Angular Distribution of Charge Exchange and Inelastic Neutrons in $\pi^- - p$ Interactions at 313 and 371 MeV

Lind, Don L. ; Barish, Barry C. ; Ku, Richard J. ; et al.
Phys.Rev. 138 (1965) B1509-B1517, 1965.
Inspire Record 1186787 DOI 10.17182/hepdata.467

Neutron angular distributions from the charge-exchange (π0n) and inelastic modes (π0π0n,π+π−n) of the π−−p interaction have been investigated at 313 and 371 MeV incident-pion kinetic energy. The data were obtained with an electronic counter system. Elastic and inelastic neutrons were separated in the all-neutral final states by time of flight. At both energies the charge-exchange differential cross section at the forward neutron angles differs from that determined by Caris et al. from measurements of the π0-decay gamma distributions, but generally agrees with the phase-shift-analysis calculations of Roper. The distribution of inelastic neutrons from both modes shows a strong preference for low center-of-mass neutron energies. The distribution of these neutrons does not correspond to that expected from the I=0, π−π interaction (ABC effect) suggested to account for the anomaly in p−d collisions observed by Abashian et al. Finally, all available charge-exchange differential-cross-section data from this and other experiments were combined by at least-squares fit to a Legendre expansion of the form dσdΩ*(cosθπ0*)=Σl=0NalPl(cosθπ0*) with the following results (in mb/sr):

6 data tables match query

No description provided.

No description provided.

No description provided.

More…

Study of Neutrino Interactions in Hydrogen and Deuterium: Inelastic Charged Current Reactions

Barish, S.J. ; Derrick, M. ; Dombeck, T. ; et al.
Phys.Rev.D 19 (1979) 2521, 1979.
Inspire Record 7237 DOI 10.17182/hepdata.24295

This paper gives the results of a study of inelastic charged-current interactions of muon-type neutrinos with hydrogen and deuterium targets using the Argonne 12-foot bubble chamber. We discuss in detail the separation of the events from background. For the single-pion production reactions νp→μ−pπ+, νn→μ−nπ+, and νn→μ−pπ0, energy-dependent cross sections, differential cross sections, invariant-mass distributions, and the Δ++(1236) decay angular distribution are presented. These data are also used to study the isospin properties of the πN system. Comparisons of the data with models of single-pion production are made, and a direct test of partial conservation of the axial-vector current is discussed. Cross sections and invariant-mass distributions are given for the reactions in which more than one pion is produced. Ten events of strange-particle production were found, and the properties of these events are discussed. The energy dependence of the total νp and νn cross sections from threshold to 6 GeV was determined, and the σ(νn)σ(νp) ratio measured. This ratio and the inclusive x and y distributions rapidly approach the scaling distributions expected from the quark-parton model.

1 data table match query

Measured charged current total cross section.


Study of Neutrino Interactions in Hydrogen and Deuterium. 1. Description of the Experiment and Study of the Reaction Neutrino d --> mu- p p(s)

Barish, S.J. ; Campbell, J. ; Charlton, G. ; et al.
Phys.Rev.D 16 (1977) 3103, 1977.
Inspire Record 5566 DOI 10.17182/hepdata.24481

This paper gives a detailed description of an experiment which studies the interactions of muon-type neutrinos in hydrogen and deuterium. The experiment was performed at the Zero Gradient Synchrotron using the wide-band neutrino beam incident on the Argonne 12-foot bubble chamber filled with hydrogen and deuterium. The neutrino energy spectrum peaks at 0.5 GeV and has a tail extending to 6 GeV. The shape and intensity of the flux is determined using measurements of pion yields from beryllium. The produced pions are focused by one or (for the latter part of the experiment) two magnetic horns. A total of 364000 pictures were taken with a hydrogen filling of the bubble chamber and 903 000 with a deuterium filling. The scanning and other analyses of the events are described. The most abundant reaction occurs off neutrons and is quasi-elastic scattering νd→μ−pps. The separation of these events from background channels is discussed. The total and differential cross sections are analyzed to obtain the axial-vector form factor of the nucleon. Our result, expressed in terms of a dipole form factor, gives an axial-vector mass of 0.95±0.09 GeV. A comparison is made to previous measurements using neutrino beams, and also to determinations based upon threshold pion electroproduction experiments. In addition, the data are used to measure the weak vector form factor and so check the conserved-vector-current hypothesis.

1 data table match query

Measured Quasi-Elastic total cross section.


Pion and kaon pair production in photon-photon collisions

The TPC/Two Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Avery, R.E. ; et al.
Phys.Rev.Lett. 57 (1986) 404, 1986.
Inspire Record 228072 DOI 10.17182/hepdata.20204

We report measurements of the two-photon processes e+e−→e+e−π+π− and e+e−→e+e−K+K−, at an e+e− center-of-mass energy of 29 GeV. In the π+π− data a high-statistics analysis of the f(1270) results in a γγ width Γ(γγ→f)=3.2±0.4 keV. The π+π− continuum below the f mass is well described by a QED Born approximation, whereas above the f mass it is consistent with a QCD-model calculation if a large contribution from the f is assumed. For the K+K− data we find agreement of the high-mass continuum with the QCD prediction; limits on f′(1520) and θ(1720) formation are presented.

3 data tables match query

Data read from graph. Additional overall systematic error 20% not included.

Data read from graph. Additional overall systematic error 20% not included.

Data read from graph. Additional overall systematic error 20% not included.


Measurement and Analysis of the Reaction $\gamma \gamma \to \pi^+ \pi^- \pi^+ \pi^-$

The PLUTO collaboration Berger, Christoph ; Genzel, H. ; Lackas, W. ; et al.
Z.Phys.C 38 (1988) 521, 1988.
Inspire Record 252632 DOI 10.17182/hepdata.1916

We have measured the cross section of four charged pion production in photon-photon interactions in the invariant mass range 1.0≦Wγγ≦3.2 GeV and up toQ2=16 GeV2. For 1.2 GeV≦Wγγ≦1.7 GeV the process is dominated by ρ0ρ0 production with a rapid rise in cross section around 1.2 GeV, well below the nominal ρ0ρ0 threshold. The observed distributions in the two particle masses and in the production and decay angles are well described by an incoherent sum of the phase-space subprocesses γγ →ρ0ρ0, →ρ0π+π−, and →π+π−π+π−. A spin-parity analysis of the ρ0ρ0 system showsJP=2+ to dominate, although 0+ is also possible forWγγ≦1.4 GeV. Negative partity states are excluded.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Multihadronic cross-sections from e+ e- annihilation up to 3 gev center-of-mass energy

Bacci, C. ; Penson, G. ; Salvini, G. ; et al.
Phys.Lett.B 44 (1973) 533-536, 1973.
Inspire Record 84794 DOI 10.17182/hepdata.6496

With an apparatus slightly improved with respect to a previous one we have studied multihadronic production at the Adone e + e − storage ring up to a maximum center of mass energy of 3 GeV.

3 data tables match query

No description provided.

No description provided.

No description provided.


Production of Four Prong Final States in Photon-photon Collisions

The TPC/Two Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Avery, R.E. ; et al.
Phys.Rev.D 37 (1988) 28, 1988.
Inspire Record 261630 DOI 10.17182/hepdata.3824

Results are presented on the exclusive production of four-prong final states in photon-photon collisions from the TPC/Two-Gamma detector at the SLAC e+e− storage ring PEP. Measurement of dE/dx and momentum in the time-projection chamber (TPC) provides identification of the final states 2π+2π−, K+K−π+π−, and 2K+2K−. For two quasireal incident photons, both the 2π+2π− and K+K−π+π− cross sections show a steep rise from threshold to a peak value, followed by a decrease at higher mass. Cross sections for the production of the final states ρ0ρ0, ρ0π+π−, and φπ+π− are presented, together with upper limits for φρ0, φφ, and K*0K¯ *0. The ρ0ρ0 contribution dominates the four-pion cross section at low masses, but falls to nearly zero above 2 GeV. Such behavior is inconsistent with expectations from vector dominance but can be accommodated by four-quark resonance models or by t-channel factorization. Angular distributions for the part of the data dominated by ρ0ρ0 final states are consistent with the production of JP=2+ or 0+ resonances but also with isotropic (nonresonant) production. When one of the virtual photons has mass (mγ2=-Q2≠0), the four-pion cross section is still dominated by ρ0ρ0 at low final-state masses Wγγ and by 2π+2π− at higher mass. Further, the dependence of the cross section on Q2 becomes increasingly flat as Wγγ increases.

2 data tables match query

TAGGED DATA, RESULTS OBTAINED USING TRANSVERSE-TRANSVERSE LUMINOSITY ONLY. DATA FOR Q2=0 ARE FROM UNTAGGED SAMPLE, ERRORS DUE TO RELATIVE NORMALISATION OF THESE SAMPLES IS INCLUDED INTO ERRORS QUOTED.

UNTAGGED DATA.


Single pi+ electroproduction on the proton in the first and second resonance regions at 0.25-GeV**2 < Q**2 < 0.65-GeV**2 using CLAS.

The CLAS collaboration Egiyan, H. ; Aznauryan, I.G. ; Burkert, V.D. ; et al.
Phys.Rev.C 73 (2006) 025204, 2006.
Inspire Record 707883 DOI 10.17182/hepdata.6748

The ep -> e'pi^+n reaction was studied in the first and second nucleon resonance regions in the 0.25 GeV^2 < Q^2 < 0.65 GeV^2 range using the CLAS detector at Thomas Jefferson National Accelerator Facility. For the first time the absolute cross sections were measured covering nearly the full angular range in the hadronic center-of-mass frame. The structure functions sigma_TL, sigma_TT and the linear combination sigma_T+epsilon*sigma_L were extracted by fitting the phi-dependence of the measured cross sections, and were compared to the MAID and Sato-Lee models.

75 data tables match query

Structure functions for Q**2 = 0.30 GeV**2 and W = 1.31 GeV.

Structure functions for Q**2 = 0.30 GeV**2 and W = 1.33 GeV.

Structure functions for Q**2 = 0.30 GeV**2 and W = 1.35 GeV.

More…

Rho Production by Virtual Photons

Joos, P. ; Ladage, A. ; Meyer, H. ; et al.
Nucl.Phys.B 113 (1976) 53-92, 1976.
Inspire Record 108749 DOI 10.17182/hepdata.35708

The reaction γ V p → p π + π − was studied in the W , Q 2 region 1.3–2.8 GeV, 0.3–1.4 GeV 2 using the streamer chamber at DESY. A detailed analysis of rho production via γ V p→ ϱ 0 p is presented. Near threshold rho production has peripheral and non-peripheral contributions of comparable magnitude. At higher energies ( W > 2 GeV) the peripheral component is dominant. The Q 2 dependence of σ ( γ V p→ ϱ 0 p) follows that of the rho propagator as predicted by VDM. The slope of d σ /d t at 〈 Q 2 〉 = 0.4 and 0.8 GeV 2 is within errors equal to its value at Q 2 = 0. The overall shape of the ϱ 0 is t dependent as in photoproduction, but is independent of Q 2 . The decay angular distribution shows that longitudinal rhos dominate in the threshold region. At higher energies transverse rhos are dominant. Rho production by transverse photons proceeds almost exclusively by natural parity exchange, σ T N ⩾ (0.83 ± 0.06) σ T for 2.2 < W < 2.8 GeV. The s -channel helicity-flip amplitudes are small compared to non-flip amplitudes. The ratio R = σ L / σ T was determined assuming s -channel helicity conservation. We find R = ξ 2 Q 2 / M ϱ 2 with ξ 2 ≈ 0.4 for 〈 W 〉 = 2.45 GeV. Interference between rho production amplitudes from longitudinal and transverse photons is observed. With increasing energy the phase between the two amplitudes decreases. The observed features of rho electroproduction are consistent with a dominantly diffractive production mechanism for W > 2 GeV.

1 data table match query

DIPION CHANNEL CROSS SECTION.


The Pion Electromagnetic Form-factor in the Timelike Energy Range 1.35-{GeV} $\le \sqrt{s} \le$ 2.4-{GeV}

The DM2 collaboration Bisello, D. ; Busetto, G. ; Castro, A. ; et al.
Phys.Lett.B 220 (1989) 321-327, 1989.
Inspire Record 267118 DOI 10.17182/hepdata.29829

The e + e − → π + π − cross section has been measured from about 280 events (an order of magnitude more than the previous world statistics) in the energy interval 1.35 ⩽ s ⩽ 2.4 GeV with the DM2 detector at DCI. The pion squared form factor | F π | 2 shows a deep minimum around 1.6 GeV/ c 2 and is better fit under the hypothesis of two ϱ-like resonance ⋍0.25 GeV/ c 2 wide with 1.42 and 1.77 GeV/ c 2 masses.

1 data table match query

Statistical errors only.