No description provided.
No description provided.
No description provided.
No description provided.
The results of a measurement of recoil proton polarization for π−p → π−p at 300 MeV are given, and a phase shift analysis is made with the help of other data.
No description provided.
The results are given of the measurement of the differential cross sections of charge-exchange scattering of 240, 270, 307, and 333-Mev 1r- mesons on hydrogen.
No description provided.
No description provided.
Results of measurements of differential cross sections for the elastic scattering of 11'- mesons of energies 240, 270, 307 and 333 Mev by hydrogen are given.
No description provided.
No description provided.
The total 1r- -p interaction cross sections (of) were measured with an accuracy of 1.5-2% for about 50 pion energies between 140 and 360 Mev. The pion energy was known to within ± 1%. No anomalies in the energy dependence of Of were found which could indicate the existence of a p0meson with a mass in the range of 270 to 410 Mev/c2• The data are inconsistent with the energy value E2 = 650 Mev for the second maximum of Of found by Frisch et al. 7 but agree with the conclusion drawn by Brisson et al. 8 that it should be located at a lower energy ( E2 :::::: 610 Mev). The data are in agreement with the dispersion relations for 1r- -p scattering. It is thus demonstrated that the PuppiStanghellini problem as such no longer exists and that it arose only as a result of an inaccurate knowledge of the total 1r--p interaction cross section.
No description provided.
The elastic scattering of 300-Mev negative pions from hydrogen was studied with the aid of a hodoscopic system with pulse-fed counters. Equation (1) gives the angular distribution for the elastic scattering under the hypothesis that the fundamental contribution to the scattering comes from the S and P waves.
No description provided.
In the study of the reaction $e^+e^-\to K_{S}K_{L}$ at the VEPP-2M $e^+e^-$ collider with the SND detector the nuclear interaction length of $K_{L}$ meson in NaI(Tl) has been measured. Its value is found to be 30--50 cm in the $K_{L}$ momentum range 0.11--0.48 GeV/$c$. The results are compared with the values used in the simulation programs GEANT4 and UNIMOD.
The energy interval ($\sqrt{s}$), integrated luminosity ($IL$), number of selected events ($N$), number of background events ($N_{\rm bkg}$), number of events with five or more photons ($N_{5\gamma}$, $N_{5\gamma,{\rm bkg}}$), and the measured $K_L$ nuclear interaction length in NaI(Tl) ($\lambda_{\rm int}$).
Some cross-sections for the photo-production of ~z~ from hydrogen for pion c.m. angles in the range 60~ ~ are presented. The data have been obtained by measuring proton yields from a hydrogen target, thus permitting separation of single-pion production from the strong background caused by double-pion production. The values, which extend from 360 to 938 MeV, show reasonable agreement with the results of a recent phase-shift analysis
No description provided.
In the experiment with the SND detector at the VEPP-2000 $e^+e^-$ collider the cross section for the process $e^+e^-\to\eta\pi^+\pi^-$ has been measured in the center-of-mass energy range from 1.22 to 2.00 GeV. Obtained results are in agreement with previous measurements and have better accuracy. The energy dependence of the $e^+e^-\to\eta\pi^+\pi^-$ cross section has been fitted with the vector-meson dominance model. From this fit the product of the branching fractions $B(\rho(1450)\to\eta\pi^+\pi^-)B(\rho(1450)\to e^+e^-)$ has been extracted and compared with the same products for $\rho(1450)\to\omega\pi^0$ and $\rho(1450)\to\pi^+\pi^-$ decays. The obtained cross section data have been also used to test the conservation of vector current hypothesis.
The c.m. energy ($\sqrt{s}$), integrated luminosity ($L$), detection efficiency ($\varepsilon$), number of selected signal events ($N$), radiative-correction factor ($1 + \delta$), measured $e^+e^- \to \eta \pi^+\pi^-$ Born cross section ($\sigma_B$). For the number of events and cross section the statistical error is quoted. The systematic uncertainty on the cross section is 8.3% at $\sqrt{s}<1.45$ GeV, 5.0% at $1.45<\sqrt{s}<1.60$ GeV, and 7.8% at $\sqrt{s}>1.60$ GeV.