berti, E. ; Bonechi, L. ; et al.
Phys.Lett.B 780 (2018) 233-239, 2018.
Inspire Record 1518782 DOI 10.17182/hepdata.86566

In this paper, we report the production cross-section of forward photons in the pseudorapidity regions of $\eta\,&gt;\,10.94$ and $8.99\,&gt;\,\eta\,&gt;\,8.81$, measured by the LHCf experiment with proton--proton collisions at $\sqrt{s}$ = 13 TeV. The results from the analysis of 0.191 $\mathrm{nb^{-1}}$ of data obtained in June 2015 are compared to the predictions of several hadronic interaction models that are used in air-shower simulations for ultra-high-energy cosmic rays. Although none of the models agree perfectly with the data, EPOS-LHC shows the best agreement with the experimental data among the models.

2 data tables match query

Inclusive photon production cross section in $\eta > 10.94$

Inclusive photon production cross section in $8.81<\eta<8.99$


Measurement of energy flow, cross section and average inelasticity of forward neutrons produced in $\mathrm{\sqrt{s} = 13 TeV}$ proton-proton collisions with the LHCf Arm2 detector

The LHCf collaboration Adriani, O. ; Berti, E. ; Bonechi, L. ; et al.
JHEP 07 (2020) 016, 2020.
Inspire Record 1783943 DOI 10.17182/hepdata.130268

In this paper, we report the measurement of the energy flow, the cross section and the average inelasticity of forward neutrons (+ antineutrons) produced in $\sqrt{s} = 13$ TeV proton-proton collisions. These quantities are obtained from the inclusive differential production cross section, measured using the LHCf Arm2 detector at the CERN Large Hadron Collider. The measurements are performed in six pseudorapidity regions: three of them ($\eta > 10.75$, $8.99 < \eta < 9.21$ and $8.80 < \eta < 8.99$), albeit with smaller acceptance and larger uncertainties, were already published in a previous work, whereas the remaining three ($10.06 < \eta < 10.75$, $9.65 < \eta < 10.06$ and $8.65 < \eta < 8.80$) are presented here for the first time. The analysis was carried out using a data set acquired in June 2015 with a corresponding integrated luminosity of $\mathrm{0.194~nb^{-1}}$. Comparing the experimental measurements with the expectations of several hadronic interaction models used to simulate cosmic ray air showers, none of these generators resulted to have a satisfactory agreement in all the phase space selected for the analysis. The inclusive differential production cross section for $\eta > 10.75$ is not reproduced by any model, whereas the results still indicate a significant but less serious deviation at lower pseudorapidities. Depending on the pseudorapidity region, the generators showing the best overall agreement with data are either SIBYLL 2.3 or EPOS-LHC. Furthermore, apart from the most forward region, the derived energy flow and cross section distributions are best reproduced by EPOS-LHC. Finally, even if none of the models describe the elasticity distribution in a satisfactory way, the extracted average inelasticity is consistent with the QGSJET II-04 value, while most of the other generators give values that lie just outside the experimental uncertainties.

8 data tables match query

Neutron (and antineutron) inclusive differential production cross section in $\eta > 10.75$

Neutron (and antineutron) inclusive differential production cross section in $10.06 < \eta < 10.75$

Neutron (and antineutron) inclusive differential production cross section in $9.65 < \eta < 10.06$

More…

Measurements of longitudinal and transverse momentum distributions for neutral pions in the forward-rapidity region with the LHCf detector

The LHCf collaboration Adriani, O. ; Berti, E. ; Bonechi, L. ; et al.
Phys.Rev.D 94 (2016) 032007, 2016.
Inspire Record 1385877 DOI 10.17182/hepdata.74066

The differential cross sections for inclusive neutral pions as a function of transverse and longitudinal momentum in the very forward rapidity region have been measured at the Large Hadron Collider (LHC) with the Large Hadron Collider forward detector (LHCf) in proton-proton collisions at $\sqrt{s}=$ 2.76 and 7 TeV and in proton-lead collisions at nucleon-nucleon center-of-mass energies of $\sqrt{s_\text{NN}}=$ 5.02 TeV. Such differential cross sections in proton-proton collisions are compatible with the hypotheses of limiting fragmentation and Feynman scaling. Comparing proton-proton with proton-lead collisions, we find a sizable suppression of the production of neutral pions in the differential cross sections after subtraction of ultra-peripheral proton-lead collisions. This suppression corresponds to the nuclear modification factor value of about 0.1-0.3. The experimental measurements presented in this paper provide a benchmark for the hadronic interaction Monte Carlo simulation codes that are used for the simulation of cosmic ray air showers.

15 data tables match query

Production rate for the $\pi^{0}$ production in the rapidity range $8.8 < y < 9.0$ in $p+p$ collisions and in the rapidity range $-8.8 > y_\rm{lab} > -9.0$ in $p+\rm{Pb}$ collisions.

Production rate for the $\pi^{0}$ production in the rapidity range $9.0 < y < 9.2$ in $p+p$ collisions and in the rapidity range $-9.0 > y_\rm{lab} > -9.2$ in $p+\rm{Pb}$ collisions.

Production rate for the $\pi^{0}$ production in the rapidity range $9.2 < y < 9.4$ in $p+p$ collisions and in the rapidity range $-9.2 > y_\rm{lab} > -9.4$ in $p+\rm{Pb}$ collisions.

More…

Measurement of very forward neutron energy spectra for 7 TeV proton--proton collisions at the Large Hadron Collider

The LHCf collaboration Adriani, O. ; Berti, E. ; Bonechi, L. ; et al.
Phys.Lett.B 750 (2015) 360-366, 2015.
Inspire Record 1351909 DOI 10.17182/hepdata.73320

The Large Hadron Collider forward (LHCf) experiment is designed to use the LHC to verify the hadronic-interaction models used in cosmic-ray physics. Forward baryon production is one of the crucial points to understand the development of cosmic-ray showers. We report the neutron-energy spectra for LHC $\sqrt{s}$ = 7 TeV proton--proton collisions with the pseudo-rapidity $\eta$ ranging from 8.81 to 8.99, from 8.99 to 9.22, and from 10.76 to infinity. The measured energy spectra obtained from the two independent calorimeters of Arm1 and Arm2 show the same characteristic feature before unfolding the difference in the detector responses. We unfolded the measured spectra by using the multidimensional unfolding method based on Bayesian theory, and the unfolded spectra were compared with current hadronic-interaction models. The QGSJET II-03 model predicts a high neutron production rate at the highest pseudo-rapidity range similar to our results and the DPMJET 3.04 model describes our results well at the lower pseudo-rapidity ranges. However no model perfectly explains the experimental results in the whole pseudo-rapidity range. The experimental data indicate the most abundant neutron production rate relative to the photon production, which does not agree with predictions of the models.

1 data table match query

Differential neutron production rate d$\sigma_{n}$/dE [mb/GeV] for each rapidity range.


Measurement of forward neutral pion transverse momentum spectra for $\sqrt{s}$ = 7TeV proton-proton collisions at LHC

The LHCf collaboration Adriani, O. ; Bonechi, L. ; Bongi, M. ; et al.
Phys.Rev.D 86 (2012) 092001, 2012.
Inspire Record 1115479 DOI 10.17182/hepdata.59925

The inclusive production rate of neutral pions in the rapidity range greater than $y=8.9$ has been measured by the Large Hadron Collider forward (LHCf) experiment during LHC $\sqrt{s}=7$\,TeV proton-proton collision operation in early 2010. This paper presents the transverse momentum spectra of the neutral pions. The spectra from two independent LHCf detectors are consistent with each other and serve as a cross check of the data. The transverse momentum spectra are also compared with the predictions of several hadronic interaction models that are often used for high energy particle physics and for modeling ultra-high-energy cosmic-ray showers.

6 data tables match query

Production rate for PI0 production in the rapidity range 8.9-9.0.

Production rate for PI0 production in the rapidity range 9.0-9.2.

Production rate for PI0 production in the rapidity range 9.2-9.4.

More…

Search for Displaced Supersymmetry in events with an electron and a muon with large impact parameters

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 114 (2015) 061801, 2015.
Inspire Record 1317640 DOI 10.17182/hepdata.66763

A search for new long-lived particles decaying to leptons is presented using proton-proton collisions produced by the LHC at sqrt(s) = 8 TeV. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.7 inverse femtobarns. Events are selected with an electron and a muon that have transverse impact parameter values between 0.02 cm and 2 cm. The search has been designed to be sensitive to a wide range of models with nonprompt e-mu final states. Limits are set on the "displaced supersymmetry" model, with pair production of top squarks decaying into an e-mu final state via R-parity-violating interactions. The results are the most restrictive to date on this model, with the most stringent limit being obtained for a top squark lifetime corresponding to c tau = 2 cm, excluding masses below 790 GeV at 95% confidence level.

6 data tables match query

Numbers of expected and observed events in the three search regions (see the text for the definitions of these regions). Background and signal expectations are quoted as $N_{\text{exp}} \pm 1\sigma$ stat $\pm 1\sigma$ syst. If the estimated background is zero in a particular search region, the estimate is instead taken from the preceding region. Since this should always overestimate the background, we denote this by a preceding "<".

Expected and observed 95% CL cross section exclusion contours for top squark pair production in the plane of top squark lifetime ($c\tau$) and top squark mass. These limits assume a branching fraction of 100\% through the RPV vertex $\tilde{t}$ $\to$ b l, where the branching fraction to any lepton flavor is equal to 1/3. As indicated in the plot, the region to the left of the contours is excluded by this search.

Electron reconstruction efficiency as function of its tranverse impact parameter, $d_0$.

More…

Inclusive $\pi^0$ Production in 360-{GeV} $p p$ Interactions Using the European Hybrid Spectrometer

The EHS-RCBC collaboration Bailly, J.L. ; Bartl, W. ; Bruyant, F. ; et al.
Z.Phys.C 22 (1984) 119, 1984.
Inspire Record 193697 DOI 10.17182/hepdata.2106

The intermediate and forward gamma detectors of EHS are used to reconstructπ°'s produced by 360 GeV/cpp interactions in the Rapid Cycling Bubble Chamber (RCBC). Using thepp forwardbackward symmetry, the inclusiveπ° production cross section is obtainedσπ°=(132±11) mb. The averageπ° multiplicity is determined as a function of the charged particle multiplicity. The (1−x) dependence is given for differentpT regions.

3 data tables match query

No description provided.

No description provided.

Axis error includes +- 4/4 contribution.


Inclusive Charm Cross-Sections in 800-GeV/c p p Interactions

The LEBC-MPS collaboration Ammar, R. ; Banerjee, S. ; Baland, J.F. ; et al.
Phys.Lett.B 183 (1987) 110, 1987.
Inspire Record 233423 DOI 10.17182/hepdata.42573

We report a measurement of the inclusive D/D̄ production cross section in 800 GeV/ c proton-proton interactions. The experiment used the high resolution bubble chamber LEBC exposed to an 800 GeV/ c proton beam at the Fermilab MPS. We obtain σ( D/ D ̄ )=59 −15 +22 μ b (statistical errors), having analysed 25% of the total data sample. Comparison with 400 GeV/ c pp dat a obtained with LEBC at CERN shows a D/D̄ cross section increase by a factor of 1.7 −0.5 +0.7 . This is in good agreement with fusion model calculations.

7 data tables match query

No description provided.

No description provided.

PAGE FROM PREPRINT.

More…

INCLUSIVE K0, LAMBDA0, K*+- (890), AND SIGMA*+- (1385) PRODUCTION IN P P COLLISIONS AT 300-GEV/C

Lopinto, F. ; Brody, A. ; Engelmann, R. ; et al.
Phys.Rev.D 22 (1980) 573-581, 1980.
Inspire Record 158990 DOI 10.17182/hepdata.24150

Inclusive K0K¯0, Λ0, and Λ¯0 cross sections have been determined using a 292-event/mb exposure of the hydrogen-filled 15-foot bubble chamber at Fermilab. From the invariant-mass distributions of V0π± pairs we find that σ(K*±(890))=4.4±1.4 mb, σ(Σ*±(1385))=0.54±0.40 mb, and σ(Σ¯*±(1385))=0.45±0.34 mb. It is estimated that 0.32 ± 0.11 of K0K¯0's, 0.21 ± 0.16 of Λ's, and 0.96 ± 0.75 of Λ¯'s originate from decays of K*(890) and Σ*(1385), respectively.

3 data tables match query

No description provided.

No description provided.

No description provided.