Measurement of the WZ production cross section and limits on anomalous triple gauge couplings in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 709 (2012) 341-357, 2012.
Inspire Record 954993 DOI 10.17182/hepdata.68039

This Letter presents a measurement of WZ production in 1.02 fb^-1 of pp collision data at sqrt(s) = 7 TeV collected by the ATLAS experiment in 2011. Doubly leptonic decay events are selected with electrons, muons and missing transverse momentum in the final state. In total 71 candidates are observed, with a background expectation of 12.1 +/- 1.4(stat.) +4.1/-2.0(syst) events. The total cross section for WZ production for Z gamma^* masses within the range 66 GeV to 116 GeV is determined to be sigma_WZ^tot = 20.5 +3.1/-2.8(stat.) +1.4/-1.3(syst.) +0.9/-0.8(lumi.)pb, which is consistent with the Standard Model expectation of 17.3 +1.3/-0.8 pb. Limits on anomalous triple gauge boson couplings are extracted.

1 data table match query

Total fiducial cross-section $WZ\to\ell\nu\ell\ell$.


Measurement of WZ production in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Eur.Phys.J.C 72 (2012) 2173, 2012.
Inspire Record 1126131 DOI 10.17182/hepdata.59721

A study of WZ production in proton-proton collisions at sqrt(s) = 7 TeV is presented using data corresponding to an integrated luminosity of 4.6 fb^-1 collected with the ATLAS detector at the Large Hadron Collider in 2011. In total, 317 candidates, with a background expectation of 68+/-10 events, are observed in double-leptonic decay final states with electrons, muons and missing transverse momentum. The total cross-section is determined to be sigma_WZ(tot) = 19.0+1.4/-1.3(stat.)+/-0.9(syst.)+/-0.4(lumi.) pb, consistent with the Standard Model expectation of 17.6+1.1/-1.0 pb. Limits on anomalous triple gauge boson couplings are derived using the transverse momentum spectrum of Z bosons in the selected events. The cross section is also presented as a function of Z boson transverse momentum and diboson invariant mass.

6 data tables match query

The measured fiducial cross section.

The measured total cross section.

Normalised fiducial cross section in bins of the PT of the Z0.

More…

Measurements of the electron and muon inclusive cross-sections in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 707 (2012) 438-458, 2012.
Inspire Record 926145 DOI 10.17182/hepdata.58031

This letter presents measurements of the differential cross-sections for inclusive electron and muon production in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using data collected by the ATLAS detector at the LHC. The muon cross-section is measured as a function of pT in the range 4 < pT < 100 GeV and within pseudorapidity |eta| < 2.5. In addition the electron and muon cross-sections are measured in the range 7 < pT < 26 GeV and within |eta| <2.0, excluding 1.37<|eta|<1.52. Integrated luminosities of 1.3 pb-1 and 1.4 pb-1 are used for the electron and muon measurements, respectively. After subtraction of the W/Z/gamma* contribution, the differential cross-sections are found to be in good agreement with theoretical predictions for heavy-flavour production obtained from Fixed Order NLO calculations with NLL high-pT resummation, and to be sensitive to the effects of NLL resummation.

17 data tables match query

Differential cross section as a function of PT for electron heavy-flavour production in the |pseudorapidity| region < 2.0 (excluding 1.37 to 1.52). The systematic error includes the 3.4% luminosity uncertainty.

Inclusive muon cross section for |eta| < 2.5 and pT > 4 GeV: (stat) statistical error, (sys) systematic error.The first systematic error is the intrinsic error of the measurement, the second the error is due to the luminosity.

Inclusive muon cross section after subtraction of W,Z, Drell-Yan and top background for |eta| < 2.5 and pT > 4 GeV: (stat) statistical error, (sys) systematic error. The first systematic error is the intrinsic error of the measurement, the second the error due to the luminosity, the third is due to the subtraction of the background and is dominated by the error on the W, Z inclusive cross sections.

More…

Version 2
Measurement of the cross-section for W boson production in association with b-jets in pp collisions at $\sqrt{s}$ = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 06 (2013) 084, 2013.
Inspire Record 1219109 DOI 10.17182/hepdata.66629

This paper reports a measurement of the W+b-jets production cross-section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC. These results are based on data corresponding to an integrated luminosity of 4.6 fb-1, collected with the ATLAS detector. Cross-sections are presented as a function of jet multiplicity and of the transverse momentum of the leading b-jet for both the muon and electron decay modes of the W boson. The W+b-jets cross-section, corrected for all known detector effects, is quoted in a limited kinematic range, using jets reconstructed with the anti-k_t clustering algorithm with transverse momentum above 25 GeV and rapidity within +/- 2.1. Combining the muon and electron channels, the fiducial cross-section for W+b-jets is measured to be 7.1 +/- 0.5 (stat) +/- 1.4 (syst) pb, consistent with next-to-leading order QCD calculations within 1.5 standard deviations.

15 data tables match query

Measured fiducial $W+b$-jets cross-sections for the combination of the electron and muon channels with statistical and systematic uncertainties and breakdown of relative systematic uncertainties per jet multiplicity, and combined across jet bins. Also shown are the cross sections obtained without single-top subtraction.

Breakdown of relative systematic uncertainties per jet multiplicity, and combined across jet bins.

Measured fiducial $W+b$-jets cross-section in the 1-jet region with statistical and systematic uncertainties in bins of $p_T^{b-jet}$. Also shown are the cross sections obtained without single-top subtraction. UPDATE (04 MAY 2019): units corrected from nb/GeV to fb/GeV.

More…

Measurement of the 4l Cross Section at the Z Resonance and Determination of the Branching Fraction of Z->4l in pp Collisions at sqrt(s) = 7 and 8 TeV with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 112 (2014) 231806, 2014.
Inspire Record 1286892 DOI 10.17182/hepdata.64611

Measurements of four-lepton (4$\ell$, $\ell=e,\mu$) production cross sections at the $Z$ resonance in $pp$ collisions at the LHC with the ATLAS detector are presented. For dilepton and four-lepton invariant mass region $m_{\ell^+\ell^-} > 5$ GeV and $80 < m_{4\ell} < 100$ GeV, the measured cross sections are $76 \pm 18 \text { (stat) } \pm 4 \text { (syst) } \pm 1.4 \text { (lumi) }$ fb and $107 \pm 9 \text{ (stat) } \pm 4 \text{ (syst) } \pm 3.0 \text { (lumi) }$ fb at $\sqrt s$ = 7 and 8 TeV, respectively. By subtracting the non-resonant 4$\ell$ production contributions and normalizing with $Z\rightarrow \mu^+\mu^-$ events, the branching fraction for the $Z$ boson decay to $4\ell$ is determined to be $\left( 3.20 \pm 0.25\text{ (stat)} \pm 0.13\text{ (syst)} \right) \times 10^{-6}$, consistent with the Standard Model prediction.

6 data tables match query

The measured individual cross sections in the fiducial region and the combined cross sections for 4-muon and 4-electron final states at a centre-of-collision energy of 7 TeV.

The measured individual cross sections in the fiducial region and the combined cross sections for 2-muon-2-electron final states at a centre-of-collision energy of 7 TeV.

The measured cross section for four-lepton final states at a centre-of-collision energy of 7 TeV.

More…

Measurement of the production cross-section of $\psi(2S)\to J/\psi(\to\mu^+\mu^-)\pi^+\pi^-$ in $pp$ collisions at $\sqrt{s}=7$ TeV at ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2014) 079, 2014.
Inspire Record 1307103 DOI 10.17182/hepdata.69188

The prompt and non-prompt production cross-sections for $\psi(2S)$ mesons are measured using 2.1 fb$^{-1}$ of $pp$ collision data at a centre-of-mass energy of 7 TeV recorded by the ATLAS experiment at the LHC. The measurement exploits the $\psi(2S)\to J/\psi(\to\mu^+\mu^-)\pi^+\pi^-$ decay mode, and probes $\psi(2S)$ mesons with transverse momenta in the range $10\leq p_T<100$ GeV and rapidity $|y|<2.0$. The results are compared to other measurements of $\psi(2S)$ production at the LHC and to various theoretical models for prompt and non-prompt quarkonium production.

9 data tables match query

Non-prompt $\psi(2\mathrm{S})$ production fraction as a function of $\psi(2\mathrm{S})$ $p_{\rm T}$ for $\psi(2\mathrm{S})$ rapidity interval of $0\leq |y| < 0.75$. The first uncertainty is statistical, the second is systematic. Spin-alignment uncertainties are not included.

Non-prompt $\psi(2\mathrm{S})$ production fraction as a function of $\psi(2\mathrm{S})$ $p_{\rm T}$ for $\psi(2\mathrm{S})$ rapidity interval of $0.75\leq |y| < 1.5$. The first uncertainty is statistical, the second is systematic. Spin-alignment uncertainties are not included.

Non-prompt $\psi(2\mathrm{S})$ production fraction as a function of $\psi(2\mathrm{S})$ $p_{\rm T}$ for $\psi(2\mathrm{S})$ rapidity interval of $1.5\leq |y| < 2$. The first uncertainty is statistical, the second is systematic. Spin-alignment uncertainties are not included.

More…

Measurement of the inclusive jet cross-section in proton-proton collisions at $\sqrt{s}=7$ TeV using 4.5 fb$^{-1}$ of data with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 02 (2015) 153, 2015.
Inspire Record 1325553 DOI 10.17182/hepdata.69343

The inclusive jet cross-section is measured in proton-proton collisions at a centre-of-mass energy of 7 TeV using a data set corresponding to an integrated luminosity of 4.5 fb$^{-1}$ collected with the ATLAS detector at the Large Hadron Collider in 2011. Jets are identified using the anti-$k_t$ algorithm with radius parameter values of 0.4 and 0.6. The double-differential cross-sections are presented as a function of the jet transverse momentum and the jet rapidity, covering jet transverse momenta from 100 GeV to 2 TeV. Next-to-leading-order QCD calculations corrected for non-perturbative effects and electroweak effects, as well as Monte Carlo simulations with next-to-leading-order matrix elements interfaced to parton showering, are compared to the measured cross-sections. A quantitative comparison of the measured cross-sections to the QCD calculations using several sets of parton distribution functions is performed.

12 data tables match query

Measured double-differential inclusive-jet cross section for the range 0.0 <= |y| < 0.5 and for anti-kT jets with radius parameter R = 0.4. It is based on the data sample of proton-proton collisions at 7 TeV of centre-of-mass energy collected in 2011 by the ATLAS experiment at the LHC. The data sample corresponds to the integrated luminosity of 4.5 fb^-1. The statistical uncertainties arising from data and MC simulation have been combined. All the components of the systematic uncertainty are shown. They are: all the components of the jet energy scale uncertainty (jesX), the uncertainty of the jet energy resolution (jer), the uncertainty of the jet angular resolution (jar), the uncertainty of data unfolding (unfold), the uncertainty of the jet quality selection (qual), the luminosity uncertainty (lumi). All the components are assumed to be independent of each other. Each component is assumed to be fully correlated in pT and eta. Concerning the shape of the different components, Gaussian distribution assumption works for most of them. The three columns correspond to three different sets of the systematic uncertainty built with nominal, stronger or weaker assumptions on correlations between the jet energy scale uncertainty components. For more information on the systematic uncertainties, see the reference paper.

Measured double-differential inclusive-jet cross section for the range 0.5 <= |y| < 1.0 and for anti-kT jets with radius parameter R = 0.4. It is based on the data sample of proton-proton collisions at 7 TeV of centre-of-mass energy collected in 2011 by the ATLAS experiment at the LHC. The data sample corresponds to the integrated luminosity of 4.5 fb^-1. The statistical uncertainties arising from data and MC simulation have been combined. All the components of the systematic uncertainty are shown. They are: all the components of the jet energy scale uncertainty (jesX), the uncertainty of the jet energy resolution (jer), the uncertainty of the jet angular resolution (jar), the uncertainty of data unfolding (unfold), the uncertainty of the jet quality selection (qual), the luminosity uncertainty (lumi). All the components are assumed to be independent of each other. Each component is assumed to be fully correlated in pT and eta. Concerning the shape of the different components, Gaussian distribution assumption works for most of them. The three columns correspond to three different sets of the systematic uncertainty built with nominal, stronger or weaker assumptions on correlations between the jet energy scale uncertainty components. For more information on the systematic uncertainties, see the reference paper.

Measured double-differential inclusive-jet cross section for the range 1.0 <= |y| < 1.5 and for anti-kT jets with radius parameter R = 0.4. It is based on the data sample of proton-proton collisions at 7 TeV of centre-of-mass energy collected in 2011 by the ATLAS experiment at the LHC. The data sample corresponds to the integrated luminosity of 4.5 fb^-1. The statistical uncertainties arising from data and MC simulation have been combined. All the components of the systematic uncertainty are shown. They are: all the components of the jet energy scale uncertainty (jesX), the uncertainty of the jet energy resolution (jer), the uncertainty of the jet angular resolution (jar), the uncertainty of data unfolding (unfold), the uncertainty of the jet quality selection (qual), the luminosity uncertainty (lumi). All the components are assumed to be independent of each other. Each component is assumed to be fully correlated in pT and eta. Concerning the shape of the different components, Gaussian distribution assumption works for most of them. The three columns correspond to three different sets of the systematic uncertainty built with nominal, stronger or weaker assumptions on correlations between the jet energy scale uncertainty components. For more information on the systematic uncertainties, see the reference paper.

More…

Measurement of inclusive jet and dijet cross-sections in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 05 (2018) 195, 2018.
Inspire Record 1634970 DOI 10.17182/hepdata.79952

Inclusive jet and dijet cross-sections are measured in proton-proton collisions at a centre-of-mass energy of 13 TeV. The measurement uses a dataset with an integrated luminosity of 3.2 fb$^{-1}$ recorded in 2015 with the ATLAS detector at the Large Hadron Collider. Jets are identified using the anti-${k_t}$ algorithm with a radius parameter value of $R=0.4$. The inclusive jet cross-sections are measured double-differentially as a function of the jet transverse momentum, covering the range from 100 GeV to 3.5 TeV, and the absolute jet rapidity up to $|y|=3$. The double-differential dijet production cross-sections are presented as a function of the dijet mass, covering the range from 300 GeV to 9 TeV, and the half absolute rapidity separation between the two leading jets within $|y|<3$, $y*$, up to $y*=3$. Next-to-leading-order, and next-to-next-to-leading-order for the inclusive jet measurement, perturbative QCD calculations corrected for non-perturbative and electroweak effects are compared to the measured cross-sections.

12 data tables match query

rapidity bin 0 < |Y| < 0.5 anti-kt R=0.4

rapidity bin 0.5 < |Y| < 1.0 anti-kt R=0.4

rapidity bin 1.0 < |Y| < 1.5 anti-kt R=0.4

More…

Precision measurement and interpretation of inclusive $W^+$, $W^-$ and $Z/\gamma^*$ production cross sections with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 367, 2017.
Inspire Record 1502620 DOI 10.17182/hepdata.76541

High-precision measurements by the ATLAS Collaboration are presented of inclusive $W^+\to\ell^+\nu$, $W^-\to\ell^-\bar{\nu}$ and $Z/\gamma^*\to\ell\ell$ ($\ell=e,\mu$) Drell-Yan production cross sections at the LHC. The data were collected in proton-proton collisions at $\sqrt{s} = 7$ TeV with an integrated luminosity of 4.6 fb$^{-1}$. Differential $W^+$ and $W^-$ cross sections are measured in a lepton pseudorapidity range $|\eta_{\ell}| = 2.5$. Differential $Z/\gamma^*$ cross sections are measured as a function of the absolute dilepton rapidity, for $|y_{\ell\ell}| < 3.6$, for three intervals of dilepton mass, $m_{\ell\ell}$, extending from 46 to 150 GeV. The integrated and differential electron- and muon-channel cross sections are combined and compared to theoretical predictions using recent sets of parton distribution functions. The data, together with the final inclusive $e^{\pm}p$ scattering cross-section data from H1 and ZEUS, are interpreted in a next-to-next-to-leading-order QCD analysis, and a new set of parton distribution functions, ATLAS-epWZ16, is obtained. The ratio of strange-to-light sea-quark densities in the proton is determined more accurately than in previous determinations based on collider data only, and is established to be close to unity in the sensitivity range of the data. A new measurement of the CKM matrix element $|V_{cs}|$ is also provided.

59 data tables match query

Fiducial cross sections times branching ratios for $W^+$, $W^-$, central and forward $Z/\gamma^*$ ($m_{ee} = 66-116$ GeV) production in the electron decay channels. The fiducial regions used for the measurement are those defined for the combined fiducial regions, except that the central electron pseudorapidity is restricted to be $|\eta|<2.47$ and excludes $1.37<|\eta|<1.52$, and the forward electron pseudorapidity excludes the region $3.16<|\eta|<3.35$. The uncertainties denote the statistical (stat), the systematic (syst) and the luminosity (lumi) uncertainties.

Fiducial cross sections times branching ratios for $W^+$, $W^-$ and $Z/\gamma^*$ ($m_{\mu\mu} = 66-116$ GeV) production in the muon decay channels. The fiducial regions used for the measurement are those defined for the combined fiducial regions, except that the muon pseudorapidity is restricted to be $|\eta|<2.4$. The uncertainties denote the statistical (stat), the systematic (syst) and the luminosity (lumi) uncertainties.

Integrated fiducial cross sections times leptonic branching ratios in the electron and muon channels and their combination with statistical and systematic uncertainties, for $W^+$, $W^-$, their sum and the $Z/\gamma^*$ process measured at $\sqrt{s}=7$ TeV. The $Z/\gamma^*$ cross section is defined for the dilepton mass window $m_{\ell\ell} = 66 - 116$ GeV. The common fiducial regions are defined in Section 2.3. The uncertainties denote the statistical (stat), the experimental systematic (syst), and the luminosity (lumi) contributions.

More…

Measurement of the production cross section of jets in association with a Z boson in pp collisions at $\sqrt{s}$ = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 07 (2013) 032, 2013.
Inspire Record 1230812 DOI 10.17182/hepdata.67922

Measurements of the production of jets of particles in association with a Z boson in pp collisions at $\sqrt{s}$ = 7 TeV are presented, using data corresponding to an integrated luminosity of 4.6/fb collected by the ATLAS experiment at the Large Hadron Collider. Inclusive and differential jet cross sections in Z events, with Z decaying into electron or muon pairs, are measured for jets with transverse momentum pT > 30 GeV and rapidity |y| < 4.4. The results are compared to next-to-leading-order perturbative QCD calculations, and to predictions from different Monte Carlo generators based on leading-order and next-to-leading-order matrix elements supplemented by parton showers.

28 data tables match query

The distribution of Inclusive jet multiplicity. The first (sys) error is the uncorrelated systematic error and the second the correlated systematic error.

The distribution of Ratio of cross sections for successive inclusive jet multiplicities n/(n-1). The first (sys) error is the uncorrelated systematic error and the second the correlated systematic error.

The distribution of exclusive jet multiplicity. The first (sys) error is the uncorrelated systematic error and the second the correlated systematic error.

More…