Electromagnetic form-factors of the proton at squared four momentum transfers between 10-fm**-2 and 50 fm**-2

Berger, C ; Burkert, V. ; Knop, G. ; et al.
Phys.Lett.B 35 (1971) 87-89, 1971.
Inspire Record 69362 DOI 10.17182/hepdata.28478

Electron-proton elastic scattering cross sections have been measured to determine the proton electromagnetic form factors at squared four-momentum transfers q 2 between 10 and 50 fm −2 . At these values of q 2 we measured angular distributions between 25° and 110° and in addition at 25° and 35° cross sections for q 2 from 2 to 20 fm −2 using the external electron beam of the Bonn 2.5 GeV electron synchrotron. Our results confirm deviations from the scaling law.

1 data table match query

Axis error includes +- 2/2 contribution (NORMALIZATION ERROR).


Backward electroproduction of pi0 mesons on protons in the region of nucleon resonances at four momentum transfer squared Q**2 = 1.0-GeV**2.

The JLab Hall A collaboration Laveissiere, G. ; Degrande, N. ; Jaminion, S. ; et al.
Phys.Rev.C 69 (2004) 045203, 2004.
Inspire Record 625669 DOI 10.17182/hepdata.25226

Exclusive electroproduction of pi0 mesons on protons in the backward hemisphere has been studied at Q**2 = 1.0 GeV**2 by detecting protons in the forward direction in coincidence with scattered electrons from the 4 GeV electron beam in Jefferson Lab's Hall A. The data span the range of the total (gamma* p) center-of-mass energy W from the pion production threshold to W = 2.0 GeV. The differential cross sections sigma_T+epsilon*sigma_L, sigma_TL, and sigma_TT were separated from the azimuthal distribution and are presented together with the MAID and SAID parametrizations.

12 data tables match query

Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.975.

Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.925.

Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.875.

More…

Measurement of the polarized structure function sigma(LT') for pion electroproduction in the Roper resonance region.

The CLAS collaboration Joo, K. ; Smith, L.C. ; Aznauryan, I.G. ; et al.
Phys.Rev.C 72 (2005) 058202, 2005.
Inspire Record 681275 DOI 10.17182/hepdata.25214

The polarized longitudinal-transverse structure function $\sigma_{LT^\prime}$ measures the interference between real and imaginary amplitudes in pion electroproduction and can be used to probe the coupling between resonant and non-resonant processes. We report new measurements of $\sigma_{LT^\prime}$ in the $N(1440){1/2}^+$ (Roper) resonance region at $Q^2=0.40$ and 0.65 GeV$^2$ for both the $\pi^0 p$ and $\pi^+ n$ channels. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at a beam energy of 1.515 GeV. Complete angular distributions were obtained and are compared to recent phenomenological models. The $\sigma_{LT^\prime}(\pi^+ n)$ channel shows a large sensitivity to the Roper resonance multipoles $M_{1-}$ and $S_{1-}$ and provides new constraints on models of resonance formation.

8 data tables match query

Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.34 GeV.

Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.38 GeV.

Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.34 GeV.

More…

Observation of Spin Parity 2+ Dominance in the Reaction $\gamma \gamma \to \rho^0 \rho^0$ Near Threshold

The ARGUS collaboration Albrecht, H. ; Ehrlichmann, H. ; Glaser, R. ; et al.
Z.Phys.C 50 (1991) 1-10, 1991.
Inspire Record 296187 DOI 10.17182/hepdata.45136

The reactionγγ→π+π−π+π− has been studied with the ARGUS detector. The rate in the invariant mass region below 1.8 GeV/c2 is found to be largely due toρ0ρ0 production. A spin-parity analysis shows a dominance of the partial wave (JP,Jz)=(2+, 2) with a small admixture fromJP=0+. The contribution of negative parity states is consistent with zero. The large ratio of cross sectionsσ(γγ→ρ0ρ0)/σ(γγ→ρ+ρ−)≃4, and the dominance of theJP=2+ wave in the reactionγγ→ρ0ρ0 is a signature consistent with the production of an exotic (I=2) resonance.

4 data tables match query

Statistical errors only.. Cross-section assuming phase-space distribution, as obtained by a 7 parameter fit.

Statistical errors only.. Cross-section assuming phase-space distribution, as obtained by a 7 parameter fit.

Partial wave components for the (JP,JZ) contribution to RHO0 RHO0 cross section.

More…

Measurement of the Sigma- charge radius by Sigma- electron elastic scattering.

The SELEX collaboration Gough Eschrich, Ivo M. ; Kruger, H. ; Simon, J. ; et al.
Phys.Lett.B 522 (2001) 233-239, 2001.
Inspire Record 558329 DOI 10.17182/hepdata.42898

The Sigma^- mean squared charge radius has been measured in the space-like Q^2 range 0.035-0.105 GeV^2/c^2 by elastic scattering of a Sigma^- beam off atomic electrons. The measurement was performed with the SELEX (E781) spectrometer using the Fermilab hyperon beam at a mean energy of 610 GeV/c. We obtain <r^2> = (0.61 +/- 0.12 (stat.) +/- 0.09 (syst.)) fm^2. The proton and pi^- charge radii were measured as well and are consistent with results of other experiments. Our result agrees with the recently measured strong interaction radius of the Sigma^-.

1 data table match query

Total systematic errors are given.


First observation of Sigma- e- elastic scattering in the hyperon beam experiment WA89 at CERN.

The WA89 collaboration Adamovich, M.I. ; Aleksandrov, Yu.A. ; Barberis, D. ; et al.
Eur.Phys.J.C 8 (1999) 59-66, 1999.
Inspire Record 500379 DOI 10.17182/hepdata.43061

We have investigated the elastic scattering of high energy $\Sigma^-$ off electrons from carbon and copper targets using the CERN hyperon beam. Scattering events a

1 data table match query

No description provided.


A measurement of the electric form-factor of the neutron through d(pol.)(e(pol.),e' n)p at Q**2 = 0.5-(GeV/c)**2.

The E93026 collaboration Zhu, H. ; Ahmidouch, A. ; Anklin, H. ; et al.
Phys.Rev.Lett. 87 (2001) 081801, 2001.
Inspire Record 556212 DOI 10.17182/hepdata.31418

We report the first measurement of the neutron electric form factor $G_E^n$ via $\vec{d}(\vec{e},e'n)p$ using a solid polarized target. $G_E^n$ was determined from the beam-target asymmetry in the scattering of longitudinally polarized electrons from polarized deuterated ammonia, $^{15}$ND$_3$. The measurement was performed in Hall C at Thomas Jefferson National Accelerator Facility (TJNAF) in quasi free kinematics with the target polarization perpendicular to the momentum transfer. The electrons were detected in a magnetic spectrometer in coincidence with neutrons in a large solid angle segmented detector. We find $G_E^n = 0.04632\pm0.00616 (stat.) \pm0.00341 (syst.)$ at $Q^2 = 0.495$ (GeV/c)$^2$.

1 data table match query

No description provided.


Production of $\pi^0 \pi^0$ and $\pi^0 \eta$ in Photon - Photon Collisions

Edwards, C. ; Partridge, Richard ; Peck, C. ; et al.
Phys.Lett.B 110 (1982) 82-86, 1982.
Inspire Record 168793 DOI 10.17182/hepdata.30959

We investigate the four-photon final state produced in γγ colissions. In the π 0 π 0 channel we observe f(1270) production with predominantly helicity 2 and measure a partial width Γ γγ 2.9 +0.6 −0.4 ± keV (independent of assumptions on the helicity). We observe A 2 (1310) production in the π 0 η channel and find a partial width Γ γγ = 0.77 ± 0.18 ± 0.27 KeV (assuming helicity 2). We give an upper limit for f ≈ ηη .

1 data table match query

Data read from graph.


A kinematically complete measurement of the proton structure function F2 in the resonance region and evaluation of its moments.

The CLAS collaboration Osipenko, M. ; Ricco, G. ; Taiuti, M. ; et al.
Phys.Rev.D 67 (2003) 092001, 2003.
Inspire Record 612145 DOI 10.17182/hepdata.12253

We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.

46 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of the $x$- and $Q^2$-Dependence of the Asymmetry $A_1$ on the Nucleon

The CLAS collaboration Dharmawardane, K.V. ; Kuhn, S.E. ; Bosted, Peter E. ; et al.
Phys.Lett.B 641 (2006) 11-17, 2006.
Inspire Record 717523 DOI 10.17182/hepdata.6726

We report results for the virtual photon asymmetry $A_1$ on the nucleon from new Jefferson Lab measurements. The experiment, which used the CEBAF Large Acceptance Spectrometer and longitudinally polarized proton ($^{15}$NH$_3$) and deuteron ($^{15}$ND$_3$) targets, collected data with a longitudinally polarized electron beam at energies between 1.6 GeV and 5.7 GeV. In the present paper, we concentrate on our results for $A_1(x,Q^2)$ and the related ratio $g_1/F_1(x,Q^2)$ in the resonance and the deep inelastic regions for our lowest and highest beam energies, covering a range in momentum transfer $Q^2$ from 0.05 to 5.0 GeV$^2$ and in final-state invariant mass $W$ up to about 3 GeV. Our data show detailed structure in the resonance region, which leads to a strong $Q^2$--dependence of $A_1(x,Q^2)$ for $W$ below 2 GeV. At higher $W$, a smooth approach to the scaling limit, established by earlier experiments, can be seen, but $A_1(x,Q^2)$ is not strictly $Q^2$--independent. We add significantly to the world data set at high $x$, up to $x = 0.6$. Our data exceed the SU(6)-symmetric quark model expectation for both the proton and the deuteron while being consistent with a negative $d$-quark polarization up to our highest $x$. This data setshould improve next-to-leading order (NLO) pQCD fits of the parton polarization distributions.

7 data tables match query

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.3100 GeV.

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.3300 GeV.

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.3500 GeV.

More…