Search for light long-lived neutral particles produced in $pp$ collisions at $\sqrt{s} =$ 13 TeV and decaying into collimated leptons or light hadrons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 450, 2020.
Inspire Record 1752519 DOI 10.17182/hepdata.91132

Several models of physics beyond the Standard Model predict the existence of dark photons, light neutral particles decaying into collimated leptons or light hadrons. This paper presents a search for long-lived dark photons produced from the decay of a Higgs boson or a heavy scalar boson and decaying into displaced collimated Standard Model fermions. The search uses data corresponding to an integrated luminosity of 36.1 fb$^{-1}$ collected in proton-proton collisions at $\sqrt{s} =$ 13 TeV recorded in 2015-2016 with the ATLAS detector at the Large Hadron Collider. The observed number of events is consistent with the expected background, and limits on the production cross section times branching fraction as a function of the proper decay length of the dark photon are reported. A cross section times branching fraction above 4 pb is excluded for a Higgs boson decaying into two dark photons for dark-photon decay lengths between 1.5 mm and 307 mm.

19 data tables match query

Upper limits at 95% CL on the cross section times branching fraction for the process $H \to 2\gamma_d + X$ with $m_H$ = 125 GeV in the muon-muon final state.

Upper limits at 95% CL on the cross section times branching fraction for the process $H \to 4\gamma_d + X$ with $m_H$ = 125 GeV in the muon-muon final state.

Upper limits at 95% CL on the cross section times branching fraction for the process $H \to 2\gamma_d + X$ with $m_H$ = 800 GeV in the muon-muon final state.

More…

Search for decays of the 125 GeV Higgs boson into a Z boson and a $\rho$ or $\phi$ meson

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 11 (2020) 039, 2020.
Inspire Record 1806506 DOI 10.17182/hepdata.95908

Decays of the 125 GeV Higgs boson into a Z boson and a $\rho^0$(770) or $\phi$(1020) meson are searched for using proton-proton collision data collected by the CMS experiment at the LHC at $\sqrt{s} = $ 13 TeV. The analysed data set corresponds to an integrated luminosity of 137 fb$^{-1}$. Events are selected in which the Z boson decays into a pair of electrons or a pair of muons, and the $\rho$ and $\phi$ mesons decay into pairs of pions and kaons, respectively. No significant excess above the background model is observed. As different polarization states are possible for the decay products of the Z boson and $\rho$ or $\phi$ mesons, affecting the signal acceptance, scenarios in which the decays are longitudinally or transversely polarized are considered. Upper limits at the 95% confidence level on the Higgs boson branching fractions into Z$\rho$ and Z$\phi$ are determined to be 1.04-1.31% and 0.31-0.40%, respectively, where the ranges reflect the considered polarization scenarios; these values are 740-940 and 730-950 times larger than the respective standard model expectations. These results constitute the first experimental limits on the two decay channels.

2 data tables match query

Observed and expected 95% CL upper limits on B(H $\rightarrow$ Z$\rho$), for different polarizations.

Observed and expected 95% CL upper limits on B(H $\rightarrow$ Z$\phi$), for different polarizations.


Search for lepton-flavor violating decays of the Higgs boson in the $\mu\tau$ and e$\tau$ final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 104 (2021) 032013, 2021.
Inspire Record 1862497 DOI 10.17182/hepdata.104861

A search is presented for lepton-flavor violating decays of the Higgs boson to $\mu\tau$ and e$\tau$. The data set corresponds to an integrated luminosity of 137 fb$^{-1}$ collected at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV. No significant excess has been found, and the results are interpreted in terms of upper limits on lepton-flavor violating branching fractions of the Higgs boson. The observed (expected) upper limits on the branching fractions are, respectively, $\mathcal{B}($H $\to\mu\tau)$$\lt$ 0.15 (0.15)% and $\mathcal{B}($H$\to$e$\tau)$ $\lt$ 0.22 (0.16)% at 95% confidence level.

4 data tables match query

Observed (expected) 95% CL upper limits on $B(H\to\mu\tau)$ for each individual category and combined

Observed (expected) 95% CL upper limits on $B(H\to e\tau)$ for each individual category and combined

Summary of observed and expected upper limits at 95% CL, best fit branching fractions and corresponding constraints on Yukawa couplings for the $H\to\mu\tau$ and $H\to e\tau$ channels

More…

Measurements of the ZZ production cross sections in the 2 l 2 nu channel in proton-proton collisions at sqrt(s) = 7 and 8 TeV and combined constraints on triple gauge couplings

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 75 (2015) 511, 2015.
Inspire Record 1353393 DOI 10.17182/hepdata.69984

Measurements of the ZZ production cross sections in proton-proton collisions at center-of-mass energies of 7 and 8 TeV are presented. Candidate events for the leptonic decay mode ZZ to 2 l 2 nu, where l denotes an electron or a muon, are reconstructed and selected from data corresponding to an integrated luminosity of 5.1 (19.6) inverse femtobarns at 7 (8) TeV collected with the CMS experiment. The measured cross sections, sigma(pp to ZZ) = 5.1 -1.4 +1.5 (stat) -1.1 +1.4 (syst) +/- 0.1 (lumi) pb at 7 TeV, and 7.2 -0.8 +0.8 (stat.) -1.5 +1.9 (syst) +/- 0.2 (lumi) pb at 8 TeV, are in good agreement with the standard model predictions with next-to-leading-order accuracy. The selected data are analyzed to search for anomalous triple gauge couplings involving the ZZ final state. In the absence of any deviation from the standard model predictions, limits are set on the relevant parameters. These limits are then combined with the previously published CMS results for ZZ in 4 l final states, yielding the most stringent constraints on the anomalous couplings.

1 data table match query

Using a maximum-likelihood fit to the reduced-MET data distributions, with all the systematic uncertainties incorporated as nuisance parameters, we obtain the following cross sections for the pp->ZZ process (with both Z bosons in the mass range 60-120 GeV). The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity. The theory calculations are 6.2+0.3-0.2 pb at 7 TeV and 7.6+0.4-0.3 pb at 8 TeV, including NLO QCD and NLO EW corrections.


Measurement of $W^{\pm}Z$ production cross sections and gauge boson polarisation in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 79 (2019) 535, 2019.
Inspire Record 1720438 DOI 10.17182/hepdata.83701

This paper presents measurements of $W^{\pm}Z$ production cross sections in $pp$ collisions at a centre-of-mass energy of 13 TeV. The data were collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider, and correspond to an integrated luminosity of 36.1 fb$^{-1}$. The $W^{\pm}Z$ candidate events are reconstructed using leptonic decay modes of the gauge bosons into electrons and muons. The measured inclusive cross section in the detector fiducial region for a single leptonic decay mode is $\sigma_{W^\pm Z \rightarrow \ell^{'} \nu \ell \ell}^{\textrm{fid.}} = 63.7 \pm 1.0$ (stat.) $\pm 2.3$ (syst.) $\pm 1.4$ (lumi.) fb, reproduced by the next-to-next-to-leading-order Standard Model prediction of $61.5^{+1.4}_{-1.3}$ fb. Cross sections for $W^+Z$ and $W^-Z$ production and their ratio are presented as well as differential cross sections for several kinematic observables. An analysis of angular distributions of leptons from decays of $W$ and $Z$ bosons is performed for the first time in pair-produced events in hadronic collisions, and integrated helicity fractions in the detector fiducial region are measured for the $W$ and $Z$ bosons separately. Of particular interest, the longitudinal helicity fraction of pair-produced vector bosons is also measured.

24 data tables match query

The measured $W^{\pm}Z$ fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the modelling uncertainty, the third is luminosity uncertainty.

The measured $W^{+}Z$ fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the modelling uncertainty, the third is luminosity uncertainty.

The measured $W^{-}Z$ fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the modelling uncertainty, the third is luminosity uncertainty.

More…

Measurement of the Z gamma to nu nu-bar gamma production cross section in pp collisions at sqrt(s) = 8 TeV and limits on anomalous Z-Z-gamma and Z-gamma-gamma trilinear gauge boson couplings

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 760 (2016) 448-468, 2016.
Inspire Record 1423069 DOI 10.17182/hepdata.74458

A measurement of the Z gamma to nu nu-bar gamma production cross section in pp collisions at sqrt(s) = 8 TeV is presented, using data corresponding to an integrated luminosity of 19.6 inverse femtobarns collected with the CMS detector at the LHC. This measurement is based on the observation of events with large missing energy and with a single photon with transverse momentum above 145 GeV and absolute pseudorapidity in the range |eta| < 1.44. The measured Z gamma to nu nu-bar gamma production cross section, 52.7 +/- 2.1(stat) +/- 6.4 (syst) +/- 1.4 (lumi) fb, agrees well with the standard model prediction of 50.0 +2.4 -2.2 fb. A study of the photon transverse momentum spectrum yields the most stringent limits to date on the anomalous Z-Z-gamma and Z-gamma-gamma trilinear gauge boson couplings.

2 data tables match query

Z gamma -> nu nu gamma production cross section.

One-dimensional 95% CL limits on ZVgamma anomalous trilinear gauge couplings from the Z gamma -> nu nu gamma channel.


Prompt and non-prompt J/psi production in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 71 (2011) 1575, 2011.
Inspire Record 878118 DOI 10.17182/hepdata.57532

The production of J/psi mesons is studied in pp collisions at sqrt(s)=7 TeV with the CMS experiment at the LHC. The measurement is based on a dimuon sample corresponding to an integrated luminosity of 314 inverse nanobarns. The J/psi differential cross section is determined, as a function of the J/psi transverse momentum, in three rapidity ranges. A fit to the decay length distribution is used to separate the prompt from the non-prompt (b hadron to J/psi) component. Integrated over J/psi transverse momentum from 6.5 to 30 GeV/c and over rapidity in the range |y| < 2.4, the measured cross sections, times the dimuon decay branching fraction, are 70.9 \pm 2.1 (stat.) \pm 3.0 (syst.) \pm 7.8(luminosity) nb for prompt J/psi mesons assuming unpolarized production and 26.0 \pm 1.4 (stat.) \pm 1.6 (syst.) \pm 2.9 (luminosity) nb for J/psi mesons from b-hadron decays.

13 data tables match query

Total cross section within the kinematic limits for prompt and non-prompt J/PSI production times branching ratio into MU+ MU-, assuming zero polarizartion. The second systematic error is the luminosity uncertainty.

Differential inclusive cross J/PSI section for the |rapidity| range 0 to 1.2 for each prompt J/PSI polarization scenario considered.

Differential inclusive cross J/PSI section for the |rapidity| range 1.2 to 1.6 for each prompt J/PSI polarization scenario considered.

More…

Measurement of the transverse momentum spectrum of the Higgs boson produced in pp collisions at sqrt(s) = 8 TeV using H to WW decays

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 03 (2017) 032, 2017.
Inspire Record 1467451 DOI 10.17182/hepdata.77058

The cross section for Higgs boson production in pp collisions is studied using the H to WW decay mode, followed by leptonic decays of the W bosons to an oppositely charged electron-muon pair in the final state. The measurements are performed using data collected by the CMS experiment at the LHC at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.4 inverse femtobarns. The Higgs boson transverse momentum (pT) is reconstructed using the lepton pair pT and missing pT. The differential cross section times branching fraction is measured as a function of the Higgs boson pT in a fiducial phase space defined to match the experimental acceptance in terms of the lepton kinematics and event topology. The production cross section times branching fraction in the fiducial phase space is measured to be 39 +/- 8 (stat) +/- 9 (syst) fb. The measurements are found to agree, within experimental uncertainties, with theoretical calculations based on the standard model.

3 data tables match query

The fiducial differential cross section in each Higgs pT bin. The first uncertainty is the total (stat+syst) uncertainty. The second is the statistical uncertainty and the third and fourth are Type A and Type B systematic uncertainties, respectively. The last one is the model dependence uncertainty (Type C).

The measured total cross section in the fiducial region. The first systematic uncertainty is the statistical uncertainty and the second is the systematic.

Correlation matrix among the Higgs pT bins of the differential spectrum.


Search for rare decays of Z and Higgs bosons to J$/\psi$ and a photon in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 79 (2019) 94, 2019.
Inspire Record 1700175 DOI 10.17182/hepdata.89175

A search is presented for decays of Z and Higgs bosons to a J$/\psi$ meson and a photon, with the subsequent decay of the J$/\psi$ to $\mu^+\mu^-$. The analysis uses data from proton-proton collisions with an integrated luminosity of 35.9 fb$^{-1}$ at $\sqrt{s} =$ 13 TeV collected with the CMS detector at the LHC. The observed limit on the Z $\to$ J$/\psi \gamma$ decay branching fraction, assuming that the J$/\psi$ meson is produced unpolarized, is 1.4 $\times$ 10$^{-6}$ at 95% confidence level, which corresponds to a rate higher than expected in the standard model by a factor of 15. For extreme-polarization scenarios, the observed limit changes from -13.6 to +8.6% with respect to the unpolarized scenario. The observed upper limit on the branching fraction for H $\to$ J$/\psi \gamma$ where the J$/\psi$ meson is assumed to be transversely polarized is 7.6 $\times$ 10$^{-4}$, a factor of 260 larger than the standard model prediction. The results for the Higgs boson are combined with previous data from proton-proton collisions at $\sqrt{s} =$ 8 TeV to produce an observed upper limit on the branching fraction for H $\to$ J$/\psi \gamma$ that is a factor of 220 larger than the standard model value.

1 data table match query

Upper observed and expected limits on branching fraction of $Z (H)\rightarrow J/\psi\gamma$ decay of the $Z (H)$ boson.


Search for the decay of a Higgs boson in the $\ell\ell\gamma$ channel in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 11 (2018) 152, 2018.
Inspire Record 1678088 DOI 10.17182/hepdata.86538

A search for a Higgs boson decaying into a pair of electrons or muons and a photon is described. Higgs boson decays to a Z boson and a photon (H $\to$ Z$\gamma\to\ell\ell\gamma$, $\ell =$ e or $\mu$), or to two photons, one of which has an internal conversion into a muon pair (H $\to\gamma^{*}\gamma\to\mu\mu\gamma$) were considered. The analysis is performed using a data set recorded by the CMS experiment at the LHC from proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. No significant excess above the background prediction has been found. Limits are set on the cross section for a standard model Higgs boson decaying to opposite-sign electron or muon pairs and a photon. The observed limits on cross section times the corresponding branching fractions vary between 1.4 and 4.0 (6.1 and 11.4) times the standard model cross section for H $\to\gamma^{*}\gamma\to\mu\mu\gamma$ (H $\to$ Z$\gamma\to\ell\ell\gamma$) in the 120-130 GeV mass range of the $\ell\ell\gamma$ system. The H $\to\gamma^*\gamma\to\mu\mu\gamma$ and H $\to$ Z$\gamma\to\ell\ell\gamma$ analyses are combined for $m_\mathrm{H} =$ 125 GeV, obtaining an observed (expected) 95% confidence level upper limit of 3.9 (2.0) times the standard model cross section.

3 data tables match query

Exclusion limit, at 95% CL, on the cross section of the $H \rightarrow \gamma^{*}\gamma \rightarrow \mu\mu\gamma$ process relative to the SM prediction, as a function of the Higgs boson mass.

Exclusion limit, at 95% CL, on the cross section of the $H \rightarrow Z\gamma \rightarrow ll\gamma$ process relative to the SM prediction, as a function of the Higgs boson mass.

Exclusion limit, at 95% CL, on the cross section of the $H \rightarrow ll\gamma$ relative to the SM prediction, for an SM Higgs boson of $m_{H} = 125$ GeV. The upper limits of each analysis category, as well as their combinations, are shown.