Measurements of the electron and muon inclusive cross-sections in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 707 (2012) 438-458, 2012.
Inspire Record 926145 DOI 10.17182/hepdata.58031

This letter presents measurements of the differential cross-sections for inclusive electron and muon production in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using data collected by the ATLAS detector at the LHC. The muon cross-section is measured as a function of pT in the range 4 < pT < 100 GeV and within pseudorapidity |eta| < 2.5. In addition the electron and muon cross-sections are measured in the range 7 < pT < 26 GeV and within |eta| <2.0, excluding 1.37<|eta|<1.52. Integrated luminosities of 1.3 pb-1 and 1.4 pb-1 are used for the electron and muon measurements, respectively. After subtraction of the W/Z/gamma* contribution, the differential cross-sections are found to be in good agreement with theoretical predictions for heavy-flavour production obtained from Fixed Order NLO calculations with NLL high-pT resummation, and to be sensitive to the effects of NLL resummation.

17 data tables match query

Differential cross section as a function of PT for electron heavy-flavour production in the |pseudorapidity| region < 2.0 (excluding 1.37 to 1.52). The systematic error includes the 3.4% luminosity uncertainty.

Inclusive muon cross section for |eta| < 2.5 and pT > 4 GeV: (stat) statistical error, (sys) systematic error.The first systematic error is the intrinsic error of the measurement, the second the error is due to the luminosity.

Inclusive muon cross section after subtraction of W,Z, Drell-Yan and top background for |eta| < 2.5 and pT > 4 GeV: (stat) statistical error, (sys) systematic error. The first systematic error is the intrinsic error of the measurement, the second the error due to the luminosity, the third is due to the subtraction of the background and is dominated by the error on the W, Z inclusive cross sections.

More…

Measurement of the 4l Cross Section at the Z Resonance and Determination of the Branching Fraction of Z->4l in pp Collisions at sqrt(s) = 7 and 8 TeV with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 112 (2014) 231806, 2014.
Inspire Record 1286892 DOI 10.17182/hepdata.64611

Measurements of four-lepton (4$\ell$, $\ell=e,\mu$) production cross sections at the $Z$ resonance in $pp$ collisions at the LHC with the ATLAS detector are presented. For dilepton and four-lepton invariant mass region $m_{\ell^+\ell^-} > 5$ GeV and $80 < m_{4\ell} < 100$ GeV, the measured cross sections are $76 \pm 18 \text { (stat) } \pm 4 \text { (syst) } \pm 1.4 \text { (lumi) }$ fb and $107 \pm 9 \text{ (stat) } \pm 4 \text{ (syst) } \pm 3.0 \text { (lumi) }$ fb at $\sqrt s$ = 7 and 8 TeV, respectively. By subtracting the non-resonant 4$\ell$ production contributions and normalizing with $Z\rightarrow \mu^+\mu^-$ events, the branching fraction for the $Z$ boson decay to $4\ell$ is determined to be $\left( 3.20 \pm 0.25\text{ (stat)} \pm 0.13\text{ (syst)} \right) \times 10^{-6}$, consistent with the Standard Model prediction.

6 data tables match query

The measured individual cross sections in the fiducial region and the combined cross sections for 4-muon and 4-electron final states at a centre-of-collision energy of 7 TeV.

The measured individual cross sections in the fiducial region and the combined cross sections for 2-muon-2-electron final states at a centre-of-collision energy of 7 TeV.

The measured cross section for four-lepton final states at a centre-of-collision energy of 7 TeV.

More…

Search for a heavy neutral particle decaying into an electron and a muon using 1 fb^-1 of ATLAS data

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 71 (2011) 1809, 2011.
Inspire Record 927405 DOI 10.17182/hepdata.58152

A search is presented for a high mass neutral particle that decays directly to the emu final state. The data sample was recorded by the ATLAS detector in sqrt(s) = 7 TeV pp collisions at the LHC from March to June 2011 and corresponds to an integrated luminosity of 1.07 fb^-1. The data are found to be consistent with the Standard Model background. The high emu mass region is used to set 95% confidence level upper limits on the production of two possible new physics processes: tau sneutrinos in an R-parity violating supersymmetric model and Z'-like vector bosons in a lepton flavor violating model.

9 data tables match query

Observed and predicted E-MU invariant mass distributions.

Observed and predicted electron PT distributions.

Observed and predicted muon PT distributions.

More…

Measurement of the low-mass Drell-Yan differential cross section at sqrt(s)=7 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 06 (2014) 112, 2014.
Inspire Record 1288706 DOI 10.17182/hepdata.64183

The differential cross section for the process $Z/\gamma^*\rightarrow ll$ ($l=e,\mu$) as a function of dilepton invariant mass is measured in pp collisions at $\sqrt{s}=$ 7 TeV at the LHC using the ATLAS detector. The measurement is performed in the $e$ and $\mu$ channels for invariant masses between 26 GeV and 66 GeV using an integrated luminosity of 1.6 fb$^{-1}$ collected in 2011 and these measurements are combined. The analysis is extended to invariant masses as low as 12 GeV in the muon channel using 35 pb$^{-1}$ of data collected in 2010. The cross sections are determined within fiducial acceptance regions and corrections to extrapolate the measurements to the full kinematic range are provided. Next-to-next-to-leading-order QCD predictions provide a significantly better description of the results than next-to-leading-order QCD calculations, unless the latter are matched to a parton shower calculation.

13 data tables match query

The nominal electron-channel differential Born-level fiducial cross section. The statistical and systematic uncertainties are given for each invariant mass bin. The luminosity uncertainty 1.8% is not included.

The systematic uncertainties of the nominal electron-channel cross-section measurement. Some sources of uncertainty have both correlated and uncorrelated components. Correlated uncertainties arise from the uncertainty in the electroweak background contributions delta(e.w.)_cor, from corrections to the Monte Carlo modelling of the Z/gamma* pT spectra, delta(pTrw)_cor, the electron identification efficiency, delta(id)_cor1 and delta(id)_cor2, the reconstruction efficiency, delta(rec)_cor, and from the Geant4 simulation, delta(geant4)_cor. Uncorrelated uncertainties arise from the isolation and trigger efficiency corrections, delta(trig) and delta(iso) respectively, unfolding uncertainties, delta(res)_unf, and the statistical precision of the signal Monte Carlo, delta(MC). The electron identification efficiency uncertainties have several components other than the two largest correlated parts above. These additional components are all combined into a single uncorrelated error source delta(id)_unc. The uncertainty on the normalisation of the multijet background is given by delta(multijet). The luminosity uncertainty 1.8% is not included.

The nominal muon-channel differential Born-level fiducial cross section. The statistical, systematic, and total uncertainties are given for each invariant mass bin. The luminosity uncertainty 1.8% is not included.

More…

Measurement of the high-mass Drell--Yan differential cross-section in pp collisions at sqrt(s)=7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Lett.B 725 (2013) 223-242, 2013.
Inspire Record 1234228 DOI 10.17182/hepdata.61422

This Letter reports a measurement of the high-mass Drell-Yan differential cross-section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC. Based on an integrated luminosity of 4.9 /fb, the differential cross-section in the Z/gamma* to e+e- channel is measured with the ATLAS detector as a function of the invariant mass, Mee, in the range 116 < Mee < 1500 GeV, for a fiducial region in which both the electron and the positron have transverse momentum pT > 25 GeV and pseudorapidity eta < 2.5. A comparison is made to various event generators and to the predictions of perturbative QCD calculations at next-to-next-to-leading order.

1 data table match query

Measured differential cross sections as a function of the di-electron mass for DY production at the Born and dressed levels.


Measurement of the $Z/\gamma^*$ boson transverse momentum distribution in $pp$ collisions at $\sqrt{s}$ = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2014) 145, 2014.
Inspire Record 1300647 DOI 10.17182/hepdata.64354

This paper describes a measurement of the $Z/\gamma^*$ boson transverse momentum spectrum using ATLAS proton-proton collision data at a centre-of-mass energy of $\sqrt{s}$ = 7 TeV at the LHC. The measurement is performed in the $Z/\gamma^* \rightarrow e^+e^-$ and $Z/\gamma^* \rightarrow \mu^+\mu^-$ channels, using data corresponding to an integrated luminosity of 4.7 fb$^{-1}$. Normalized differential cross sections as a function of the $Z/\gamma^*$ boson transverse momentum are measured for transverse momenta up to 800 GeV. The measurement is performed inclusively for $Z/\gamma^*$ rapidities up to 2.4, as well as in three rapidity bins. The channel results are combined, compared to perturbative and resummed QCD calculations and used to constrain the parton shower parameters of Monte Carlo generators.

3 data tables match query

The measured normalized cross section (1/SIG(FID))*D(SIG(FID))/DPT(Z) at the Born level in bins of PT(Z) for the Z/GAMMA* --> E+ E- and Z/GAMMA* --> MU+ MU- channels, and correction factors to the bare- and dressed-level cross sections. The relative statistical and total uncorrelated systematic uncertainties are given for each channel as well as the correlated systematic uncertainties.

The measured normalized combined (electron and muon channels) cross section (1/SIG(FID))*D(SIG(FID))/DPT(Z) inclusive in rapidity. The cross sections at Born and dressed levels are given as well as the relative statistical and total uncorrelated systematic uncertainties as well as the correlated systematic uncertainties.

The measured normalized combined (electron and muon channels) cross section (1/SIG(FID))*D(SIG(FID))/DPT(Z) for 0 <= ABS(YRAP(Z)) < 1, 1 <= ABS(YRAP(Z)) < 2 and 2 <= ABS(YRAP(Z)) < 2.4. The cross sections at Born and dressed levels are given as well as the relative statistical and systematic uncertainties for uncorrelated and correlated sources.


Measurement of the $t\bar{t}$ production cross-section using $e\mu$ events with $b$-tagged jets in $pp$ collisions at $\sqrt{s}=7$ and 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 74 (2014) 3109, 2014.
Inspire Record 1301856 DOI 10.17182/hepdata.65210

The inclusive top quark pair ($t\bar{t}$) production cross-section $\sigma_{t\bar{t}}$ has been measured in $pp$ collisions at $\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV with the ATLAS experiment at the LHC, using $t\bar{t}$ events with an opposite-charge $e\mu$ pair in the final state. The measurement was performed with the 2011 7 TeV dataset corresponding to an integrated luminosity of 4.6 fb$^{-1}$ and the 2012 8 TeV dataset of 20.3 fb$^{-1}$. The cross-section was measured to be: $\sigma_{t\bar{t}}=182.9\pm 3.1\pm 4.2\pm 3.6 \pm 3.3$ pb ($\sqrt{s}=7$ TeV) and $\sigma_{t\bar{t}}=242.9\pm 1.7\pm 5.5\pm 5.1\pm 4.2$ pb ($\sqrt{s}=8$ TeV, updated as described in the Addendum), where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the knowledge of the integrated luminosity and of the LHC beam energy. The results are consistent with recent theoretical QCD calculations at next-to-next-to-leading order. Fiducial measurements corresponding to the experimental acceptance of the leptons are also reported, together with the ratio of cross-sections measured at the two centre-of-mass energies. The inclusive cross-section results were used to determine the top quark pole mass via the dependence of the theoretically-predicted cross-section on $m_t^{\rm pole}$, giving a result of $m_t^{\rm pole}=172.9^{+2.5}_{-2.6}$ GeV. By looking for an excess of $t\bar{t}$ production with respect to the QCD prediction, the results were also used to place limits on the pair-production of supersymmetric top squarks $\tilde{t}_1$ with masses close to the top quark mass decaying via $\tilde{t}_1\rightarrow t\tilde{\chi}^0_1$ to predominantly right-handed top quarks and a light neutralino $\tilde{\chi}_0^1$, the lightest supersymmetric particle. Top squarks with masses between the top quark mass and 177 GeV are excluded at the 95% confidence level.

3 data tables match query

95% CL exclusion limit on signal strength.

95% CL exclusion limit on signal cross section for the 7 TeV dataset.

95% CL exclusion limit on signal cross section for the 8 TeV dataset.


Search for new phenomena in the WW to l nu l' nu' final state in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Lett.B 718 (2013) 860-878, 2013.
Inspire Record 1127504 DOI 10.17182/hepdata.59354

This Letter reports a search for a heavy particle that decays to WW using events produced in pp collisions at sqrt(s) = 7 TeV. The data were recorded in 2011 by the ATLAS detector and correspond to an integrated luminosity of 4.7 fb-1. WW to l nu l' nu'(l, l' = e or mu) final states are considered and the distribution of the transverse mass of the WW candidates is found to be consistent with Standard Model expectations. Upper limits on the production cross section times branching ratio into W boson pairs are set for Randall-Sundrum and bulk Randall-Sundrum gravitons, which result in observed 95% CL lower limits on the masses of the two particles of 1.23 TeV and 0.84 TeV, respectively.

5 data tables match query

Expected and observed 95% upper limits on cross section time branching ration for pp --> Graviton* < W+ W- >.

Expected and observed 95% upper limits on cross section time branching ration for pp --> Graviton*(bulk) < W+ W- >.

Observed and predicted W+W- transverse mass distribution in the MU-MU channel. Also tabulated are the predictions for a RS graviton of mass 1000 GeV and a bulk RS graviton with mass 600 GeV.

More…

Measurement of exclusive $\gamma\gamma\rightarrow \ell^+\ell^-$ production in proton-proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 749 (2015) 242-261, 2015.
Inspire Record 1377585 DOI 10.17182/hepdata.69286

This Letter reports a measurement of the exclusive $\gamma\gamma\rightarrow \ell^+\ell^- (\ell=e, \mu)$ cross-section in proton-proton collisions at a centre-of-mass energy of 7 TeV by the ATLAS experiment at the LHC, based on an integrated luminosity of $4.6$ fb$^{-1}$. For the electron or muon pairs satisfying exclusive selection criteria, a fit to the dilepton acoplanarity distribution is used to extract the fiducial cross-sections. The cross-section in the electron channel is determined to be $\sigma_{\gamma\gamma\rightarrow e^+e^-}^{\mathrm{excl.}} = 0.428 \pm 0.035 (\mathrm{stat.}) \pm 0.018 (\mathrm{syst.})$ pb for a phase-space region with invariant mass of the electron pairs greater than 24 GeV, in which both electrons have transverse momentum $p_\mathrm{T}>12$ GeV and pseudorapidity $|\eta|<2.4$. For muon pairs with invariant mass greater than 20 GeV, muon transverse momentum $p_\mathrm{T}>10$ GeV and pseudorapidity $|\eta|<2.4$, the cross-section is determined to be $\sigma_{\gamma\gamma\rightarrow \mu^+\mu^- }^{\mathrm{excl.}} = 0.628 \pm 0.032 (\mathrm{stat.}) \pm 0.021 (\mathrm{syst.})$ pb. When proton absorptive effects due to the finite size of the proton are taken into account in the theory calculation, the measured cross-sections are found to be consistent with the theory prediction.

10 data tables match query

Fiducial cross-section SIG for the exclusive e+ e- and mu+ mu- production.

Ratios of the number of observed to the number of expected events based on the MC predictions (R) for the exclusive e+ e- and mu+ mu- production.

Detector response matrix (PROB) for the acoplanarity variable (ACO) for e+ e- channel (empty bins are not reported).

More…

Search for light scalar top quark pair production in final states with two leptons with the ATLAS detector in sqrt(s) = 7 TeV proton-proton collisions

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Eur.Phys.J.C 72 (2012) 2237, 2012.
Inspire Record 1128464 DOI 10.17182/hepdata.59088

A search is presented for the pair production of light scalar top quarks in sqrt(s) = 7 TeV proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider. This analysis uses the full data sample collected during 2011 that corresponds to a total integrated luminosity of 4.7 fb-1. Light scalar top quarks are searched for in events with two opposite-sign leptons (e, mu), large missing transverse momentum and at least one jet in the final state. No excess over Standard Model expectations is found, and the results are interpreted under the assumption that the light scalar top decays to a b-quark in addition to an on-shell chargino whose decay occurs through a virtual W boson. If the chargino mass is 106 GeV, light scalar top quark masses up to 130 GeV are excluded for neutralino masses below 70 GeV.

15 data tables match query

Distribution of the PT of the leading electron for E-E events in the Signal Region, before the application of the leading lepton PT cut.

Distribution of the PT of the leading muon for MU-MU events in the Signal Region, before the application of the leading lepton PT cut.

Distribution of the PT of the leading electron for E-MU events in the Signal Region, before the application of the leading lepton PT cut.

More…