Search for doubly and singly charged Higgs bosons decaying into vector bosons in multi-lepton final states with the ATLAS detector using proton-proton collisions at $\sqrt{s}$ = 13 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 06 (2021) 146, 2021.
Inspire Record 1843269 DOI 10.17182/hepdata.97160

A search for charged Higgs bosons decaying into $W^\pm W^\pm$ or $W^\pm Z$ bosons is performed, involving experimental signatures with two leptons of the same charge, or three or four leptons with a variety of charge combinations, missing transverse momentum and jets. A data sample of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018 is used. The data correspond to a total integrated luminosity of 139 fb$^{-1}$. The search is guided by a type-II seesaw model that extends the scalar sector of the Standard Model with a scalar triplet, leading to a phenomenology that includes doubly and singly charged Higgs bosons. Two scenarios are explored, corresponding to the pair production of doubly charged $H^{\pm\pm}$ bosons, or the associated production of a doubly charged $H^{\pm\pm}$ boson and a singly charged $H^\pm$ boson. No significant deviations from the Standard Model predictions are observed. $H^{\pm\pm}$ bosons are excluded at 95% confidence level up to 350 GeV and 230 GeV for the pair and associated production modes, respectively.

25 data tables match query

Distribution of $E_{T}^{miss}$, which is one of the discriminating variables used to define the $2\ell^{sc}$ SRs. The events are selected with the preselection requirements listed in Table 4 in the paper. The data (dots) are compared with the expected contributions from the relevant background sources (histograms). The expected signal distributions for $m_{H^{\pm\pm}} = 300~GeV$ are also shown, scaled to the observed number of events. The last bin includes overflows.

Distribution of $\Delta R_{\ell^{\pm}\ell^{\pm}}$, which is one of the discriminating variables used to define the $2\ell^{sc}$ SRs. The events are selected with the preselection requirements listed in Table 4 in the paper. The data (dots) are compared with the expected contributions from the relevant background sources (histograms). The expected signal distributions for $m_{H^{\pm\pm}} = 300~GeV$ are also shown, scaled to the observed number of events. The last bin includes overflows.

Distribution of $M_{jets}$, which is one of the discriminating variables used to define the $2\ell^{sc}$ SRs. The events are selected with the preselection requirements listed in Table 4 in the paper. The data (dots) are compared with the expected contributions from the relevant background sources (histograms). The expected signal distributions for $m_{H^{\pm\pm}} = 300~GeV$ are also shown, scaled to the observed number of events. The last bin includes overflows.

More…

Version 2
Search for displaced leptons in $\sqrt{s} = 13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 127 (2021) 051802, 2021.
Inspire Record 1831504 DOI 10.17182/hepdata.98796

A search for charged leptons with large impact parameters using 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV $pp$ collision data from the ATLAS detector at the LHC is presented, addressing a long-standing gap in coverage of possible new physics signatures. Results are consistent with the background prediction. This search provides unique sensitivity to long-lived scalar supersymmetric lepton-partners (sleptons). For lifetimes of 0.1 ns, selectron, smuon and stau masses up to 720 GeV, 680 GeV, and 340 GeV are respectively excluded at 95% confidence level, drastically improving on the previous best limits from LEP.

92 data tables match query

Cutflow for SR-$ee$ for 5 representative signal points. For the following $\tilde{e}$ mass and lifetime points, the number of Monte Carlo events generated are: 24,000 for (100 GeV, 0.01 ns), 16,000 for (300 GeV, 1 ns), and 12,000 for (500 GeV, 0.1 ns). For the $\tilde{\tau}$ mass and lifetime points, the number of Monte Carlo events generated are: 30,000 for (200 GeV, 0.1 ns), and 104,000 for (300 GeV, 0.1 ns).

Cutflow for SR-$ee$ for 5 representative signal points. For the following $\tilde{e}$ mass and lifetime points, the number of Monte Carlo events generated are: 24,000 for (100 GeV, 0.01 ns), 16,000 for (300 GeV, 1 ns), and 12,000 for (500 GeV, 0.1 ns). For the $\tilde{\tau}$ mass and lifetime points, the number of Monte Carlo events generated are: 30,000 for (200 GeV, 0.1 ns), and 104,000 for (300 GeV, 0.1 ns).

Cutflow for SR-$e\mu$ for 2 representative signal points. For the $\tilde{\tau}$ mass and lifetime points, the number of Monte Carlo events generated are: 30,000 for (200 GeV, 0.1 ns), and 104,000 for (300 GeV, 0.1 ns).

More…

Constraints on Higgs boson properties using $WW^{*}(\rightarrow e\nu\mu\nu) jj$ production in 36.1 fb$^{-1}$ of $\sqrt{s}$=13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 82 (2022) 622, 2022.
Inspire Record 1932467 DOI 10.17182/hepdata.130779

This article presents the results of two studies of Higgs boson properties using the $WW^*(\rightarrow e\nu\mu\nu)jj$ final state, based on a dataset corresponding to 36.1/fb of $\sqrt{s}$=13 TeV proton$-$proton collisions recorded by the ATLAS experiment at the Large Hadron Collider. The first study targets Higgs boson production via gluon$-$gluon fusion and constrains the CP properties of the effective Higgs$-$gluon interaction. Using angular distributions and the overall rate, a value of $\tan(\alpha) = 0.0 \pm 0.4$ stat. $ \pm 0.3$ syst is obtained for the tangent of the mixing angle for CP-even and CP-odd contributions. The second study exploits the vector-boson fusion production mechanism to probe the Higgs boson couplings to longitudinally and transversely polarised $W$ and $Z$ bosons in both the production and the decay of the Higgs boson; these couplings have not been directly constrained previously. The polarisation-dependent coupling-strength scale factors are defined as the ratios of the measured polarisation-dependent coupling strengths to those predicted by the Standard Model, and are determined using rate and kinematic information to be $a_L=0.91^{+0.10}_{-0.18}$(stat.)$^{+0.09}_{-0.17}$(syst.) and $a_{T}=1.2 \pm 0.4 $(stat.)$ ^{+0.2}_{-0.3} $(syst.). These coupling strengths are translated into pseudo-observables, resulting in $\kappa_{VV}= 0.91^{+0.10}_{-0.18}$(stat.)$^{+0.09}_{-0.17}$(syst.) and $\epsilon_{VV} =0.13^{+0.28}_{-0.20}$ (stat.)$^{+0.08}_{-0.10}$(syst.). All results are consistent with the Standard Model predictions.

21 data tables match query

Post-fit NFs and their uncertainties for the Z+jets, top and WW backgrounds. Both sets of normalisation factors differ slightly depending on which (B)SM model is tested, but are consistent within their total uncertainties.

Post-fit event yields in the signal and control regions obtained from the study of the signal strength parameter $\mu^{\text{ggF+2jets}}$. The quoted uncertainties include the theoretical and experimental systematic sources and those due to sample statistics. The fit constrains the total expected yield to the observed yield. The diboson background is split into $W W$ and non-$W W$ contributions.

Breakdown of the main contributions to the total uncertainty on $\tan \alpha$ based on the fit that exploits both shape and rate information. Individual sources of systematic uncertainty are grouped into either the theoretical or the experimental uncertainty. The sum in quadrature of the individual components differs from the total uncertainty due to correlations between the components.

More…

Search for dark matter in events with missing transverse momentum and a Higgs boson decaying into two photons in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Brad ; et al.
JHEP 10 (2021) 013, 2021.
Inspire Record 1860984 DOI 10.17182/hepdata.100534

A search for dark-matter particles in events with large missing transverse momentum and a Higgs boson candidate decaying into two photons is reported. The search uses $139$ fb$^{-1}$ of proton-proton collision data collected at $\sqrt{s}=13$ TeV with the ATLAS detector at the CERN LHC between 2015 and 2018. No significant excess of events over the Standard Model predictions is observed. The results are interpreted by extracting limits on three simplified models that include either vector or pseudoscalar mediators and predict a final state with a pair of dark-matter candidates and a Higgs boson decaying into two photons.

25 data tables match query

The $E^{miss}_{T}$ distribution of data and MC after the diphoton selection.

The observed exclusion contor for the $Z^{\prime}_{B}$ model in the $m_{\chi}$-$m_{Z^{\prime}_{B}}$ plane.

The expected exclusion contor for the $Z^{\prime}_{B}$ model in the $m_{\chi}$-$m_{Z^{\prime}_{B}}$ plane.

More…

Search for Higgs boson production in association with a high-energy photon via vector-boson fusion with decay into bottom quark pairs at $\sqrt{s}$=13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Brad ; et al.
JHEP 03 (2021) 268, 2021.
Inspire Record 1826521 DOI 10.17182/hepdata.100160

A search is presented for the production of the Standard Model Higgs boson in association with a high-energy photon. With a focus on the vector-boson fusion process and the dominant Higgs boson decay into $b$-quark pairs, the search benefits from a large reduction of multijet background compared to more inclusive searches. Results are reported from the analysis of 132 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}$=13 TeV collected with the ATLAS detector at the LHC. The measured Higgs boson signal yield in this final-state signature is $1.3 \pm 1.0$ times the Standard Model prediction. The observed significance of the Higgs boson signal above the background is 1.3 standard deviations, compared to an expected significance of 1.0 standard deviations.

13 data tables match query

Comparisons of data and simulated event distributions of the BDT input variable \(\Delta \eta_{jj}\) in the two \(m_{bb}\) sidebands after kinematic reweighting of the non-resonant \(b\bar{b}\gamma jj\) background. The data are shown as black points, and the background contributions are stacked in coloured histograms. The Higgs boson signal contribution is scaled up and represented by the dashed red line. The bottom panel in each plot shows the ratio of the data to the SM prediction, where the uncertainty band corresponds to the statistical uncertainty only.

Comparisons of data and simulated event distributions of the BDT input variable \(p_{\text{T}}^{\text{balance}}\) in the two \(m_{bb}\) sidebands after kinematic reweighting of the non-resonant \(b\bar{b}\gamma jj\) background. The data are shown as black points, and the background contributions are stacked in coloured histograms. The Higgs boson signal contribution is scaled up and represented by the dashed red line. The bottom panel in each plot shows the ratio of the data to the SM prediction, where the uncertainty band corresponds to the statistical uncertainty only.

The \(m_{bb}\) distributions in the HighBDT categories, overlaid with contributions from the \(H\gamma jj\) signal as well as the resonant \(Z\gamma jj\) and non-resonant \(b\bar{b} \gamma jj\) background fits. The combined \(\chi^2\) per degree of freedom is \(45.2/45\). The bottom panel in each plot presents the significance of the Higgs boson signal relative to the non-resonant \(b\bar{b} \gamma jj\) background in each bin.

More…

Two-particle azimuthal correlations in photonuclear ultraperipheral Pb+Pb collisions at 5.02 TeV with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Brad ; et al.
Phys.Rev.C 104 (2021) 014903, 2021.
Inspire Record 1842843 DOI 10.17182/hepdata.114165

Two-particle long-range azimuthal correlations are measured in photonuclear collisions using 1.7 nb$^{-1}$ of 5.02 TeV Pb+Pb collision data collected by the ATLAS experiment at the LHC. Candidate events are selected using a dedicated high-multiplicity photonuclear event trigger, a combination of information from the zero-degree calorimeters and forward calorimeters, and from pseudorapidity gaps constructed using calorimeter energy clusters and charged-particle tracks. Distributions of event properties are compared between data and Monte Carlo simulations of photonuclear processes. Two-particle correlation functions are formed using charged-particle tracks in the selected events, and a template-fitting method is employed to subtract the non-flow contribution to the correlation. Significant nonzero values of the second- and third-order flow coefficients are observed and presented as a function of charged-particle multiplicity and transverse momentum. The results are compared with flow coefficients obtained in proton-proton and proton-lead collisions in similar multiplicity ranges, and with theoretical expectations. The unique initial conditions present in this measurement provide a new way to probe the origin of the collective signatures previously observed only in hadronic collisions.

2 data tables match query

The measured $v_2$ and $v_3$ charged-particle anisotropies as a function of charged-particle multiplicity in photonuclear collisions

The measured $v_2$ and $v_3$ charged-particle anisotropies as a function of charged-particle transverse momentum in photonuclear collisions


Measurements of the production cross-section for a $Z$ boson in association with $b$-jets in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 07 (2020) 044, 2020.
Inspire Record 1788444 DOI 10.17182/hepdata.94219

This paper presents a measurement of the production cross-section of a $Z$ boson in association with $b$-jets, in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 35.6 fb$^{-1}$. Inclusive and differential cross-sections are measured for events containing a $Z$ boson decaying into electrons or muons and produced in association with at least one or at least two $b$-jets with transverse momentum $p_\textrm{T}>$ 20 GeV and rapidity $|y| < 2.5$. Predictions from several Monte Carlo generators based on leading-order (LO) or next-to-leading-order (NLO) matrix elements interfaced with a parton-shower simulation and testing different flavour schemes for the choice of initial-state partons are compared with measured cross-sections. The 5-flavour number scheme predictions at NLO accuracy agree better with data than 4-flavour number scheme ones. The 4-flavour number scheme predictions underestimate data in events with at least one b-jet.

15 data tables match query

Measured fiducial cross sections for events with $Z(\rightarrow ll)\ge+1$ b-jets or with $Z(\rightarrow ll)\ge+2$ b-jets. The statistical uncertainties and the individual components of systematic uncertainty are given in each bin. Statistical uncertainties are bin-to-bin uncorrelated.

Differential fiducial cross section of the Z boson $p_{\text{T}}$ in events with $Z(\rightarrow ll)\ge+1$ b-jets. The statistical uncertainties and the individual components of systematic uncertainty are given in each bin. Statistical uncertainties are bin-to-bin uncorrelated.

Differential fiducial cross section of the leading b-jet $p_{\text{T}}$ in events with $Z(\rightarrow ll)\ge+1$ b-jets. The statistical uncertainties and the individual components of systematic uncertainty are given in each bin. Statistical uncertainties are bin-to-bin uncorrelated.

More…

Search for Higgs boson decays into a $Z$ boson and a light hadronically decaying resonance using 13 TeV $pp$ collision data from the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 125 (2020) 221802, 2020.
Inspire Record 1789583 DOI 10.17182/hepdata.93626

A search for Higgs boson decays into a $Z$ boson and a light resonance in two-lepton plus jet events is performed, using a $pp$ collision dataset with an integrated luminosity of 139 fb$^{-1}$ collected at $\sqrt{s}=13$ TeV by the ATLAS experiment at the CERN LHC. The resonance considered is a light boson with a mass below 4 GeV from a possible extended scalar sector, or a charmonium state. Multivariate discriminants are used for the event selection and for evaluating the mass of the light resonance. No excess of events above the expected background is found. Observed (expected) 95$\% $ confidence-level upper limits are set on the Higgs boson production cross section times branching fraction to a $Z$ boson and the signal resonance, with values in the range 17 pb to 340 pb ($16^{+6}_{-5}$ pb to $320^{+130}_{-90}$ pb) for the different light spin-0 boson mass and branching fraction hypotheses, and with values of 110 pb and 100 pb ($100^{+40}_{-30}$ pb and $100^{+40}_{-30}$ pb) for the $\eta_c$ and $J/\psi$ hypotheses, respectively.

4 data tables match query

Observed number of data events and expected number of background events in the signal region.

Efficiencies of the MLP selection, complete selection and total expected signal yields for each signal sample, assuming B$(H\to Z(Q/a))=100\%$ and $\sigma(pp\to H) = \sigma_\text{SM}(pp\to H)$. Pythia 8 branching fractions of $a$ are assumed using a $\tan\beta$ value of 1. The MLP efficiencies, total efficiencies, and expected yields are determined using MC samples, with uncertainties due to MC sample statistics, except for the expected background yield. The expected background yield and its uncertainty is calculated as described in the main text of the paper.

Expected and observed 95% CL upper limits on $\sigma(pp\to H)B(H\to Za)/$pb. These results are quoted for $B(a\to gg)=100\%$ and $B(a\to s\bar{s})=100\%$ for each signal sample. The smaller (larger) quoted ranges around the expected limits represent $\pm 1\sigma$ ($\pm 2\sigma$) fluctuations.

More…

Measurement of the Lund jet plane using charged particles in 13 TeV proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 124 (2020) 222002, 2020.
Inspire Record 1790256 DOI 10.17182/hepdata.93183

The prevalence of hadronic jets at the LHC requires that a deep understanding of jet formation and structure is achieved in order to reach the highest levels of experimental and theoretical precision. There have been many measurements of jet substructure at the LHC and previous colliders, but the targeted observables mix physical effects from various origins. Based on a recent proposal to factorize physical effects, this Letter presents a double-differential cross-section measurement of the Lund jet plane using 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collision data collected with the ATLAS detector using jets with transverse momentum above 675 GeV. The measurement uses charged particles to achieve a fine angular resolution and is corrected for acceptance and detector effects. Several parton shower Monte Carlo models are compared with the data. No single model is found to be in agreement with the measured data across the entire plane.

36 data tables match query

Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties

Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for use in MC tuning.

Normalized differential cross-section of the Lund jet plane. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties. The data is presented as a 1D distribution, for a single vertical slice of the Lund jet plane between 0.00 < ln(R/#DeltaR) < 0.33.

More…

Measurement of the cross-section and charge asymmetry of $W$ bosons produced in proton-proton collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 760, 2019.
Inspire Record 1729240 DOI 10.17182/hepdata.89322

This paper presents measurements of the $W^+ \rightarrow \mu^+\nu$ and $W^- \rightarrow \mu^-\nu$ cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of $20.2~\mbox{fb$^{-1}$}$. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.

8 data tables match query

The correction factors, $C_{W^±,i}$ with their associated systematic uncertainties as a function of $|\eta_{\mu}|$, for $W^+$ and $W^−$

The integrated global correction factor $C_{W^±}$, for $W^+$ and $W^−$

Cross-sections (differential in $\eta_{\mu}$) and asymmetry, as a function of $|\eta_{\mu}|$). The central values are provided along with the statistical and dominant systematic uncertainties: the data statistical uncertainty (Data Stat.), the $E_T^{\textrm{miss}}$ uncertainty, the uncertainties related to muon reconstruction (Muon Reco.), those related to the background, those from MC statistics (MC Stat.), and modelling uncertainties. The uncertainties of the cross-sections are given in percent and those of the asymmetry as an absolute difference from the nominal.

More…

Test of CP invariance in vector-boson fusion production of the Higgs boson in the H → ττ channel in proton–proton collisions at s=13TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 805 (2020) 135426, 2020.
Inspire Record 1780099 DOI 10.17182/hepdata.91678

A test of CP invariance in Higgs boson production via vector-boson fusion is performed in the $H\rightarrow\tau\tau$ decay channel. This test uses the Optimal Observable method and is carried out using 36.1 $\mathrm{fb}^{-1}$ of $\sqrt{s}$ = 13 TeV proton$-$proton collision data collected by the ATLAS experiment at the LHC. Contributions from CP-violating interactions between the Higgs boson and electroweak gauge bosons are described by an effective field theory, in which the parameter $\tilde{d}$ governs the strength of CP violation. No sign of CP violation is observed in the distributions of the Optimal Observable, and $\tilde{d}$ is constrained to the interval $[-0.090, 0.035]$ at the 68% confidence level (CL), compared to an expected interval of $\tilde{d} \in [-0.035,0.033]$ based upon the Standard Model prediction. No constraints can be set on $\tilde{d}$ at 95% CL, while an expected 95% CL interval of $\tilde{d} \in [-0.21,0.15]$ for the Standard Model hypothesis was expected.

26 data tables match query

Post-fit BDT distributions after the VBF event selection for the $\tau_{\mathrm{lep}}\tau_{\mathrm{lep}}$ SF analysis channel. The VBF signal is shown for $\mu = 0.73$ and $\tilde d = -0.01$. ''Other bkg'' denotes all background contributions not listed explicitly in the legend. The size of the combined statistical, experimental, and theoretical uncertainties is given. The exact value of the $p_{\mathrm{T}}$ cut on the leptons depends on the trigger.

Post-fit BDT distributions after the VBF event selection for the $\tau_{\mathrm{lep}}\tau_{\mathrm{lep}}$ DF analysis channel. The VBF signal is shown for $\mu = 0.73$ and $\tilde d = -0.01$. ''Other bkg'' denotes all background contributions not listed explicitly in the legend. The size of the combined statistical, experimental, and theoretical uncertainties is given.

Post-fit BDT distributions after the VBF event selection for the $\tau_{\mathrm{lep}}\tau_{\mathrm{had}}$ analysis channel. The VBF signal is shown for $\mu = 0.73$ and $\tilde d = -0.01$. ''Other bkg'' denotes all background contributions not listed explicitly in the legend. The size of the combined statistical, experimental, and theoretical uncertainties is given. The exact value of the $p_{\mathrm{T}}$ cut on the leading lepton depends on the trigger.

More…

Search for new resonances in mass distributions of jet pairs using 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 03 (2020) 145, 2020.
Inspire Record 1759712 DOI 10.17182/hepdata.91126

A search for new resonances decaying into a pair of jets is reported using the dataset of proton-proton collisions recorded at $\sqrt{s}=13$ TeV with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to an integrated luminosity of 139 fb$^{-1}$. The distribution of the invariant mass of the two leading jets is examined for local excesses above a data-derived estimate of the Standard Model background. In addition to an inclusive dijet search, events with jets identified as containing $b$-hadrons are examined specifically. No significant excess of events above the smoothly falling background spectra is observed. The results are used to set cross-section upper limits at 95% confidence level on a range of new physics scenarios. Model-independent limits on Gaussian-shaped signals are also reported. The analysis looking at jets containing $b$-hadrons benefits from improvements in the jet flavour identification at high transverse momentum, which increases its sensitivity relative to the previous analysis beyond that expected from the higher integrated luminosity.

24 data tables match query

The probability of an event to pass the b-tagging requirement after the rest of the event selection, shown as a function of the resonance mass and for the 1b and 2b analysis categories.

Dijet invariant mass distribution for the inclusive category with |y*| < 0.6.

Dijet invariant mass distribution for the inclusive category with |y*| < 1.2.

More…

Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using $\sqrt(s) = 13$ TeV proton$-$proton collisions recorded by ATLAS in Run 2 of the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 10 (2020) 062, 2020.
Inspire Record 1811596 DOI 10.17182/hepdata.93733

Results of a search for new particles decaying into eight or more jets and moderate missing transverse momentum are presented. The analysis uses 139 fb$^{-1}$ of proton$-$proton collision data at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the Large Hadron Collider between 2015 and 2018. The selection rejects events containing isolated electrons or muons, and makes requirements according to the number of $b$-tagged jets and the scalar sum of masses of large-radius jets. The search extends previous analyses both in using a larger dataset and by employing improved jet and missing transverse momentum reconstruction methods which more cleanly separate signal from background processes. No evidence for physics beyond the Standard Model is found. The results are interpreted in the context of supersymmetry-inspired simplified models, significantly extending the limits on the gluino mass in those models. In particular, limits on the gluino mass are set at 2 TeV when the lightest neutralino is nearly massless in a model assuming a two-step cascade decay via the lightest chargino and second-lightest neutralino.

67 data tables match query

Post-fit yields for data and prediction in each of the multi-bin signal regions for the 8 jet regions.

Post-fit yields for data and prediction in each of the multi-bin signal regions for the 9 jet regions.

Post-fit yields for data and prediction in each of the multi-bin signal regions for the 10 jet regions.

More…

Search for heavy diboson resonances in semileptonic final states in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 1165, 2020.
Inspire Record 1793572 DOI 10.17182/hepdata.93922

This paper reports on a search for heavy resonances decaying into $WW$, $ZZ$ or $WZ$ using proton-proton collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV. The data, corresponding to an integrated luminosity of 139 $\mathrm{fb^{-1}}$, were recorded with the ATLAS detector from 2015 to 2018 at the Large Hadron Collider. The search is performed for final states in which one $W$ or $Z$ boson decays leptonically, and the other $W$ boson or $Z$ boson decays hadronically. The data are found to be described well by expected backgrounds. Upper bounds on the production cross sections of heavy scalar, vector or tensor resonances are derived in the mass range 300-5000 GeV within the context of Standard Model extensions with warped extra dimensions or including a heavy vector triplet. Production through gluon-gluon fusion, Drell-Yan or vector-boson fusion are considered, depending on the assumed model.

23 data tables match query

Selection acceptance times efficiency for the 0 leptons signal events from MC simulations as a function of the resonance mass for ggF/DY production.

Selection acceptance times efficiency for the 0 leptons signal events from MC simulations as a function of the resonance mass for VBF production.

Selection acceptance times efficiency for the 1 lepton signal events from MC simulations as a function of the resonance mass for ggF/DY production.

More…

Higgs boson production cross-section measurements and their EFT interpretation in the $4\ell$ decay channel at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 957, 2020.
Inspire Record 1790250 DOI 10.17182/hepdata.94311

Higgs boson properties are studied in the four-lepton decay channel (where lepton = $e$, $\mu$) using 139 fb$^{-1}$ of proton-proton collision data recorded at $\sqrt{s}$ = 13 TeV by the ATLAS experiment at the Large Hadron Collider. The inclusive cross-section times branching ratio for $H\to ZZ^*$ decay is measured to be $1.34 \pm 0.12$ pb for a Higgs boson with absolute rapidity below 2.5, in good agreement with the Standard Model prediction of $1.33 \pm 0.08$ pb. Cross-sections times branching ratio are measured for the main Higgs boson production modes in several exclusive phase-space regions. The measurements are interpreted in terms of coupling modifiers and of the tensor structure of Higgs boson interactions using an effective field theory approach. Exclusion limits are set on the CP-even and CP-odd `beyond the Standard Model' couplings of the Higgs boson to vector bosons, gluons and top quarks.

74 data tables match query

The expected number of SM Higgs boson events with a mass $m_{H}$= 125 GeV for an integrated luminosity of 139 fb$^{-1}$ at $\sqrt{s}$=13 TeV in each reconstructed event signal (115 < $m_{4l}$< 130 GeV) and sideband ($m_{4l}$ in 105-115 GeV or 130-160 GeV for $ZZ^{*}$, 130-350 GeV for $tXX$) category, shown separately for each production bin of the Production Mode Stage. The ggF and $bbH$ yields are shown separately but both contribute to the same (ggF)production bin, and $ZH$ and $WH$ are reported separately but are merged together for the final result. Statistical and systematic uncertainties, including those for total SM cross-section predictions, are added in quadrature. Contributions that are below 0.2% of the total signal in each reconstructed event category are not shown and are replaced by -.

The impact of the dominant systematic uncertainties (in percent) on the cross-sections in production bins of the Production Mode Stage and the Reduced Stage 1.1. Similar sources of systematic uncertainties are grouped together in luminosity (Lumi.),electron/muon reconstruction and identification efficiencies and pile up modelling ($e$, $\mu$, pile up), jet energy scale/resolution and $b$-tagging efficiencies (Jets, flav. tag), uncertainties in reducible background (reducible bkg), theoretical uncertainties in $ZZ^{*}$ background and $tXX$ background, and theoretical uncertainties in the signal due to parton distribution function (PDF), QCD scale (QCD) and parton showering algorithm (Shower). The uncertainties are rounded to the nearest 0.5%, except for the luminosity uncertainty, which is measured to be 1.7% and increases for the $VH$ signal processes due to the simulation-based normalisation of the $VVV$ background. The uncertainties that are below 0.5% are not shown and replaced by -.

The expected and the observed (post-fit) the four-lepton invariant mass distribution for the selected Higgs boson candidates, shown for an integrated luminosity of 139fb$^{-1}$ at $\sqrt{s}$=13TeV. The SM Higgs boson signal is assumed tohave a mass $m_{H}$= 125GeV.

More…

Measurements of the Higgs boson inclusive and differential fiducial cross sections in the 4$\ell$ decay channel at $\sqrt{s}$ = 13 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 942, 2020.
Inspire Record 1790439 DOI 10.17182/hepdata.94312

Inclusive and differential fiducial cross sections of the Higgs boson are measured in the $H \to ZZ^{*} \to 4\ell$ ($\ell = e,\mu$) decay channel. The results are based on proton$-$proton collision data produced at the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector from 2015 to 2018, equivalent to an integrated luminosity of 139 fb$^{-1}$. The inclusive fiducial cross section for the $H \to ZZ^{*} \to 4\ell$ process is measured to be $\sigma_\mathrm{fid} = 3.28 \pm 0.32$ fb, in agreement with the Standard Model prediction of $\sigma_\mathrm{fid, SM} = 3.41 \pm 0.18 $ fb. Differential fiducial cross sections are measured for a variety of observables which are sensitive to the production and decay of the Higgs boson. All measurements are in agreement with the Standard Model predictions. The results are used to constrain anomalous Higgs boson interactions with Standard Model particles.

76 data tables match query

Fractional uncertainties for the inclusive fiducial and total cross sections, and range of systematic uncertainties for the differential measurements. The columns e/$\mu$ and jets represent the experimental uncertainties in lepton and jet reconstruction and identification, respectively. The Z + jets, $t\bar{t}$, tXX (Other Bkg.) column includes uncertainties related to the estimation of these background sources. The $ZZ^{*}$ theory ($ZZ^{*}$ th.) uncertainties include the PDF and scale variations. Signal theory (Sig th.) uncertainties include PDF choice, QCD scale, and shower modelling of the signal. Finally, the column labelled Comp. contains uncertainties related to production mode composition and unfolding bias which affect the response matrices. The uncertainties have been rounded to the nearest 0.5%, except for the luminosity uncertainty which has been measured to be 1.7%.

Expected (pre-fit) and observed number of events in the four decay final states after the event selection, in the mass range 115< $m_{4l}$ < 130 GeV. The sum of the expected number of SM Higgs boson events and the estimated background yields is compared to the data. Combined statistical and systematic uncertainties are included for the predictions.

The fiducial and total cross sections of Higgs boson production measured in the 4l final state. The fiducial cross sections are given separately for each decay final state, and for same- and different-flavour decays. The inclusive fiducial cross section is measured as the sum of all final states ($\sigma_{sum}$), as well as by combining the per-final state measurements assuming SM $ZZ^{*} \to 4l$ relative branching ratios ($\sigma_{comb}$). For the total cross section ($\sigma_{tot}$), the Higgs boson branching ratio at $m_{H}$= 125 GeV is assumed. The total SM prediction is accurate to N3LO in QCD and NLO EW for the ggF process. The cross sections for all other Higgs boson production modes XH are added. For the fiducial cross section predictions, the SM cross sections are multiplied by the acceptances determined using the NNLOPS sample for ggF. The p-values indicating the compatibility of the measurement and the SM prediction are shown as well. They do not include the systematic uncertainty in the theoretical predictions.

More…

Search for the electroweak diboson production in association with a high-mass dijet system in semileptonic final states in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 100 (2019) 032007, 2019.
Inspire Record 1735560 DOI 10.17182/hepdata.89647

This paper reports on a search for the electroweak diboson ($WW/WZ/ZZ$) production in association with a high-mass dijet system, using data from proton-proton collisions at a center-of-mass energy of $\sqrt{s}=13$ TeV. The data, corresponding to an integrated luminosity of 35.5 fb$^{-1}$, were recorded with the ATLAS detector in 2015 and 2016 at the Large Hadron Collider. The search is performed in final states in which one boson decays leptonically, and the other boson decays hadronically. The hadronically decaying $W/Z$ boson is reconstructed as either two small-radius jets or one large-radius jet using jet substructure techniques. The electroweak production of $WW/WZ/ZZ$ in association with two jets is measured with an observed (expected) significance of 2.7 (2.5) standard deviations, and the fiducial cross section is measured to be $45.1 \pm 8.6(\mathrm{stat.}) ^{+15.9} _{-14.6} (\mathrm{syst.})$ fb.

2 data tables match query

Summary of predicted and measured fiducial cross sections for EW $VVjj$ production. The three lepton channels are combined. For the measured fiducial cross sections in the merged and resolved categories, two signal-strength parameters are used in the combined fit, one for the merged category and the other one for the resolved category; while for the measured fiducial cross section in the inclusive fiducial phase space, a single signal-strength parameter is used. For the SM predicted cross section, the error is the theoretical uncertainty (theo.). For the measured cross section, the first error is the statistical uncertainty (stat.), and the second error is the systematic uncertainty (syst.).

Summary of predicted and measured fiducial cross sections for EW $VVjj$ production. in the three lepton channels. The measured values are obtained from a simultaneous fit where each lepton channel has its own signal-strength parameter, and in each lepton channel the same signal-strength parameter is applied to both the merged and resolved categories. For the SM predicted cross section, the error is the theoretical uncertainty (theo.). For the measured cross section, the first error is the statistical uncertainty (stat.), and the second error is the systematic uncertainty (syst.).


Version 4
Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 125 (2020) 051801, 2020.
Inspire Record 1782650 DOI 10.17182/hepdata.93071

A search for heavy neutral Higgs bosons is performed using the LHC Run 2 data, corresponding to an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. The search for heavy resonances is performed over the mass range 0.2-2.5 TeV for the $\tau^+\tau^-$ decay with at least one $\tau$-lepton decaying into final states with hadrons. The data are in good agreement with the background prediction of the Standard Model. In the $M_{h}^{125}$ scenario of the Minimal Supersymmetric Standard Model, values of $\tan\beta>8$ and $\tan\beta>21$ are excluded at the 95% confidence level for neutral Higgs boson masses of 1.0 TeV and 1.5 TeV, respectively, where $\tan\beta$ is the ratio of the vacuum expectation values of the two Higgs doublets.

216 data tables match query

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.

More…

Version 2
A measurement of soft-drop jet observables in $pp$ collisions with the ATLAS detector at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 101 (2020) 052007, 2020.
Inspire Record 1772062 DOI 10.17182/hepdata.92073

Jet substructure quantities are measured using jets groomed with the soft-drop grooming procedure in dijet events from 32.9 fb$^{-1}$ of $pp$ collisions collected with the ATLAS detector at $\sqrt{s} = 13$ TeV. These observables are sensitive to a wide range of QCD phenomena. Some observables, such as the jet mass and opening angle between the two subjets which pass the soft-drop condition, can be described by a high-order (resummed) series in the strong coupling constant $\alpha_S$. Other observables, such as the momentum sharing between the two subjets, are nearly independent of $\alpha_S$. These observables can be constructed using all interacting particles or using only charged particles reconstructed in the inner tracking detectors. Track-based versions of these observables are not collinear safe, but are measured more precisely, and universal non-perturbative functions can absorb the collinear singularities. The unfolded data are directly compared with QCD calculations and hadron-level Monte Carlo simulations. The measurements are performed in different pseudorapidity regions, which are then used to extract quark and gluon jet shapes using the predicted quark and gluon fractions in each region. All of the parton shower and analytical calculations provide an excellent description of the data in most regions of phase space.

504 data tables match query

Data from Fig 6a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.

Data from Fig 6a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.

Data from Fig 6b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.

More…

Version 2
Search for a scalar partner of the top quark in the all-hadronic $t\bar{t}$ plus missing transverse momentum final state at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 737, 2020.
Inspire Record 1793461 DOI 10.17182/hepdata.93906

A search for direct pair production of scalar partners of the top quark (top squarks or scalar third-generation up-type leptoquarks) in the all-hadronic $t\bar{t}$ plus missing transverse momentum final state is presented. The analysis of 139 fb$^{-1}$ of ${\sqrt{s}=13}$ TeV proton-proton collision data collected using the ATLAS detector at the LHC yields no significant excess over the Standard Model background expectation. To interpret the results, a supersymmetric model is used where the top squark decays via $\tilde{t} \to t^{(*)} \tilde{\chi}^0_1$, with $t^{(*)}$ denoting an on-shell (off-shell) top quark and $\tilde{\chi}^0_1$ the lightest neutralino. Three specific event selections are optimised for the following scenarios. In the scenario where $m_{\tilde{t}}> m_t+m_{\tilde{\chi}^0_1}$, top squark masses are excluded in the range 400-1250 GeV for $\tilde{\chi}^0_1$ masses below $200$ GeV at 95 % confidence level. In the situation where $m_{\tilde{t}}\sim m_t+m_{\tilde{\chi}^0_1}$, top squark masses in the range 300-630 GeV are excluded, while in the case where $m_{\tilde{t}}< m_W+m_b+m_{\tilde{\chi}^0_1}$ (with $m_{\tilde{t}}-m_{\tilde{\chi}^0_1}\ge 5$ GeV), considered for the first time in an ATLAS all-hadronic search, top squark masses in the range 300-660 GeV are excluded. Limits are also set for scalar third-generation up-type leptoquarks, excluding leptoquarks with masses below $1240$ GeV when considering only leptoquark decays into a top quark and a neutrino.

118 data tables match query

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=stop_obs">Stop exclusion contour (Obs.)</a> <li><a href="?table=stop_obs_down">Stop exclusion contour (Obs. Down)</a> <li><a href="?table=stop_obs_up">Stop exclusion contour (Obs. Up)</a> <li><a href="?table=stop_exp">Stop exclusion contour (Exp.)</a> <li><a href="?table=stop_exp_down">Stop exclusion contour (Exp. Down)</a> <li><a href="?table=stop_exp_up">Stop exclusion contour (Exp. Up)</a> <li><a href="?table=LQ3u_obs">LQ3u exclusion contour (Obs.)</a> <li><a href="?table=LQ3u_obs_down">LQ3u exclusion contour (Obs. Down)</a> <li><a href="?table=LQ3u_obs_up">LQ3u exclusion contour (Obs. Up)</a> <li><a href="?table=LQ3u_exp">LQ3u exclusion contour (Exp.)</a> <li><a href="?table=LQ3u_exp_down">LQ3u exclusion contour (Exp. Down)</a> <li><a href="?table=LQ3u_exp_up">LQ3u exclusion contour (Exp. Up)</a> </ul> <b>Upper limits:</b> <ul> <li><a href="?table=stop_xSecUpperLimit_obs">stop_xSecUpperLimit_obs</a> <li><a href="?table=stop_xSecUpperLimit_exp">stop_xSecUpperLimit_exp</a> <li><a href="?table=LQ3u_xSecUpperLimit_obs">LQ3u_xSecUpperLimit_obs</a> <li><a href="?table=LQ3u_xSecUpperLimit_exp">LQ3u_xSecUpperLimit_exp</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=SRATW_metsigST">SRATW_metsigST</a> <li><a href="?table=SRBTT_m_1fatjet_kt12">SRBTT_m_1fatjet_kt12</a> <li><a href="?table=SRC_RISR">SRC_RISR</a> <li><a href="?table=SRD0_htSig">SRD0_htSig</a> <li><a href="?table=SRD1_htSig">SRD1_htSig</a> <li><a href="?table=SRD2_htSig">SRD2_htSig</a> </ul> <b>Cut flows:</b> <ul> <li><a href="?table=cutflow_SRATT">cutflow_SRATT</a> <li><a href="?table=cutflow_SRATW">cutflow_SRATW</a> <li><a href="?table=cutflow_SRAT0">cutflow_SRAT0</a> <li><a href="?table=cutflow_SRB">cutflow_SRB</a> <li><a href="?table=cutflow_SRC">cutflow_SRC</a> <li><a href="?table=cutflow_SRD0">cutflow_SRD0</a> <li><a href="?table=cutflow_SRD1">cutflow_SRD1</a> <li><a href="?table=cutflow_SRD2">cutflow_SRD2</a> </ul> <b>Acceptance and efficiencies:</b> As explained in <a href="https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults#summary_of_auxiliary_material">the twiki</a>. <ul> <li> <b>SRATT:</b> <a href="?table=Acc_SRATT">Acc_SRATT</a> <a href="?table=Eff_SRATT">Eff_SRATT</a> <li> <b>SRATW:</b> <a href="?table=Acc_SRATW">Acc_SRATW</a> <a href="?table=Eff_SRATW">Eff_SRATW</a> <li> <b>SRAT0:</b> <a href="?table=Acc_SRAT0">Acc_SRAT0</a> <a href="?table=Eff_SRAT0">Eff_SRAT0</a> <li> <b>SRBTT:</b> <a href="?table=Acc_SRBTT">Acc_SRBTT</a> <a href="?table=Eff_SRBTT">Eff_SRBTT</a> <li> <b>SRBTW:</b> <a href="?table=Acc_SRBTW">Acc_SRBTW</a> <a href="?table=Eff_SRBTW">Eff_SRBTW</a> <li> <b>SRBT0:</b> <a href="?table=Acc_SRBT0">Acc_SRBT0</a> <a href="?table=Eff_SRBT0">Eff_SRBT0</a> <li> <b>SRC1:</b> <a href="?table=Acc_SRC1">Acc_SRC1</a> <a href="?table=Eff_SRC1">Eff_SRC1</a> <li> <b>SRC2:</b> <a href="?table=Acc_SRC2">Acc_SRC2</a> <a href="?table=Eff_SRC2">Eff_SRC2</a> <li> <b>SRC3:</b> <a href="?table=Acc_SRC3">Acc_SRC3</a> <a href="?table=Eff_SRC3">Eff_SRC3</a> <li> <b>SRC4:</b> <a href="?table=Acc_SRC4">Acc_SRC4</a> <a href="?table=Eff_SRC4">Eff_SRC4</a> <li> <b>SRC5:</b> <a href="?table=Acc_SRC5">Acc_SRC5</a> <a href="?table=Eff_SRC5">Eff_SRC5</a> <li> <b>SRD0:</b> <a href="?table=Acc_SRD0">Acc_SRD0</a> <a href="?table=Eff_SRD0">Eff_SRD0</a> <li> <b>SRD1:</b> <a href="?table=Acc_SRD1">Acc_SRD1</a> <a href="?table=Eff_SRD1">Eff_SRD1</a> <li> <b>SRD2:</b> <a href="?table=Acc_SRD2">Acc_SRD2</a> <a href="?table=Eff_SRD2">Eff_SRD2</a> </ul> <b>Truth Code snippets</b> and <b>SLHA</a> files are available under "Resources" (purple button on the left)

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=stop_obs">Stop exclusion contour (Obs.)</a> <li><a href="?table=stop_obs_down">Stop exclusion contour (Obs. Down)</a> <li><a href="?table=stop_obs_up">Stop exclusion contour (Obs. Up)</a> <li><a href="?table=stop_exp">Stop exclusion contour (Exp.)</a> <li><a href="?table=stop_exp_down">Stop exclusion contour (Exp. Down)</a> <li><a href="?table=stop_exp_up">Stop exclusion contour (Exp. Up)</a> <li><a href="?table=LQ3u_obs">LQ3u exclusion contour (Obs.)</a> <li><a href="?table=LQ3u_obs_down">LQ3u exclusion contour (Obs. Down)</a> <li><a href="?table=LQ3u_obs_up">LQ3u exclusion contour (Obs. Up)</a> <li><a href="?table=LQ3u_exp">LQ3u exclusion contour (Exp.)</a> <li><a href="?table=LQ3u_exp_down">LQ3u exclusion contour (Exp. Down)</a> <li><a href="?table=LQ3u_exp_up">LQ3u exclusion contour (Exp. Up)</a> </ul> <b>Upper limits:</b> <ul> <li><a href="?table=stop_xSecUpperLimit_obs">stop_xSecUpperLimit_obs</a> <li><a href="?table=stop_xSecUpperLimit_exp">stop_xSecUpperLimit_exp</a> <li><a href="?table=LQ3u_xSecUpperLimit_obs">LQ3u_xSecUpperLimit_obs</a> <li><a href="?table=LQ3u_xSecUpperLimit_exp">LQ3u_xSecUpperLimit_exp</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=SRATW_metsigST">SRATW_metsigST</a> <li><a href="?table=SRBTT_m_1fatjet_kt12">SRBTT_m_1fatjet_kt12</a> <li><a href="?table=SRC_RISR">SRC_RISR</a> <li><a href="?table=SRD0_htSig">SRD0_htSig</a> <li><a href="?table=SRD1_htSig">SRD1_htSig</a> <li><a href="?table=SRD2_htSig">SRD2_htSig</a> </ul> <b>Cut flows:</b> <ul> <li><a href="?table=cutflow_SRATT">cutflow_SRATT</a> <li><a href="?table=cutflow_SRATW">cutflow_SRATW</a> <li><a href="?table=cutflow_SRAT0">cutflow_SRAT0</a> <li><a href="?table=cutflow_SRB">cutflow_SRB</a> <li><a href="?table=cutflow_SRC">cutflow_SRC</a> <li><a href="?table=cutflow_SRD0">cutflow_SRD0</a> <li><a href="?table=cutflow_SRD1">cutflow_SRD1</a> <li><a href="?table=cutflow_SRD2">cutflow_SRD2</a> </ul> <b>Acceptance and efficiencies:</b> As explained in <a href="https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults#summary_of_auxiliary_material">the twiki</a>. <ul> <li> <b>SRATT:</b> <a href="?table=Acc_SRATT">Acc_SRATT</a> <a href="?table=Eff_SRATT">Eff_SRATT</a> <li> <b>SRATW:</b> <a href="?table=Acc_SRATW">Acc_SRATW</a> <a href="?table=Eff_SRATW">Eff_SRATW</a> <li> <b>SRAT0:</b> <a href="?table=Acc_SRAT0">Acc_SRAT0</a> <a href="?table=Eff_SRAT0">Eff_SRAT0</a> <li> <b>SRBTT:</b> <a href="?table=Acc_SRBTT">Acc_SRBTT</a> <a href="?table=Eff_SRBTT">Eff_SRBTT</a> <li> <b>SRBTW:</b> <a href="?table=Acc_SRBTW">Acc_SRBTW</a> <a href="?table=Eff_SRBTW">Eff_SRBTW</a> <li> <b>SRBT0:</b> <a href="?table=Acc_SRBT0">Acc_SRBT0</a> <a href="?table=Eff_SRBT0">Eff_SRBT0</a> <li> <b>SRC1:</b> <a href="?table=Acc_SRC1">Acc_SRC1</a> <a href="?table=Eff_SRC1">Eff_SRC1</a> <li> <b>SRC2:</b> <a href="?table=Acc_SRC2">Acc_SRC2</a> <a href="?table=Eff_SRC2">Eff_SRC2</a> <li> <b>SRC3:</b> <a href="?table=Acc_SRC3">Acc_SRC3</a> <a href="?table=Eff_SRC3">Eff_SRC3</a> <li> <b>SRC4:</b> <a href="?table=Acc_SRC4">Acc_SRC4</a> <a href="?table=Eff_SRC4">Eff_SRC4</a> <li> <b>SRC5:</b> <a href="?table=Acc_SRC5">Acc_SRC5</a> <a href="?table=Eff_SRC5">Eff_SRC5</a> <li> <b>SRD0:</b> <a href="?table=Acc_SRD0">Acc_SRD0</a> <a href="?table=Eff_SRD0">Eff_SRD0</a> <li> <b>SRD1:</b> <a href="?table=Acc_SRD1">Acc_SRD1</a> <a href="?table=Eff_SRD1">Eff_SRD1</a> <li> <b>SRD2:</b> <a href="?table=Acc_SRD2">Acc_SRD2</a> <a href="?table=Eff_SRD2">Eff_SRD2</a> </ul> <b>Truth Code snippets</b> and <b>SLHA</a> files are available under "Resources" (purple button on the left)

The observed exclusion contour at 95% CL as a function of the $\it{m}_{\tilde{\chi}^{0}_{1}}$ vs. $\it{m}_{\tilde{t}}$. Masses that are within the contours are excluded.

More…

Version 2
Reconstruction and identification of boosted di-$\tau$ systems in a search for Higgs boson pairs using 13 TeV proton$-$proton collision data in ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 11 (2020) 163, 2020.
Inspire Record 1809175 DOI 10.17182/hepdata.95432

In this paper, a new technique for reconstructing and identifying hadronically decaying $\tau^+\tau^-$ pairs with a large Lorentz boost, referred to as the di-$\tau$ tagger, is developed and used for the first time in the ATLAS experiment at the Large Hadron Collider. A benchmark di-$\tau$ tagging selection is employed in the search for resonant Higgs boson pair production, where one Higgs boson decays into a boosted $b\bar{b}$ pair and the other into a boosted $\tau^+\tau^-$ pair, with two hadronically decaying $\tau$-leptons in the final state. Using 139 fb$^{-1}$ of proton$-$proton collision data recorded at a centre-of-mass energy of 13 TeV, the efficiency of the di-$\tau$ tagger is determined and the background with quark- or gluon-initiated jets misidentified as di-$\tau$ objects is estimated. The search for a heavy, narrow, scalar resonance produced via gluon$-$gluon fusion and decaying into two Higgs bosons is carried out in the mass range 1$-$3 TeV using the same dataset. No deviations from the Standard Model predictions are observed, and 95% confidence-level exclusion limits are set on this model.

8 data tables match query

Signal acceptance times selection efficiency as a function of the resonance mass, at various stages of the event selection. From top to bottom: an event pre-selection (trigger, object definitions and $E_{T}^{miss}>10$ GeV) is performed first; the requirements on the di-$\tau$ object and large-$R$ jet detailed in the text are then applied; finally, the $HH$ SR definition must be satisfied.

Signal acceptance times selection efficiency as a function of the resonance mass, at various stages of the event selection. From top to bottom: an event pre-selection (trigger, object definitions and $E_{T}^{miss}>10$ GeV) is performed first; the requirements on the di-$\tau$ object and large-$R$ jet detailed in the text are then applied; finally, the $HH$ SR definition must be satisfied.

Distribution of $m^{vis}_{HH}$ after applying all the event selection that define the $HH$ SR, except the requirement on $m^{vis}_{HH}$. The background labelled as "Others" contains $W$+jets, diboson, $t\bar{t}$ and single-top-quark processes. The $X\rightarrow HH \rightarrow b\bar{b}\tau^{+}\tau^{-}$ signal is overlaid for two resonance mass hypotheses with a cross-section set to the expected limit, while all backgrounds are pre-fit. The first and the last bins contains the under-flow and over-flow bin entries, respectively. The hatched bands represent combined statistical and systematic uncertainties.

More…

Measurements of top-quark pair single- and double-differential cross-sections in the all-hadronic channel in $pp$ collisions at $\sqrt{s}=13~\textrm{TeV}$ using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 01 (2021) 033, 2021.
Inspire Record 1801434 DOI 10.17182/hepdata.103063

Differential cross-sections are measured for top-quark pair production in the all-hadronic decay mode, using proton$-$proton collision events collected by the ATLAS experiment in which all six decay jets are separately resolved. Absolute and normalised single- and double-differential cross-sections are measured at particle and parton level as a function of various kinematic variables. Emphasis is placed on well-measured observables in fully reconstructed final states, as well as on the study of correlations between the top-quark pair system and additional jet radiation identified in the event. The study is performed using data from proton$-$proton collisions at $\sqrt{s}=13~\mbox{TeV}$ collected by the ATLAS detector at CERN's Large Hadron Collider in 2015 and 2016, corresponding to an integrated luminosity of $\mbox{36.1 fb}^{-1}$. The rapidities of the individual top quarks and of the top-quark pair are well modelled by several independent event generators. Significant mismodelling is observed in the transverse momenta of the leading three jet emissions, while the leading top-quark transverse momentum and top-quark pair transverse momentum are both found to be incompatible with several theoretical predictions.

674 data tables match query

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Fiducial phase space definition:</b><br/> <ul> <li> NLEP = 0, either E or MU, PT &gt; 15 GeV, ABS ETA &lt; 1.37 <li> NJETS &gt;= 6, PT &gt; 25 GeV, ABS ETA &lt; 2.5 <li> NBJETS &gt;= 2 </ul><br/> <b>Particle level:</b><br/> <u>1D:</u><br/> Spectra: <ul> <li><a href="103063?version=1&table=Table 1">1/SIG*DSIG/DDR_E1J1</a> (Table 1) <li><a href="103063?version=1&table=Table 3">DSIG/DDR_E1J1</a> (Table 3) <li><a href="103063?version=1&table=Table 5">1/SIG*DSIG/DABS_T1_Y</a> (Table 5) <li><a href="103063?version=1&table=Table 7">DSIG/DABS_T1_Y</a> (Table 7) <li><a href="103063?version=1&table=Table 9">1/SIG*DSIG/DTT_M</a> (Table 9) <li><a href="103063?version=1&table=Table 11">DSIG/DTT_M</a> (Table 11) <li><a href="103063?version=1&table=Table 13">1/SIG*DSIG/DABS_T2_Y</a> (Table 13) <li><a href="103063?version=1&table=Table 15">DSIG/DABS_T2_Y</a> (Table 15) <li><a href="103063?version=1&table=Table 17">1/SIG*DSIG/DABS_TT_Y</a> (Table 17) <li><a href="103063?version=1&table=Table 19">DSIG/DABS_TT_Y</a> (Table 19) <li><a href="103063?version=1&table=Table 21">1/SIG*DSIG/DT1_PT</a> (Table 21) <li><a href="103063?version=1&table=Table 23">DSIG/DT1_PT</a> (Table 23) <li><a href="103063?version=1&table=Table 25">1/SIG*DSIG/DT2_PT</a> (Table 25) <li><a href="103063?version=1&table=Table 27">DSIG/DT2_PT</a> (Table 27) <li><a href="103063?version=1&table=Table 29">1/SIG*DSIG/DTT_PT</a> (Table 29) <li><a href="103063?version=1&table=Table 31">DSIG/DTT_PT</a> (Table 31) <li><a href="103063?version=1&table=Table 33">1/SIG*DSIG/DN_JETS</a> (Table 33) <li><a href="103063?version=1&table=Table 35">DSIG/DN_JETS</a> (Table 35) <li><a href="103063?version=1&table=Table 37">1/SIG*DSIG/DDELTAPHI</a> (Table 37) <li><a href="103063?version=1&table=Table 39">DSIG/DDELTAPHI</a> (Table 39) <li><a href="103063?version=1&table=Table 41">1/SIG*DSIG/DABSPOUT</a> (Table 41) <li><a href="103063?version=1&table=Table 43">DSIG/DABSPOUT</a> (Table 43) <li><a href="103063?version=1&table=Table 45">1/SIG*DSIG/DABSPCROSS</a> (Table 45) <li><a href="103063?version=1&table=Table 47">DSIG/DABSPCROSS</a> (Table 47) <li><a href="103063?version=1&table=Table 49">1/SIG*DSIG/DZ_TT</a> (Table 49) <li><a href="103063?version=1&table=Table 51">DSIG/DZ_TT</a> (Table 51) <li><a href="103063?version=1&table=Table 53">1/SIG*DSIG/DHT_TT</a> (Table 53) <li><a href="103063?version=1&table=Table 55">DSIG/DHT_TT</a> (Table 55) <li><a href="103063?version=1&table=Table 57">1/SIG*DSIG/DABS_Y_BOOST </a> (Table 57) <li><a href="103063?version=1&table=Table 59">DSIG/DABS_Y_BOOST </a> (Table 59) <li><a href="103063?version=1&table=Table 61">1/SIG*DSIG/DCHI_TT</a> (Table 61) <li><a href="103063?version=1&table=Table 63">DSIG/DCHI_TT</a> (Table 63) <li><a href="103063?version=1&table=Table 65">1/SIG*DSIG/DRWT1</a> (Table 65) <li><a href="103063?version=1&table=Table 67">DSIG/DRWT1</a> (Table 67) <li><a href="103063?version=1&table=Table 69">1/SIG*DSIG/DRWT2</a> (Table 69) <li><a href="103063?version=1&table=Table 71">DSIG/DRWT2</a> (Table 71) <li><a href="103063?version=1&table=Table 73">1/SIG*DSIG/DRWB1</a> (Table 73) <li><a href="103063?version=1&table=Table 75">DSIG/DRWB1</a> (Table 75) <li><a href="103063?version=1&table=Table 77">1/SIG*DSIG/DRWB2</a> (Table 77) <li><a href="103063?version=1&table=Table 79">DSIG/DRWB2</a> (Table 79) <li><a href="103063?version=1&table=Table 81">1/SIG*DSIG/DDR_E1TC</a> (Table 81) <li><a href="103063?version=1&table=Table 83">DSIG/DDR_E1TC</a> (Table 83) <li><a href="103063?version=1&table=Table 85">1/SIG*DSIG/DDR_E2TC</a> (Table 85) <li><a href="103063?version=1&table=Table 87">DSIG/DDR_E2TC</a> (Table 87) <li><a href="103063?version=1&table=Table 89">1/SIG*DSIG/DDR_E3TC</a> (Table 89) <li><a href="103063?version=1&table=Table 91">DSIG/DDR_E3TC</a> (Table 91) <li><a href="103063?version=1&table=Table 93">1/SIG*DSIG/DRPT_E1T1</a> (Table 93) <li><a href="103063?version=1&table=Table 95">DSIG/DRPT_E1T1</a> (Table 95) <li><a href="103063?version=1&table=Table 97">1/SIG*DSIG/DRPT_E2T1</a> (Table 97) <li><a href="103063?version=1&table=Table 99">DSIG/DRPT_E2T1</a> (Table 99) <li><a href="103063?version=1&table=Table 101">1/SIG*DSIG/DRPT_E3T1</a> (Table 101) <li><a href="103063?version=1&table=Table 103">DSIG/DRPT_E3T1</a> (Table 103) <li><a href="103063?version=1&table=Table 105">1/SIG*DSIG/DRPT_TTE1</a> (Table 105) <li><a href="103063?version=1&table=Table 107">DSIG/DRPT_TTE1</a> (Table 107) <li><a href="103063?version=1&table=Table 109">1/SIG*DSIG/DRPT_E1J1</a> (Table 109) <li><a href="103063?version=1&table=Table 111">DSIG/DRPT_E1J1</a> (Table 111) <li><a href="103063?version=1&table=Table 113">1/SIG*DSIG/DRPT_E2J1</a> (Table 113) <li><a href="103063?version=1&table=Table 115">DSIG/DRPT_E2J1</a> (Table 115) <li><a href="103063?version=1&table=Table 117">1/SIG*DSIG/DRPT_E3J1</a> (Table 117) <li><a href="103063?version=1&table=Table 119">DSIG/DRPT_E3J1</a> (Table 119) <li><a href="103063?version=1&table=Table 121">1/SIG*DSIG/DDR_E2E1</a> (Table 121) <li><a href="103063?version=1&table=Table 123">DSIG/DDR_E2E1</a> (Table 123) <li><a href="103063?version=1&table=Table 125">1/SIG*DSIG/DDR_E3E1</a> (Table 125) <li><a href="103063?version=1&table=Table 127">DSIG/DDR_E3E1</a> (Table 127) <li><a href="103063?version=1&table=Table 129">1/SIG*DSIG/DRPT_E2E1</a> (Table 129) <li><a href="103063?version=1&table=Table 131">DSIG/DRPT_E2E1</a> (Table 131) <li><a href="103063?version=1&table=Table 133">1/SIG*DSIG/DRPT_E3E1</a> (Table 133) <li><a href="103063?version=1&table=Table 135">DSIG/DRPT_E3E1</a> (Table 135) <li><a href="103063?version=1&table=Table 137">SIG</a> (Table 137) </ul><br/> Covariances: <ul> <li><a href="103063?version=1&table=Table 2">1/SIG*DSIG/DDR_E1J1</a> (Table 2) <li><a href="103063?version=1&table=Table 4">DSIG/DDR_E1J1</a> (Table 4) <li><a href="103063?version=1&table=Table 6">1/SIG*DSIG/DABS_T1_Y</a> (Table 6) <li><a href="103063?version=1&table=Table 8">DSIG/DABS_T1_Y</a> (Table 8) <li><a href="103063?version=1&table=Table 10">1/SIG*DSIG/DTT_M</a> (Table 10) <li><a href="103063?version=1&table=Table 12">DSIG/DTT_M</a> (Table 12) <li><a href="103063?version=1&table=Table 14">1/SIG*DSIG/DABS_T2_Y</a> (Table 14) <li><a href="103063?version=1&table=Table 16">DSIG/DABS_T2_Y</a> (Table 16) <li><a href="103063?version=1&table=Table 18">1/SIG*DSIG/DABS_TT_Y</a> (Table 18) <li><a href="103063?version=1&table=Table 20">DSIG/DABS_TT_Y</a> (Table 20) <li><a href="103063?version=1&table=Table 22">1/SIG*DSIG/DT1_PT</a> (Table 22) <li><a href="103063?version=1&table=Table 24">DSIG/DT1_PT</a> (Table 24) <li><a href="103063?version=1&table=Table 26">1/SIG*DSIG/DT2_PT</a> (Table 26) <li><a href="103063?version=1&table=Table 28">DSIG/DT2_PT</a> (Table 28) <li><a href="103063?version=1&table=Table 30">1/SIG*DSIG/DTT_PT</a> (Table 30) <li><a href="103063?version=1&table=Table 32">DSIG/DTT_PT</a> (Table 32) <li><a href="103063?version=1&table=Table 34">1/SIG*DSIG/DN_JETS</a> (Table 34) <li><a href="103063?version=1&table=Table 36">DSIG/DN_JETS</a> (Table 36) <li><a href="103063?version=1&table=Table 38">1/SIG*DSIG/DDELTAPHI</a> (Table 38) <li><a href="103063?version=1&table=Table 40">DSIG/DDELTAPHI</a> (Table 40) <li><a href="103063?version=1&table=Table 42">1/SIG*DSIG/DABSPOUT</a> (Table 42) <li><a href="103063?version=1&table=Table 44">DSIG/DABSPOUT</a> (Table 44) <li><a href="103063?version=1&table=Table 46">1/SIG*DSIG/DABSPCROSS</a> (Table 46) <li><a href="103063?version=1&table=Table 48">DSIG/DABSPCROSS</a> (Table 48) <li><a href="103063?version=1&table=Table 50">1/SIG*DSIG/DZ_TT</a> (Table 50) <li><a href="103063?version=1&table=Table 52">DSIG/DZ_TT</a> (Table 52) <li><a href="103063?version=1&table=Table 54">1/SIG*DSIG/DHT_TT</a> (Table 54) <li><a href="103063?version=1&table=Table 56">DSIG/DHT_TT</a> (Table 56) <li><a href="103063?version=1&table=Table 58">1/SIG*DSIG/DABS_Y_BOOST </a> (Table 58) <li><a href="103063?version=1&table=Table 60">DSIG/DABS_Y_BOOST </a> (Table 60) <li><a href="103063?version=1&table=Table 62">1/SIG*DSIG/DCHI_TT</a> (Table 62) <li><a href="103063?version=1&table=Table 64">DSIG/DCHI_TT</a> (Table 64) <li><a href="103063?version=1&table=Table 66">1/SIG*DSIG/DRWT1</a> (Table 66) <li><a href="103063?version=1&table=Table 68">DSIG/DRWT1</a> (Table 68) <li><a href="103063?version=1&table=Table 70">1/SIG*DSIG/DRWT2</a> (Table 70) <li><a href="103063?version=1&table=Table 72">DSIG/DRWT2</a> (Table 72) <li><a href="103063?version=1&table=Table 74">1/SIG*DSIG/DRWB1</a> (Table 74) <li><a href="103063?version=1&table=Table 76">DSIG/DRWB1</a> (Table 76) <li><a href="103063?version=1&table=Table 78">1/SIG*DSIG/DRWB2</a> (Table 78) <li><a href="103063?version=1&table=Table 80">DSIG/DRWB2</a> (Table 80) <li><a href="103063?version=1&table=Table 82">1/SIG*DSIG/DDR_E1TC</a> (Table 82) <li><a href="103063?version=1&table=Table 84">DSIG/DDR_E1TC</a> (Table 84) <li><a href="103063?version=1&table=Table 86">1/SIG*DSIG/DDR_E2TC</a> (Table 86) <li><a href="103063?version=1&table=Table 88">DSIG/DDR_E2TC</a> (Table 88) <li><a href="103063?version=1&table=Table 90">1/SIG*DSIG/DDR_E3TC</a> (Table 90) <li><a href="103063?version=1&table=Table 92">DSIG/DDR_E3TC</a> (Table 92) <li><a href="103063?version=1&table=Table 94">1/SIG*DSIG/DRPT_E1T1</a> (Table 94) <li><a href="103063?version=1&table=Table 96">DSIG/DRPT_E1T1</a> (Table 96) <li><a href="103063?version=1&table=Table 98">1/SIG*DSIG/DRPT_E2T1</a> (Table 98) <li><a href="103063?version=1&table=Table 100">DSIG/DRPT_E2T1</a> (Table 100) <li><a href="103063?version=1&table=Table 102">1/SIG*DSIG/DRPT_E3T1</a> (Table 102) <li><a href="103063?version=1&table=Table 104">DSIG/DRPT_E3T1</a> (Table 104) <li><a href="103063?version=1&table=Table 106">1/SIG*DSIG/DRPT_TTE1</a> (Table 106) <li><a href="103063?version=1&table=Table 108">DSIG/DRPT_TTE1</a> (Table 108) <li><a href="103063?version=1&table=Table 110">1/SIG*DSIG/DRPT_E1J1</a> (Table 110) <li><a href="103063?version=1&table=Table 112">DSIG/DRPT_E1J1</a> (Table 112) <li><a href="103063?version=1&table=Table 114">1/SIG*DSIG/DRPT_E2J1</a> (Table 114) <li><a href="103063?version=1&table=Table 116">DSIG/DRPT_E2J1</a> (Table 116) <li><a href="103063?version=1&table=Table 118">1/SIG*DSIG/DRPT_E3J1</a> (Table 118) <li><a href="103063?version=1&table=Table 120">DSIG/DRPT_E3J1</a> (Table 120) <li><a href="103063?version=1&table=Table 122">1/SIG*DSIG/DDR_E2E1</a> (Table 122) <li><a href="103063?version=1&table=Table 124">DSIG/DDR_E2E1</a> (Table 124) <li><a href="103063?version=1&table=Table 126">1/SIG*DSIG/DDR_E3E1</a> (Table 126) <li><a href="103063?version=1&table=Table 128">DSIG/DDR_E3E1</a> (Table 128) <li><a href="103063?version=1&table=Table 130">1/SIG*DSIG/DRPT_E2E1</a> (Table 130) <li><a href="103063?version=1&table=Table 132">DSIG/DRPT_E2E1</a> (Table 132) <li><a href="103063?version=1&table=Table 134">1/SIG*DSIG/DRPT_E3E1</a> (Table 134) <li><a href="103063?version=1&table=Table 136">DSIG/DRPT_E3E1</a> (Table 136) </ul><br/> <u>2D:</u><br/> Spectra: <ul> <li><a href="103063?version=1&table=Table 138">1/SIG*D2SIG/DT1_PT/DN_JETS (N_JETS = 6)</a> (Table 138) <li><a href="103063?version=1&table=Table 139">1/SIG*D2SIG/DT1_PT/DN_JETS (N_JETS = 7)</a> (Table 139) <li><a href="103063?version=1&table=Table 140">1/SIG*D2SIG/DT1_PT/DN_JETS (N_JETS = 8)</a> (Table 140) <li><a href="103063?version=1&table=Table 141">1/SIG*D2SIG/DT1_PT/DN_JETS (N_JETS > 8)</a> (Table 141) <li><a href="103063?version=1&table=Table 152">D2SIG/DT1_PT/DN_JETS (N_JETS = 6)</a> (Table 152) <li><a href="103063?version=1&table=Table 153">D2SIG/DT1_PT/DN_JETS (N_JETS = 7)</a> (Table 153) <li><a href="103063?version=1&table=Table 154">D2SIG/DT1_PT/DN_JETS (N_JETS = 8)</a> (Table 154) <li><a href="103063?version=1&table=Table 155">D2SIG/DT1_PT/DN_JETS (N_JETS > 8)</a> (Table 155) <li><a href="103063?version=1&table=Table 166">1/SIG*D2SIG/DT2_PT/DN_JETS (N_JETS = 6)</a> (Table 166) <li><a href="103063?version=1&table=Table 167">1/SIG*D2SIG/DT2_PT/DN_JETS (N_JETS = 7)</a> (Table 167) <li><a href="103063?version=1&table=Table 168">1/SIG*D2SIG/DT2_PT/DN_JETS (N_JETS = 8)</a> (Table 168) <li><a href="103063?version=1&table=Table 169">1/SIG*D2SIG/DT2_PT/DN_JETS (N_JETS > 8)</a> (Table 169) <li><a href="103063?version=1&table=Table 180">D2SIG/DT2_PT/DN_JETS (N_JETS = 6)</a> (Table 180) <li><a href="103063?version=1&table=Table 181">D2SIG/DT2_PT/DN_JETS (N_JETS = 7)</a> (Table 181) <li><a href="103063?version=1&table=Table 182">D2SIG/DT2_PT/DN_JETS (N_JETS = 8)</a> (Table 182) <li><a href="103063?version=1&table=Table 183">D2SIG/DT2_PT/DN_JETS (N_JETS > 8)</a> (Table 183) <li><a href="103063?version=1&table=Table 194">1/SIG*D2SIG/DTT_PT/DN_JETS (N_JETS = 6)</a> (Table 194) <li><a href="103063?version=1&table=Table 195">1/SIG*D2SIG/DTT_PT/DN_JETS (N_JETS = 7)</a> (Table 195) <li><a href="103063?version=1&table=Table 196">1/SIG*D2SIG/DTT_PT/DN_JETS (N_JETS = 8)</a> (Table 196) <li><a href="103063?version=1&table=Table 197">1/SIG*D2SIG/DTT_PT/DN_JETS (N_JETS > 8)</a> (Table 197) <li><a href="103063?version=1&table=Table 208">D2SIG/DTT_PT/DN_JETS (N_JETS = 6)</a> (Table 208) <li><a href="103063?version=1&table=Table 209">D2SIG/DTT_PT/DN_JETS (N_JETS = 7)</a> (Table 209) <li><a href="103063?version=1&table=Table 210">D2SIG/DTT_PT/DN_JETS (N_JETS = 8)</a> (Table 210) <li><a href="103063?version=1&table=Table 211">D2SIG/DTT_PT/DN_JETS (N_JETS > 8)</a> (Table 211) <li><a href="103063?version=1&table=Table 222">1/SIG*D2SIG/DABSPOUT/DN_JETS (N_JETS = 6)</a> (Table 222) <li><a href="103063?version=1&table=Table 223">1/SIG*D2SIG/DABSPOUT/DN_JETS (N_JETS = 7)</a> (Table 223) <li><a href="103063?version=1&table=Table 224">1/SIG*D2SIG/DABSPOUT/DN_JETS (N_JETS = 8)</a> (Table 224) <li><a href="103063?version=1&table=Table 225">1/SIG*D2SIG/DABSPOUT/DN_JETS (N_JETS > 8)</a> (Table 225) <li><a href="103063?version=1&table=Table 236">D2SIG/DABSPOUT/DN_JETS (N_JETS = 6)</a> (Table 236) <li><a href="103063?version=1&table=Table 237">D2SIG/DABSPOUT/DN_JETS (N_JETS = 7)</a> (Table 237) <li><a href="103063?version=1&table=Table 238">D2SIG/DABSPOUT/DN_JETS (N_JETS = 8)</a> (Table 238) <li><a href="103063?version=1&table=Table 239">D2SIG/DABSPOUT/DN_JETS (N_JETS > 8)</a> (Table 239) <li><a href="103063?version=1&table=Table 250">1/SIG*D2SIG/DDELTAPHI/DN_JETS (N_JETS = 6)</a> (Table 250) <li><a href="103063?version=1&table=Table 251">1/SIG*D2SIG/DDELTAPHI/DN_JETS (N_JETS = 7)</a> (Table 251) <li><a href="103063?version=1&table=Table 252">1/SIG*D2SIG/DDELTAPHI/DN_JETS (N_JETS = 8)</a> (Table 252) <li><a href="103063?version=1&table=Table 253">1/SIG*D2SIG/DDELTAPHI/DN_JETS (N_JETS > 8)</a> (Table 253) <li><a href="103063?version=1&table=Table 264">D2SIG/DDELTAPHI/DN_JETS (N_JETS = 6)</a> (Table 264) <li><a href="103063?version=1&table=Table 265">D2SIG/DDELTAPHI/DN_JETS (N_JETS = 7)</a> (Table 265) <li><a href="103063?version=1&table=Table 266">D2SIG/DDELTAPHI/DN_JETS (N_JETS = 8)</a> (Table 266) <li><a href="103063?version=1&table=Table 267">D2SIG/DDELTAPHI/DN_JETS (N_JETS > 8)</a> (Table 267) <li><a href="103063?version=1&table=Table 278">1/SIG*D2SIG/DABSPCROSS/DN_JETS (N_JETS = 6)</a> (Table 278) <li><a href="103063?version=1&table=Table 279">1/SIG*D2SIG/DABSPCROSS/DN_JETS (N_JETS = 7)</a> (Table 279) <li><a href="103063?version=1&table=Table 280">1/SIG*D2SIG/DABSPCROSS/DN_JETS (N_JETS = 8)</a> (Table 280) <li><a href="103063?version=1&table=Table 281">1/SIG*D2SIG/DABSPCROSS/DN_JETS (N_JETS > 8)</a> (Table 281) <li><a href="103063?version=1&table=Table 292">D2SIG/DABSPCROSS/DN_JETS (N_JETS = 6)</a> (Table 292) <li><a href="103063?version=1&table=Table 293">D2SIG/DABSPCROSS/DN_JETS (N_JETS = 7)</a> (Table 293) <li><a href="103063?version=1&table=Table 294">D2SIG/DABSPCROSS/DN_JETS (N_JETS = 8)</a> (Table 294) <li><a href="103063?version=1&table=Table 295">D2SIG/DABSPCROSS/DN_JETS (N_JETS > 8)</a> (Table 295) <li><a href="103063?version=1&table=Table 306">1/SIG*D2SIG/DT2_PT/DTT_M ( 0.0 GeV < TT_M < 620.0 GeV)</a> (Table 306) <li><a href="103063?version=1&table=Table 307">1/SIG*D2SIG/DT2_PT/DTT_M ( 620.0 GeV < TT_M < 835.0 GeV)</a> (Table 307) <li><a href="103063?version=1&table=Table 308">1/SIG*D2SIG/DT2_PT/DTT_M ( 835.0 GeV < TT_M < 1050.0 GeV)</a> (Table 308) <li><a href="103063?version=1&table=Table 309">1/SIG*D2SIG/DT2_PT/DTT_M ( 1050.0 GeV < TT_M < 3000.0 GeV)</a> (Table 309) <li><a href="103063?version=1&table=Table 320">D2SIG/DT2_PT/DTT_M ( 0.0 GeV < TT_M < 620.0 GeV)</a> (Table 320) <li><a href="103063?version=1&table=Table 321">D2SIG/DT2_PT/DTT_M ( 620.0 GeV < TT_M < 835.0 GeV)</a> (Table 321) <li><a href="103063?version=1&table=Table 322">D2SIG/DT2_PT/DTT_M ( 835.0 GeV < TT_M < 1050.0 GeV)</a> (Table 322) <li><a href="103063?version=1&table=Table 323">D2SIG/DT2_PT/DTT_M ( 1050.0 GeV < TT_M < 3000.0 GeV)</a> (Table 323) <li><a href="103063?version=1&table=Table 334">1/SIG*D2SIG/DTT_PT/DTT_M ( 0.0 GeV < TT_M < 620.0 GeV)</a> (Table 334) <li><a href="103063?version=1&table=Table 335">1/SIG*D2SIG/DTT_PT/DTT_M ( 620.0 GeV < TT_M < 835.0 GeV)</a> (Table 335) <li><a href="103063?version=1&table=Table 336">1/SIG*D2SIG/DTT_PT/DTT_M ( 835.0 GeV < TT_M < 1050.0 GeV)</a> (Table 336) <li><a href="103063?version=1&table=Table 337">1/SIG*D2SIG/DTT_PT/DTT_M ( 1050.0 GeV < TT_M < 3000.0 GeV)</a> (Table 337) <li><a href="103063?version=1&table=Table 348">D2SIG/DTT_PT/DTT_M ( 0.0 GeV < TT_M < 620.0 GeV)</a> (Table 348) <li><a href="103063?version=1&table=Table 349">D2SIG/DTT_PT/DTT_M ( 620.0 GeV < TT_M < 835.0 GeV)</a> (Table 349) <li><a href="103063?version=1&table=Table 350">D2SIG/DTT_PT/DTT_M ( 835.0 GeV < TT_M < 1050.0 GeV)</a> (Table 350) <li><a href="103063?version=1&table=Table 351">D2SIG/DTT_PT/DTT_M ( 1050.0 GeV < TT_M < 3000.0 GeV)</a> (Table 351) <li><a href="103063?version=1&table=Table 362">1/SIG*D2SIG/DABS_TT_Y/DTT_M ( 0.0 GeV < TT_M < 620.0 GeV)</a> (Table 362) <li><a href="103063?version=1&table=Table 363">1/SIG*D2SIG/DABS_TT_Y/DTT_M ( 620.0 GeV < TT_M < 835.0 GeV)</a> (Table 363) <li><a href="103063?version=1&table=Table 364">1/SIG*D2SIG/DABS_TT_Y/DTT_M ( 835.0 GeV < TT_M < 1050.0 GeV)</a> (Table 364) <li><a href="103063?version=1&table=Table 365">1/SIG*D2SIG/DABS_TT_Y/DTT_M ( 1050.0 GeV < TT_M < 3000.0 GeV)</a> (Table 365) <li><a href="103063?version=1&table=Table 376">D2SIG/DABS_TT_Y/DTT_M ( 0.0 GeV < TT_M < 620.0 GeV)</a> (Table 376) <li><a href="103063?version=1&table=Table 377">D2SIG/DABS_TT_Y/DTT_M ( 620.0 GeV < TT_M < 835.0 GeV)</a> (Table 377) <li><a href="103063?version=1&table=Table 378">D2SIG/DABS_TT_Y/DTT_M ( 835.0 GeV < TT_M < 1050.0 GeV)</a> (Table 378) <li><a href="103063?version=1&table=Table 379">D2SIG/DABS_TT_Y/DTT_M ( 1050.0 GeV < TT_M < 3000.0 GeV)</a> (Table 379) <li><a href="103063?version=1&table=Table 390">1/SIG*D2SIG/DT1_PT/DT2_PT ( 0.0 GeV < T2_PT < 175.0 GeV)</a> (Table 390) <li><a href="103063?version=1&table=Table 391">1/SIG*D2SIG/DT1_PT/DT2_PT ( 175.0 GeV < T2_PT < 275.0 GeV)</a> (Table 391) <li><a href="103063?version=1&table=Table 392">1/SIG*D2SIG/DT1_PT/DT2_PT ( 275.0 GeV < T2_PT < 385.0 GeV)</a> (Table 392) <li><a href="103063?version=1&table=Table 393">1/SIG*D2SIG/DT1_PT/DT2_PT ( 385.0 GeV < T2_PT < 1000.0 GeV)</a> (Table 393) <li><a href="103063?version=1&table=Table 404">D2SIG/DT1_PT/DT2_PT ( 0.0 GeV < T2_PT < 175.0 GeV)</a> (Table 404) <li><a href="103063?version=1&table=Table 405">D2SIG/DT1_PT/DT2_PT ( 175.0 GeV < T2_PT < 275.0 GeV)</a> (Table 405) <li><a href="103063?version=1&table=Table 406">D2SIG/DT1_PT/DT2_PT ( 275.0 GeV < T2_PT < 385.0 GeV)</a> (Table 406) <li><a href="103063?version=1&table=Table 407">D2SIG/DT1_PT/DT2_PT ( 385.0 GeV < T2_PT < 1000.0 GeV)</a> (Table 407) <li><a href="103063?version=1&table=Table 418">1/SIG*D2SIG/DT1_PT/DTT_M ( 0.0 GeV < TT_M < 645.0 GeV)</a> (Table 418) <li><a href="103063?version=1&table=Table 419">1/SIG*D2SIG/DT1_PT/DTT_M ( 645.0 GeV < TT_M < 795.0 GeV)</a> (Table 419) <li><a href="103063?version=1&table=Table 420">1/SIG*D2SIG/DT1_PT/DTT_M ( 795.0 GeV < TT_M < 1080.0 GeV)</a> (Table 420) <li><a href="103063?version=1&table=Table 421">1/SIG*D2SIG/DT1_PT/DTT_M ( 1080.0 GeV < TT_M < 3000.0 GeV)</a> (Table 421) <li><a href="103063?version=1&table=Table 432">D2SIG/DT1_PT/DTT_M ( 0.0 GeV < TT_M < 645.0 GeV)</a> (Table 432) <li><a href="103063?version=1&table=Table 433">D2SIG/DT1_PT/DTT_M ( 645.0 GeV < TT_M < 795.0 GeV)</a> (Table 433) <li><a href="103063?version=1&table=Table 434">D2SIG/DT1_PT/DTT_M ( 795.0 GeV < TT_M < 1080.0 GeV)</a> (Table 434) <li><a href="103063?version=1&table=Table 435">D2SIG/DT1_PT/DTT_M ( 1080.0 GeV < TT_M < 3000.0 GeV)</a> (Table 435) </ul><br/> Covariances:<br/><ul> <li><a href="103063?version=1&table=Table 142">Matrix for 1/SIG*D2SIG/DT1_PT/DN_JETS between the 1th and 1th bins of N_JETS</a> (Table 142) <li><a href="103063?version=1&table=Table 143">Matrix for 1/SIG*D2SIG/DT1_PT/DN_JETS between the 2th and 1th bins of N_JETS</a> (Table 143) <li><a href="103063?version=1&table=Table 144">Matrix for 1/SIG*D2SIG/DT1_PT/DN_JETS between the 2th and 2th bins of N_JETS</a> (Table 144) <li><a href="103063?version=1&table=Table 145">Matrix for 1/SIG*D2SIG/DT1_PT/DN_JETS between the 3th and 1th bins of N_JETS</a> (Table 145) <li><a href="103063?version=1&table=Table 146">Matrix for 1/SIG*D2SIG/DT1_PT/DN_JETS between the 3th and 2th bins of N_JETS</a> (Table 146) <li><a href="103063?version=1&table=Table 147">Matrix for 1/SIG*D2SIG/DT1_PT/DN_JETS between the 3th and 3th bins of N_JETS</a> (Table 147) <li><a href="103063?version=1&table=Table 148">Matrix for 1/SIG*D2SIG/DT1_PT/DN_JETS between the 4th and 1th bins of N_JETS</a> (Table 148) <li><a href="103063?version=1&table=Table 149">Matrix for 1/SIG*D2SIG/DT1_PT/DN_JETS between the 4th and 2th bins of N_JETS</a> (Table 149) <li><a href="103063?version=1&table=Table 150">Matrix for 1/SIG*D2SIG/DT1_PT/DN_JETS between the 4th and 3th bins of N_JETS</a> (Table 150) <li><a href="103063?version=1&table=Table 151">Matrix for 1/SIG*D2SIG/DT1_PT/DN_JETS between the 4th and 4th bins of N_JETS</a> (Table 151) <li><a href="103063?version=1&table=Table 156">Matrix for D2SIG/DT1_PT/DN_JETS between the 1th and 1th bins of N_JETS</a> (Table 156) <li><a href="103063?version=1&table=Table 157">Matrix for D2SIG/DT1_PT/DN_JETS between the 2th and 1th bins of N_JETS</a> (Table 157) <li><a href="103063?version=1&table=Table 158">Matrix for D2SIG/DT1_PT/DN_JETS between the 2th and 2th bins of N_JETS</a> (Table 158) <li><a href="103063?version=1&table=Table 159">Matrix for D2SIG/DT1_PT/DN_JETS between the 3th and 1th bins of N_JETS</a> (Table 159) <li><a href="103063?version=1&table=Table 160">Matrix for D2SIG/DT1_PT/DN_JETS between the 3th and 2th bins of N_JETS</a> (Table 160) <li><a href="103063?version=1&table=Table 161">Matrix for D2SIG/DT1_PT/DN_JETS between the 3th and 3th bins of N_JETS</a> (Table 161) <li><a href="103063?version=1&table=Table 162">Matrix for D2SIG/DT1_PT/DN_JETS between the 4th and 1th bins of N_JETS</a> (Table 162) <li><a href="103063?version=1&table=Table 163">Matrix for D2SIG/DT1_PT/DN_JETS between the 4th and 2th bins of N_JETS</a> (Table 163) <li><a href="103063?version=1&table=Table 164">Matrix for D2SIG/DT1_PT/DN_JETS between the 4th and 3th bins of N_JETS</a> (Table 164) <li><a href="103063?version=1&table=Table 165">Matrix for D2SIG/DT1_PT/DN_JETS between the 4th and 4th bins of N_JETS</a> (Table 165) <li><a href="103063?version=1&table=Table 170">Matrix for 1/SIG*D2SIG/DT2_PT/DN_JETS between the 1th and 1th bins of N_JETS</a> (Table 170) <li><a href="103063?version=1&table=Table 171">Matrix for 1/SIG*D2SIG/DT2_PT/DN_JETS between the 2th and 1th bins of N_JETS</a> (Table 171) <li><a href="103063?version=1&table=Table 172">Matrix for 1/SIG*D2SIG/DT2_PT/DN_JETS between the 2th and 2th bins of N_JETS</a> (Table 172) <li><a href="103063?version=1&table=Table 173">Matrix for 1/SIG*D2SIG/DT2_PT/DN_JETS between the 3th and 1th bins of N_JETS</a> (Table 173) <li><a href="103063?version=1&table=Table 174">Matrix for 1/SIG*D2SIG/DT2_PT/DN_JETS between the 3th and 2th bins of N_JETS</a> (Table 174) <li><a href="103063?version=1&table=Table 175">Matrix for 1/SIG*D2SIG/DT2_PT/DN_JETS between the 3th and 3th bins of N_JETS</a> (Table 175) <li><a href="103063?version=1&table=Table 176">Matrix for 1/SIG*D2SIG/DT2_PT/DN_JETS between the 4th and 1th bins of N_JETS</a> (Table 176) <li><a href="103063?version=1&table=Table 177">Matrix for 1/SIG*D2SIG/DT2_PT/DN_JETS between the 4th and 2th bins of N_JETS</a> (Table 177) <li><a href="103063?version=1&table=Table 178">Matrix for 1/SIG*D2SIG/DT2_PT/DN_JETS between the 4th and 3th bins of N_JETS</a> (Table 178) <li><a href="103063?version=1&table=Table 179">Matrix for 1/SIG*D2SIG/DT2_PT/DN_JETS between the 4th and 4th bins of N_JETS</a> (Table 179) <li><a href="103063?version=1&table=Table 184">Matrix for D2SIG/DT2_PT/DN_JETS between the 1th and 1th bins of N_JETS</a> (Table 184) <li><a href="103063?version=1&table=Table 185">Matrix for D2SIG/DT2_PT/DN_JETS between the 2th and 1th bins of N_JETS</a> (Table 185) <li><a href="103063?version=1&table=Table 186">Matrix for D2SIG/DT2_PT/DN_JETS between the 2th and 2th bins of N_JETS</a> (Table 186) <li><a href="103063?version=1&table=Table 187">Matrix for D2SIG/DT2_PT/DN_JETS between the 3th and 1th bins of N_JETS</a> (Table 187) <li><a href="103063?version=1&table=Table 188">Matrix for D2SIG/DT2_PT/DN_JETS between the 3th and 2th bins of N_JETS</a> (Table 188) <li><a href="103063?version=1&table=Table 189">Matrix for D2SIG/DT2_PT/DN_JETS between the 3th and 3th bins of N_JETS</a> (Table 189) <li><a href="103063?version=1&table=Table 190">Matrix for D2SIG/DT2_PT/DN_JETS between the 4th and 1th bins of N_JETS</a> (Table 190) <li><a href="103063?version=1&table=Table 191">Matrix for D2SIG/DT2_PT/DN_JETS between the 4th and 2th bins of N_JETS</a> (Table 191) <li><a href="103063?version=1&table=Table 192">Matrix for D2SIG/DT2_PT/DN_JETS between the 4th and 3th bins of N_JETS</a> (Table 192) <li><a href="103063?version=1&table=Table 193">Matrix for D2SIG/DT2_PT/DN_JETS between the 4th and 4th bins of N_JETS</a> (Table 193) <li><a href="103063?version=1&table=Table 198">Matrix for 1/SIG*D2SIG/DTT_PT/DN_JETS between the 1th and 1th bins of N_JETS</a> (Table 198) <li><a href="103063?version=1&table=Table 199">Matrix for 1/SIG*D2SIG/DTT_PT/DN_JETS between the 2th and 1th bins of N_JETS</a> (Table 199) <li><a href="103063?version=1&table=Table 200">Matrix for 1/SIG*D2SIG/DTT_PT/DN_JETS between the 2th and 2th bins of N_JETS</a> (Table 200) <li><a href="103063?version=1&table=Table 201">Matrix for 1/SIG*D2SIG/DTT_PT/DN_JETS between the 3th and 1th bins of N_JETS</a> (Table 201) <li><a href="103063?version=1&table=Table 202">Matrix for 1/SIG*D2SIG/DTT_PT/DN_JETS between the 3th and 2th bins of N_JETS</a> (Table 202) <li><a href="103063?version=1&table=Table 203">Matrix for 1/SIG*D2SIG/DTT_PT/DN_JETS between the 3th and 3th bins of N_JETS</a> (Table 203) <li><a href="103063?version=1&table=Table 204">Matrix for 1/SIG*D2SIG/DTT_PT/DN_JETS between the 4th and 1th bins of N_JETS</a> (Table 204) <li><a href="103063?version=1&table=Table 205">Matrix for 1/SIG*D2SIG/DTT_PT/DN_JETS between the 4th and 2th bins of N_JETS</a> (Table 205) <li><a href="103063?version=1&table=Table 206">Matrix for 1/SIG*D2SIG/DTT_PT/DN_JETS between the 4th and 3th bins of N_JETS</a> (Table 206) <li><a href="103063?version=1&table=Table 207">Matrix for 1/SIG*D2SIG/DTT_PT/DN_JETS between the 4th and 4th bins of N_JETS</a> (Table 207) <li><a href="103063?version=1&table=Table 212">Matrix for D2SIG/DTT_PT/DN_JETS between the 1th and 1th bins of N_JETS</a> (Table 212) <li><a href="103063?version=1&table=Table 213">Matrix for D2SIG/DTT_PT/DN_JETS between the 2th and 1th bins of N_JETS</a> (Table 213) <li><a href="103063?version=1&table=Table 214">Matrix for D2SIG/DTT_PT/DN_JETS between the 2th and 2th bins of N_JETS</a> (Table 214) <li><a href="103063?version=1&table=Table 215">Matrix for D2SIG/DTT_PT/DN_JETS between the 3th and 1th bins of N_JETS</a> (Table 215) <li><a href="103063?version=1&table=Table 216">Matrix for D2SIG/DTT_PT/DN_JETS between the 3th and 2th bins of N_JETS</a> (Table 216) <li><a href="103063?version=1&table=Table 217">Matrix for D2SIG/DTT_PT/DN_JETS between the 3th and 3th bins of N_JETS</a> (Table 217) <li><a href="103063?version=1&table=Table 218">Matrix for D2SIG/DTT_PT/DN_JETS between the 4th and 1th bins of N_JETS</a> (Table 218) <li><a href="103063?version=1&table=Table 219">Matrix for D2SIG/DTT_PT/DN_JETS between the 4th and 2th bins of N_JETS</a> (Table 219) <li><a href="103063?version=1&table=Table 220">Matrix for D2SIG/DTT_PT/DN_JETS between the 4th and 3th bins of N_JETS</a> (Table 220) <li><a href="103063?version=1&table=Table 221">Matrix for D2SIG/DTT_PT/DN_JETS between the 4th and 4th bins of N_JETS</a> (Table 221) <li><a href="103063?version=1&table=Table 226">Matrix for 1/SIG*D2SIG/DABSPOUT/DN_JETS between the 1th and 1th bins of N_JETS</a> (Table 226) <li><a href="103063?version=1&table=Table 227">Matrix for 1/SIG*D2SIG/DABSPOUT/DN_JETS between the 2th and 1th bins of N_JETS</a> (Table 227) <li><a href="103063?version=1&table=Table 228">Matrix for 1/SIG*D2SIG/DABSPOUT/DN_JETS between the 2th and 2th bins of N_JETS</a> (Table 228) <li><a href="103063?version=1&table=Table 229">Matrix for 1/SIG*D2SIG/DABSPOUT/DN_JETS between the 3th and 1th bins of N_JETS</a> (Table 229) <li><a href="103063?version=1&table=Table 230">Matrix for 1/SIG*D2SIG/DABSPOUT/DN_JETS between the 3th and 2th bins of N_JETS</a> (Table 230) <li><a href="103063?version=1&table=Table 231">Matrix for 1/SIG*D2SIG/DABSPOUT/DN_JETS between the 3th and 3th bins of N_JETS</a> (Table 231) <li><a href="103063?version=1&table=Table 232">Matrix for 1/SIG*D2SIG/DABSPOUT/DN_JETS between the 4th and 1th bins of N_JETS</a> (Table 232) <li><a href="103063?version=1&table=Table 233">Matrix for 1/SIG*D2SIG/DABSPOUT/DN_JETS between the 4th and 2th bins of N_JETS</a> (Table 233) <li><a href="103063?version=1&table=Table 234">Matrix for 1/SIG*D2SIG/DABSPOUT/DN_JETS between the 4th and 3th bins of N_JETS</a> (Table 234) <li><a href="103063?version=1&table=Table 235">Matrix for 1/SIG*D2SIG/DABSPOUT/DN_JETS between the 4th and 4th bins of N_JETS</a> (Table 235) <li><a href="103063?version=1&table=Table 240">Matrix for D2SIG/DABSPOUT/DN_JETS between the 1th and 1th bins of N_JETS</a> (Table 240) <li><a href="103063?version=1&table=Table 241">Matrix for D2SIG/DABSPOUT/DN_JETS between the 2th and 1th bins of N_JETS</a> (Table 241) <li><a href="103063?version=1&table=Table 242">Matrix for D2SIG/DABSPOUT/DN_JETS between the 2th and 2th bins of N_JETS</a> (Table 242) <li><a href="103063?version=1&table=Table 243">Matrix for D2SIG/DABSPOUT/DN_JETS between the 3th and 1th bins of N_JETS</a> (Table 243) <li><a href="103063?version=1&table=Table 244">Matrix for D2SIG/DABSPOUT/DN_JETS between the 3th and 2th bins of N_JETS</a> (Table 244) <li><a href="103063?version=1&table=Table 245">Matrix for D2SIG/DABSPOUT/DN_JETS between the 3th and 3th bins of N_JETS</a> (Table 245) <li><a href="103063?version=1&table=Table 246">Matrix for D2SIG/DABSPOUT/DN_JETS between the 4th and 1th bins of N_JETS</a> (Table 246) <li><a href="103063?version=1&table=Table 247">Matrix for D2SIG/DABSPOUT/DN_JETS between the 4th and 2th bins of N_JETS</a> (Table 247) <li><a href="103063?version=1&table=Table 248">Matrix for D2SIG/DABSPOUT/DN_JETS between the 4th and 3th bins of N_JETS</a> (Table 248) <li><a href="103063?version=1&table=Table 249">Matrix for D2SIG/DABSPOUT/DN_JETS between the 4th and 4th bins of N_JETS</a> (Table 249) <li><a href="103063?version=1&table=Table 254">Matrix for 1/SIG*D2SIG/DDELTAPHI/DN_JETS between the 1th and 1th bins of N_JETS</a> (Table 254) <li><a href="103063?version=1&table=Table 255">Matrix for 1/SIG*D2SIG/DDELTAPHI/DN_JETS between the 2th and 1th bins of N_JETS</a> (Table 255) <li><a href="103063?version=1&table=Table 256">Matrix for 1/SIG*D2SIG/DDELTAPHI/DN_JETS between the 2th and 2th bins of N_JETS</a> (Table 256) <li><a href="103063?version=1&table=Table 257">Matrix for 1/SIG*D2SIG/DDELTAPHI/DN_JETS between the 3th and 1th bins of N_JETS</a> (Table 257) <li><a href="103063?version=1&table=Table 258">Matrix for 1/SIG*D2SIG/DDELTAPHI/DN_JETS between the 3th and 2th bins of N_JETS</a> (Table 258) <li><a href="103063?version=1&table=Table 259">Matrix for 1/SIG*D2SIG/DDELTAPHI/DN_JETS between the 3th and 3th bins of N_JETS</a> (Table 259) <li><a href="103063?version=1&table=Table 260">Matrix for 1/SIG*D2SIG/DDELTAPHI/DN_JETS between the 4th and 1th bins of N_JETS</a> (Table 260) <li><a href="103063?version=1&table=Table 261">Matrix for 1/SIG*D2SIG/DDELTAPHI/DN_JETS between the 4th and 2th bins of N_JETS</a> (Table 261) <li><a href="103063?version=1&table=Table 262">Matrix for 1/SIG*D2SIG/DDELTAPHI/DN_JETS between the 4th and 3th bins of N_JETS</a> (Table 262) <li><a href="103063?version=1&table=Table 263">Matrix for 1/SIG*D2SIG/DDELTAPHI/DN_JETS between the 4th and 4th bins of N_JETS</a> (Table 263) <li><a href="103063?version=1&table=Table 268">Matrix for D2SIG/DDELTAPHI/DN_JETS between the 1th and 1th bins of N_JETS</a> (Table 268) <li><a href="103063?version=1&table=Table 269">Matrix for D2SIG/DDELTAPHI/DN_JETS between the 2th and 1th bins of N_JETS</a> (Table 269) <li><a href="103063?version=1&table=Table 270">Matrix for D2SIG/DDELTAPHI/DN_JETS between the 2th and 2th bins of N_JETS</a> (Table 270) <li><a href="103063?version=1&table=Table 271">Matrix for D2SIG/DDELTAPHI/DN_JETS between the 3th and 1th bins of N_JETS</a> (Table 271) <li><a href="103063?version=1&table=Table 272">Matrix for D2SIG/DDELTAPHI/DN_JETS between the 3th and 2th bins of N_JETS</a> (Table 272) <li><a href="103063?version=1&table=Table 273">Matrix for D2SIG/DDELTAPHI/DN_JETS between the 3th and 3th bins of N_JETS</a> (Table 273) <li><a href="103063?version=1&table=Table 274">Matrix for D2SIG/DDELTAPHI/DN_JETS between the 4th and 1th bins of N_JETS</a> (Table 274) <li><a href="103063?version=1&table=Table 275">Matrix for D2SIG/DDELTAPHI/DN_JETS between the 4th and 2th bins of N_JETS</a> (Table 275) <li><a href="103063?version=1&table=Table 276">Matrix for D2SIG/DDELTAPHI/DN_JETS between the 4th and 3th bins of N_JETS</a> (Table 276) <li><a href="103063?version=1&table=Table 277">Matrix for D2SIG/DDELTAPHI/DN_JETS between the 4th and 4th bins of N_JETS</a> (Table 277) <li><a href="103063?version=1&table=Table 282">Matrix for 1/SIG*D2SIG/DABSPCROSS/DN_JETS between the 1th and 1th bins of N_JETS</a> (Table 282) <li><a href="103063?version=1&table=Table 283">Matrix for 1/SIG*D2SIG/DABSPCROSS/DN_JETS between the 2th and 1th bins of N_JETS</a> (Table 283) <li><a href="103063?version=1&table=Table 284">Matrix for 1/SIG*D2SIG/DABSPCROSS/DN_JETS between the 2th and 2th bins of N_JETS</a> (Table 284) <li><a href="103063?version=1&table=Table 285">Matrix for 1/SIG*D2SIG/DABSPCROSS/DN_JETS between the 3th and 1th bins of N_JETS</a> (Table 285) <li><a href="103063?version=1&table=Table 286">Matrix for 1/SIG*D2SIG/DABSPCROSS/DN_JETS between the 3th and 2th bins of N_JETS</a> (Table 286) <li><a href="103063?version=1&table=Table 287">Matrix for 1/SIG*D2SIG/DABSPCROSS/DN_JETS between the 3th and 3th bins of N_JETS</a> (Table 287) <li><a href="103063?version=1&table=Table 288">Matrix for 1/SIG*D2SIG/DABSPCROSS/DN_JETS between the 4th and 1th bins of N_JETS</a> (Table 288) <li><a href="103063?version=1&table=Table 289">Matrix for 1/SIG*D2SIG/DABSPCROSS/DN_JETS between the 4th and 2th bins of N_JETS</a> (Table 289) <li><a href="103063?version=1&table=Table 290">Matrix for 1/SIG*D2SIG/DABSPCROSS/DN_JETS between the 4th and 3th bins of N_JETS</a> (Table 290) <li><a href="103063?version=1&table=Table 291">Matrix for 1/SIG*D2SIG/DABSPCROSS/DN_JETS between the 4th and 4th bins of N_JETS</a> (Table 291) <li><a href="103063?version=1&table=Table 296">Matrix for D2SIG/DABSPCROSS/DN_JETS between the 1th and 1th bins of N_JETS</a> (Table 296) <li><a href="103063?version=1&table=Table 297">Matrix for D2SIG/DABSPCROSS/DN_JETS between the 2th and 1th bins of N_JETS</a> (Table 297) <li><a href="103063?version=1&table=Table 298">Matrix for D2SIG/DABSPCROSS/DN_JETS between the 2th and 2th bins of N_JETS</a> (Table 298) <li><a href="103063?version=1&table=Table 299">Matrix for D2SIG/DABSPCROSS/DN_JETS between the 3th and 1th bins of N_JETS</a> (Table 299) <li><a href="103063?version=1&table=Table 300">Matrix for D2SIG/DABSPCROSS/DN_JETS between the 3th and 2th bins of N_JETS</a> (Table 300) <li><a href="103063?version=1&table=Table 301">Matrix for D2SIG/DABSPCROSS/DN_JETS between the 3th and 3th bins of N_JETS</a> (Table 301) <li><a href="103063?version=1&table=Table 302">Matrix for D2SIG/DABSPCROSS/DN_JETS between the 4th and 1th bins of N_JETS</a> (Table 302) <li><a href="103063?version=1&table=Table 303">Matrix for D2SIG/DABSPCROSS/DN_JETS between the 4th and 2th bins of N_JETS</a> (Table 303) <li><a href="103063?version=1&table=Table 304">Matrix for D2SIG/DABSPCROSS/DN_JETS between the 4th and 3th bins of N_JETS</a> (Table 304) <li><a href="103063?version=1&table=Table 305">Matrix for D2SIG/DABSPCROSS/DN_JETS between the 4th and 4th bins of N_JETS</a> (Table 305) <li><a href="103063?version=1&table=Table 310">Matrix for 1/SIG*D2SIG/DT2_PT/DTT_M between the 1th and 1th bins of TT_M</a> (Table 310) <li><a href="103063?version=1&table=Table 311">Matrix for 1/SIG*D2SIG/DT2_PT/DTT_M between the 2th and 1th bins of TT_M</a> (Table 311) <li><a href="103063?version=1&table=Table 312">Matrix for 1/SIG*D2SIG/DT2_PT/DTT_M between the 2th and 2th bins of TT_M</a> (Table 312) <li><a href="103063?version=1&table=Table 313">Matrix for 1/SIG*D2SIG/DT2_PT/DTT_M between the 3th and 1th bins of TT_M</a> (Table 313) <li><a href="103063?version=1&table=Table 314">Matrix for 1/SIG*D2SIG/DT2_PT/DTT_M between the 3th and 2th bins of TT_M</a> (Table 314) <li><a href="103063?version=1&table=Table 315">Matrix for 1/SIG*D2SIG/DT2_PT/DTT_M between the 3th and 3th bins of TT_M</a> (Table 315) <li><a href="103063?version=1&table=Table 316">Matrix for 1/SIG*D2SIG/DT2_PT/DTT_M between the 4th and 1th bins of TT_M</a> (Table 316) <li><a href="103063?version=1&table=Table 317">Matrix for 1/SIG*D2SIG/DT2_PT/DTT_M between the 4th and 2th bins of TT_M</a> (Table 317) <li><a href="103063?version=1&table=Table 318">Matrix for 1/SIG*D2SIG/DT2_PT/DTT_M between the 4th and 3th bins of TT_M</a> (Table 318) <li><a href="103063?version=1&table=Table 319">Matrix for 1/SIG*D2SIG/DT2_PT/DTT_M between the 4th and 4th bins of TT_M</a> (Table 319) <li><a href="103063?version=1&table=Table 324">Matrix for D2SIG/DT2_PT/DTT_M between the 1th and 1th bins of TT_M</a> (Table 324) <li><a href="103063?version=1&table=Table 325">Matrix for D2SIG/DT2_PT/DTT_M between the 2th and 1th bins of TT_M</a> (Table 325) <li><a href="103063?version=1&table=Table 326">Matrix for D2SIG/DT2_PT/DTT_M between the 2th and 2th bins of TT_M</a> (Table 326) <li><a href="103063?version=1&table=Table 327">Matrix for D2SIG/DT2_PT/DTT_M between the 3th and 1th bins of TT_M</a> (Table 327) <li><a href="103063?version=1&table=Table 328">Matrix for D2SIG/DT2_PT/DTT_M between the 3th and 2th bins of TT_M</a> (Table 328) <li><a href="103063?version=1&table=Table 329">Matrix for D2SIG/DT2_PT/DTT_M between the 3th and 3th bins of TT_M</a> (Table 329) <li><a href="103063?version=1&table=Table 330">Matrix for D2SIG/DT2_PT/DTT_M between the 4th and 1th bins of TT_M</a> (Table 330) <li><a href="103063?version=1&table=Table 331">Matrix for D2SIG/DT2_PT/DTT_M between the 4th and 2th bins of TT_M</a> (Table 331) <li><a href="103063?version=1&table=Table 332">Matrix for D2SIG/DT2_PT/DTT_M between the 4th and 3th bins of TT_M</a> (Table 332) <li><a href="103063?version=1&table=Table 333">Matrix for D2SIG/DT2_PT/DTT_M between the 4th and 4th bins of TT_M</a> (Table 333) <li><a href="103063?version=1&table=Table 338">Matrix for 1/SIG*D2SIG/DTT_PT/DTT_M between the 1th and 1th bins of TT_M</a> (Table 338) <li><a href="103063?version=1&table=Table 339">Matrix for 1/SIG*D2SIG/DTT_PT/DTT_M between the 2th and 1th bins of TT_M</a> (Table 339) <li><a href="103063?version=1&table=Table 340">Matrix for 1/SIG*D2SIG/DTT_PT/DTT_M between the 2th and 2th bins of TT_M</a> (Table 340) <li><a href="103063?version=1&table=Table 341">Matrix for 1/SIG*D2SIG/DTT_PT/DTT_M between the 3th and 1th bins of TT_M</a> (Table 341) <li><a href="103063?version=1&table=Table 342">Matrix for 1/SIG*D2SIG/DTT_PT/DTT_M between the 3th and 2th bins of TT_M</a> (Table 342) <li><a href="103063?version=1&table=Table 343">Matrix for 1/SIG*D2SIG/DTT_PT/DTT_M between the 3th and 3th bins of TT_M</a> (Table 343) <li><a href="103063?version=1&table=Table 344">Matrix for 1/SIG*D2SIG/DTT_PT/DTT_M between the 4th and 1th bins of TT_M</a> (Table 344) <li><a href="103063?version=1&table=Table 345">Matrix for 1/SIG*D2SIG/DTT_PT/DTT_M between the 4th and 2th bins of TT_M</a> (Table 345) <li><a href="103063?version=1&table=Table 346">Matrix for 1/SIG*D2SIG/DTT_PT/DTT_M between the 4th and 3th bins of TT_M</a> (Table 346) <li><a href="103063?version=1&table=Table 347">Matrix for 1/SIG*D2SIG/DTT_PT/DTT_M between the 4th and 4th bins of TT_M</a> (Table 347) <li><a href="103063?version=1&table=Table 352">Matrix for D2SIG/DTT_PT/DTT_M between the 1th and 1th bins of TT_M</a> (Table 352) <li><a href="103063?version=1&table=Table 353">Matrix for D2SIG/DTT_PT/DTT_M between the 2th and 1th bins of TT_M</a> (Table 353) <li><a href="103063?version=1&table=Table 354">Matrix for D2SIG/DTT_PT/DTT_M between the 2th and 2th bins of TT_M</a> (Table 354) <li><a href="103063?version=1&table=Table 355">Matrix for D2SIG/DTT_PT/DTT_M between the 3th and 1th bins of TT_M</a> (Table 355) <li><a href="103063?version=1&table=Table 356">Matrix for D2SIG/DTT_PT/DTT_M between the 3th and 2th bins of TT_M</a> (Table 356) <li><a href="103063?version=1&table=Table 357">Matrix for D2SIG/DTT_PT/DTT_M between the 3th and 3th bins of TT_M</a> (Table 357) <li><a href="103063?version=1&table=Table 358">Matrix for D2SIG/DTT_PT/DTT_M between the 4th and 1th bins of TT_M</a> (Table 358) <li><a href="103063?version=1&table=Table 359">Matrix for D2SIG/DTT_PT/DTT_M between the 4th and 2th bins of TT_M</a> (Table 359) <li><a href="103063?version=1&table=Table 360">Matrix for D2SIG/DTT_PT/DTT_M between the 4th and 3th bins of TT_M</a> (Table 360) <li><a href="103063?version=1&table=Table 361">Matrix for D2SIG/DTT_PT/DTT_M between the 4th and 4th bins of TT_M</a> (Table 361) <li><a href="103063?version=1&table=Table 366">Matrix for 1/SIG*D2SIG/DABS_TT_Y/DTT_M between the 1th and 1th bins of TT_M</a> (Table 366) <li><a href="103063?version=1&table=Table 367">Matrix for 1/SIG*D2SIG/DABS_TT_Y/DTT_M between the 2th and 1th bins of TT_M</a> (Table 367) <li><a href="103063?version=1&table=Table 368">Matrix for 1/SIG*D2SIG/DABS_TT_Y/DTT_M between the 2th and 2th bins of TT_M</a> (Table 368) <li><a href="103063?version=1&table=Table 369">Matrix for 1/SIG*D2SIG/DABS_TT_Y/DTT_M between the 3th and 1th bins of TT_M</a> (Table 369) <li><a href="103063?version=1&table=Table 370">Matrix for 1/SIG*D2SIG/DABS_TT_Y/DTT_M between the 3th and 2th bins of TT_M</a> (Table 370) <li><a href="103063?version=1&table=Table 371">Matrix for 1/SIG*D2SIG/DABS_TT_Y/DTT_M between the 3th and 3th bins of TT_M</a> (Table 371) <li><a href="103063?version=1&table=Table 372">Matrix for 1/SIG*D2SIG/DABS_TT_Y/DTT_M between the 4th and 1th bins of TT_M</a> (Table 372) <li><a href="103063?version=1&table=Table 373">Matrix for 1/SIG*D2SIG/DABS_TT_Y/DTT_M between the 4th and 2th bins of TT_M</a> (Table 373) <li><a href="103063?version=1&table=Table 374">Matrix for 1/SIG*D2SIG/DABS_TT_Y/DTT_M between the 4th and 3th bins of TT_M</a> (Table 374) <li><a href="103063?version=1&table=Table 375">Matrix for 1/SIG*D2SIG/DABS_TT_Y/DTT_M between the 4th and 4th bins of TT_M</a> (Table 375) <li><a href="103063?version=1&table=Table 380">Matrix for D2SIG/DABS_TT_Y/DTT_M between the 1th and 1th bins of TT_M</a> (Table 380) <li><a href="103063?version=1&table=Table 381">Matrix for D2SIG/DABS_TT_Y/DTT_M between the 2th and 1th bins of TT_M</a> (Table 381) <li><a href="103063?version=1&table=Table 382">Matrix for D2SIG/DABS_TT_Y/DTT_M between the 2th and 2th bins of TT_M</a> (Table 382) <li><a href="103063?version=1&table=Table 383">Matrix for D2SIG/DABS_TT_Y/DTT_M between the 3th and 1th bins of TT_M</a> (Table 383) <li><a href="103063?version=1&table=Table 384">Matrix for D2SIG/DABS_TT_Y/DTT_M between the 3th and 2th bins of TT_M</a> (Table 384) <li><a href="103063?version=1&table=Table 385">Matrix for D2SIG/DABS_TT_Y/DTT_M between the 3th and 3th bins of TT_M</a> (Table 385) <li><a href="103063?version=1&table=Table 386">Matrix for D2SIG/DABS_TT_Y/DTT_M between the 4th and 1th bins of TT_M</a> (Table 386) <li><a href="103063?version=1&table=Table 387">Matrix for D2SIG/DABS_TT_Y/DTT_M between the 4th and 2th bins of TT_M</a> (Table 387) <li><a href="103063?version=1&table=Table 388">Matrix for D2SIG/DABS_TT_Y/DTT_M between the 4th and 3th bins of TT_M</a> (Table 388) <li><a href="103063?version=1&table=Table 389">Matrix for D2SIG/DABS_TT_Y/DTT_M between the 4th and 4th bins of TT_M</a> (Table 389) <li><a href="103063?version=1&table=Table 394">Matrix for 1/SIG*D2SIG/DT1_PT/DT2_PT between the 1th and 1th bins of T2_PT</a> (Table 394) <li><a href="103063?version=1&table=Table 395">Matrix for 1/SIG*D2SIG/DT1_PT/DT2_PT between the 2th and 1th bins of T2_PT</a> (Table 395) <li><a href="103063?version=1&table=Table 396">Matrix for 1/SIG*D2SIG/DT1_PT/DT2_PT between the 2th and 2th bins of T2_PT</a> (Table 396) <li><a href="103063?version=1&table=Table 397">Matrix for 1/SIG*D2SIG/DT1_PT/DT2_PT between the 3th and 1th bins of T2_PT</a> (Table 397) <li><a href="103063?version=1&table=Table 398">Matrix for 1/SIG*D2SIG/DT1_PT/DT2_PT between the 3th and 2th bins of T2_PT</a> (Table 398) <li><a href="103063?version=1&table=Table 399">Matrix for 1/SIG*D2SIG/DT1_PT/DT2_PT between the 3th and 3th bins of T2_PT</a> (Table 399) <li><a href="103063?version=1&table=Table 400">Matrix for 1/SIG*D2SIG/DT1_PT/DT2_PT between the 4th and 1th bins of T2_PT</a> (Table 400) <li><a href="103063?version=1&table=Table 401">Matrix for 1/SIG*D2SIG/DT1_PT/DT2_PT between the 4th and 2th bins of T2_PT</a> (Table 401) <li><a href="103063?version=1&table=Table 402">Matrix for 1/SIG*D2SIG/DT1_PT/DT2_PT between the 4th and 3th bins of T2_PT</a> (Table 402) <li><a href="103063?version=1&table=Table 403">Matrix for 1/SIG*D2SIG/DT1_PT/DT2_PT between the 4th and 4th bins of T2_PT</a> (Table 403) <li><a href="103063?version=1&table=Table 408">Matrix for D2SIG/DT1_PT/DT2_PT between the 1th and 1th bins of T2_PT</a> (Table 408) <li><a href="103063?version=1&table=Table 409">Matrix for D2SIG/DT1_PT/DT2_PT between the 2th and 1th bins of T2_PT</a> (Table 409) <li><a href="103063?version=1&table=Table 410">Matrix for D2SIG/DT1_PT/DT2_PT between the 2th and 2th bins of T2_PT</a> (Table 410) <li><a href="103063?version=1&table=Table 411">Matrix for D2SIG/DT1_PT/DT2_PT between the 3th and 1th bins of T2_PT</a> (Table 411) <li><a href="103063?version=1&table=Table 412">Matrix for D2SIG/DT1_PT/DT2_PT between the 3th and 2th bins of T2_PT</a> (Table 412) <li><a href="103063?version=1&table=Table 413">Matrix for D2SIG/DT1_PT/DT2_PT between the 3th and 3th bins of T2_PT</a> (Table 413) <li><a href="103063?version=1&table=Table 414">Matrix for D2SIG/DT1_PT/DT2_PT between the 4th and 1th bins of T2_PT</a> (Table 414) <li><a href="103063?version=1&table=Table 415">Matrix for D2SIG/DT1_PT/DT2_PT between the 4th and 2th bins of T2_PT</a> (Table 415) <li><a href="103063?version=1&table=Table 416">Matrix for D2SIG/DT1_PT/DT2_PT between the 4th and 3th bins of T2_PT</a> (Table 416) <li><a href="103063?version=1&table=Table 417">Matrix for D2SIG/DT1_PT/DT2_PT between the 4th and 4th bins of T2_PT</a> (Table 417) <li><a href="103063?version=1&table=Table 422">Matrix for 1/SIG*D2SIG/DT1_PT/DTT_M between the 1th and 1th bins of TT_M</a> (Table 422) <li><a href="103063?version=1&table=Table 423">Matrix for 1/SIG*D2SIG/DT1_PT/DTT_M between the 2th and 1th bins of TT_M</a> (Table 423) <li><a href="103063?version=1&table=Table 424">Matrix for 1/SIG*D2SIG/DT1_PT/DTT_M between the 2th and 2th bins of TT_M</a> (Table 424) <li><a href="103063?version=1&table=Table 425">Matrix for 1/SIG*D2SIG/DT1_PT/DTT_M between the 3th and 1th bins of TT_M</a> (Table 425) <li><a href="103063?version=1&table=Table 426">Matrix for 1/SIG*D2SIG/DT1_PT/DTT_M between the 3th and 2th bins of TT_M</a> (Table 426) <li><a href="103063?version=1&table=Table 427">Matrix for 1/SIG*D2SIG/DT1_PT/DTT_M between the 3th and 3th bins of TT_M</a> (Table 427) <li><a href="103063?version=1&table=Table 428">Matrix for 1/SIG*D2SIG/DT1_PT/DTT_M between the 4th and 1th bins of TT_M</a> (Table 428) <li><a href="103063?version=1&table=Table 429">Matrix for 1/SIG*D2SIG/DT1_PT/DTT_M between the 4th and 2th bins of TT_M</a> (Table 429) <li><a href="103063?version=1&table=Table 430">Matrix for 1/SIG*D2SIG/DT1_PT/DTT_M between the 4th and 3th bins of TT_M</a> (Table 430) <li><a href="103063?version=1&table=Table 431">Matrix for 1/SIG*D2SIG/DT1_PT/DTT_M between the 4th and 4th bins of TT_M</a> (Table 431) <li><a href="103063?version=1&table=Table 436">Matrix for D2SIG/DT1_PT/DTT_M between the 1th and 1th bins of TT_M</a> (Table 436) <li><a href="103063?version=1&table=Table 437">Matrix for D2SIG/DT1_PT/DTT_M between the 2th and 1th bins of TT_M</a> (Table 437) <li><a href="103063?version=1&table=Table 438">Matrix for D2SIG/DT1_PT/DTT_M between the 2th and 2th bins of TT_M</a> (Table 438) <li><a href="103063?version=1&table=Table 439">Matrix for D2SIG/DT1_PT/DTT_M between the 3th and 1th bins of TT_M</a> (Table 439) <li><a href="103063?version=1&table=Table 440">Matrix for D2SIG/DT1_PT/DTT_M between the 3th and 2th bins of TT_M</a> (Table 440) <li><a href="103063?version=1&table=Table 441">Matrix for D2SIG/DT1_PT/DTT_M between the 3th and 3th bins of TT_M</a> (Table 441) <li><a href="103063?version=1&table=Table 442">Matrix for D2SIG/DT1_PT/DTT_M between the 4th and 1th bins of TT_M</a> (Table 442) <li><a href="103063?version=1&table=Table 443">Matrix for D2SIG/DT1_PT/DTT_M between the 4th and 2th bins of TT_M</a> (Table 443) <li><a href="103063?version=1&table=Table 444">Matrix for D2SIG/DT1_PT/DTT_M between the 4th and 3th bins of TT_M</a> (Table 444) <li><a href="103063?version=1&table=Table 445">Matrix for D2SIG/DT1_PT/DTT_M between the 4th and 4th bins of TT_M</a> (Table 445) </ul><br/> <b>Parton level:</b><br/> <u>1D:</u><br/> Spectra:<br/> <ul><br/> <li><a href="103063?version=1&table=Table 446">1/SIG*DSIG/DCHI_TT</a> (Table 446) <li><a href="103063?version=1&table=Table 448">DSIG/DCHI_TT</a> (Table 448) <li><a href="103063?version=1&table=Table 450">1/SIG*DSIG/DTT_PT</a> (Table 450) <li><a href="103063?version=1&table=Table 452">DSIG/DTT_PT</a> (Table 452) <li><a href="103063?version=1&table=Table 454">1/SIG*DSIG/DDELTAPHI</a> (Table 454) <li><a href="103063?version=1&table=Table 456">DSIG/DDELTAPHI</a> (Table 456) <li><a href="103063?version=1&table=Table 458">1/SIG*DSIG/DT2_PT</a> (Table 458) <li><a href="103063?version=1&table=Table 460">DSIG/DT2_PT</a> (Table 460) <li><a href="103063?version=1&table=Table 462">1/SIG*DSIG/DTT_M</a> (Table 462) <li><a href="103063?version=1&table=Table 464">DSIG/DTT_M</a> (Table 464) <li><a href="103063?version=1&table=Table 466">1/SIG*DSIG/DABS_Y_BOOST</a> (Table 466) <li><a href="103063?version=1&table=Table 468">DSIG/DABS_Y_BOOST</a> (Table 468) <li><a href="103063?version=1&table=Table 470">1/SIG*DSIG/DT1_PT</a> (Table 470) <li><a href="103063?version=1&table=Table 472">DSIG/DT1_PT</a> (Table 472) <li><a href="103063?version=1&table=Table 474">1/SIG*DSIG/DABS_TT_Y</a> (Table 474) <li><a href="103063?version=1&table=Table 476">DSIG/DABS_TT_Y</a> (Table 476) <li><a href="103063?version=1&table=Table 478">1/SIG*DSIG/DABS_T2_Y</a> (Table 478) <li><a href="103063?version=1&table=Table 480">DSIG/DABS_T2_Y</a> (Table 480) <li><a href="103063?version=1&table=Table 482">1/SIG*DSIG/DHT_TT</a> (Table 482) <li><a href="103063?version=1&table=Table 484">DSIG/DHT_TT</a> (Table 484) <li><a href="103063?version=1&table=Table 486">1/SIG*DSIG/DABS_T1_Y</a> (Table 486) <li><a href="103063?version=1&table=Table 488">DSIG/DABS_T1_Y</a> (Table 488) </ul><br/> Covariances:<br/> <ul><br/> <li><a href="103063?version=1&table=Table 447">1/SIG*DSIG/DCHI_TT</a> (Table 447) <li><a href="103063?version=1&table=Table 449">DSIG/DCHI_TT</a> (Table 449) <li><a href="103063?version=1&table=Table 451">1/SIG*DSIG/DTT_PT</a> (Table 451) <li><a href="103063?version=1&table=Table 453">DSIG/DTT_PT</a> (Table 453) <li><a href="103063?version=1&table=Table 455">1/SIG*DSIG/DDELTAPHI</a> (Table 455) <li><a href="103063?version=1&table=Table 457">DSIG/DDELTAPHI</a> (Table 457) <li><a href="103063?version=1&table=Table 459">1/SIG*DSIG/DT2_PT</a> (Table 459) <li><a href="103063?version=1&table=Table 461">DSIG/DT2_PT</a> (Table 461) <li><a href="103063?version=1&table=Table 463">1/SIG*DSIG/DTT_M</a> (Table 463) <li><a href="103063?version=1&table=Table 465">DSIG/DTT_M</a> (Table 465) <li><a href="103063?version=1&table=Table 467">1/SIG*DSIG/DABS_Y_BOOST</a> (Table 467) <li><a href="103063?version=1&table=Table 469">DSIG/DABS_Y_BOOST</a> (Table 469) <li><a href="103063?version=1&table=Table 471">1/SIG*DSIG/DT1_PT</a> (Table 471) <li><a href="103063?version=1&table=Table 473">DSIG/DT1_PT</a> (Table 473) <li><a href="103063?version=1&table=Table 475">1/SIG*DSIG/DABS_TT_Y</a> (Table 475) <li><a href="103063?version=1&table=Table 477">DSIG/DABS_TT_Y</a> (Table 477) <li><a href="103063?version=1&table=Table 479">1/SIG*DSIG/DABS_T2_Y</a> (Table 479) <li><a href="103063?version=1&table=Table 481">DSIG/DABS_T2_Y</a> (Table 481) <li><a href="103063?version=1&table=Table 483">1/SIG*DSIG/DHT_TT</a> (Table 483) <li><a href="103063?version=1&table=Table 485">DSIG/DHT_TT</a> (Table 485) <li><a href="103063?version=1&table=Table 487">1/SIG*DSIG/DABS_T1_Y</a> (Table 487) <li><a href="103063?version=1&table=Table 489">DSIG/DABS_T1_Y</a> (Table 489) </ul><br/> <u>2D:</u><br/> Spectra:<br/> <ul><br/> <li><a href="103063?version=1&table=Table 490">1/SIG*D2SIG/DABS_TT_Y/DTT_M ( 0.0 GeV < TT_M < 700.0 GeV)</a> (Table 490) <li><a href="103063?version=1&table=Table 491">1/SIG*D2SIG/DABS_TT_Y/DTT_M ( 700.0 GeV < TT_M < 970.0 GeV)</a> (Table 491) <li><a href="103063?version=1&table=Table 492">1/SIG*D2SIG/DABS_TT_Y/DTT_M ( 970.0 GeV < TT_M < 3000.0 GeV)</a> (Table 492) <li><a href="103063?version=1&table=Table 499">D2SIG/DABS_TT_Y/DTT_M ( 0.0 GeV < TT_M < 700.0 GeV)</a> (Table 499) <li><a href="103063?version=1&table=Table 500">D2SIG/DABS_TT_Y/DTT_M ( 700.0 GeV < TT_M < 970.0 GeV)</a> (Table 500) <li><a href="103063?version=1&table=Table 501">D2SIG/DABS_TT_Y/DTT_M ( 970.0 GeV < TT_M < 3000.0 GeV)</a> (Table 501) <li><a href="103063?version=1&table=Table 508">1/SIG*D2SIG/DABS_T2_Y/DABS_T1_Y ( 0.0 < ABS_T1_Y < 0.5 )</a> (Table 508) <li><a href="103063?version=1&table=Table 509">1/SIG*D2SIG/DABS_T2_Y/DABS_T1_Y ( 0.5 < ABS_T1_Y < 1.0 )</a> (Table 509) <li><a href="103063?version=1&table=Table 510">1/SIG*D2SIG/DABS_T2_Y/DABS_T1_Y ( 1.0 < ABS_T1_Y < 1.5 )</a> (Table 510) <li><a href="103063?version=1&table=Table 511">1/SIG*D2SIG/DABS_T2_Y/DABS_T1_Y ( 1.5 < ABS_T1_Y < 2.5 )</a> (Table 511) <li><a href="103063?version=1&table=Table 522">D2SIG/DABS_T2_Y/DABS_T1_Y ( 0.0 < ABS_T1_Y < 0.5 )</a> (Table 522) <li><a href="103063?version=1&table=Table 523">D2SIG/DABS_T2_Y/DABS_T1_Y ( 0.5 < ABS_T1_Y < 1.0 )</a> (Table 523) <li><a href="103063?version=1&table=Table 524">D2SIG/DABS_T2_Y/DABS_T1_Y ( 1.0 < ABS_T1_Y < 1.5 )</a> (Table 524) <li><a href="103063?version=1&table=Table 525">D2SIG/DABS_T2_Y/DABS_T1_Y ( 1.5 < ABS_T1_Y < 2.5 )</a> (Table 525) <li><a href="103063?version=1&table=Table 536">1/SIG*D2SIG/DT2_PT/DM ( 0.0 GeV < M < 700.0 GeV)</a> (Table 536) <li><a href="103063?version=1&table=Table 537">1/SIG*D2SIG/DT2_PT/DM ( 700.0 GeV < M < 970.0 GeV)</a> (Table 537) <li><a href="103063?version=1&table=Table 538">1/SIG*D2SIG/DT2_PT/DM ( 970.0 GeV < M < 1315.0 GeV)</a> (Table 538) <li><a href="103063?version=1&table=Table 539">1/SIG*D2SIG/DT2_PT/DM ( 1315.0 GeV < M < 3000.0 GeV)</a> (Table 539) <li><a href="103063?version=1&table=Table 550">D2SIG/DT2_PT/DM ( 0.0 GeV < M < 700.0 GeV)</a> (Table 550) <li><a href="103063?version=1&table=Table 551">D2SIG/DT2_PT/DM ( 700.0 GeV < M < 970.0 GeV)</a> (Table 551) <li><a href="103063?version=1&table=Table 552">D2SIG/DT2_PT/DM ( 970.0 GeV < M < 1315.0 GeV)</a> (Table 552) <li><a href="103063?version=1&table=Table 553">D2SIG/DT2_PT/DM ( 1315.0 GeV < M < 3000.0 GeV)</a> (Table 553) <li><a href="103063?version=1&table=Table 564">1/SIG*D2SIG/DABS_T1_Y/DTT_M ( 0.0 GeV < TT_M < 700.0 GeV)</a> (Table 564) <li><a href="103063?version=1&table=Table 565">1/SIG*D2SIG/DABS_T1_Y/DTT_M ( 700.0 GeV < TT_M < 970.0 GeV)</a> (Table 565) <li><a href="103063?version=1&table=Table 566">1/SIG*D2SIG/DABS_T1_Y/DTT_M ( 970.0 GeV < TT_M < 3000.0 GeV)</a> (Table 566) <li><a href="103063?version=1&table=Table 573">D2SIG/DABS_T1_Y/DTT_M ( 0.0 GeV < TT_M < 700.0 GeV)</a> (Table 573) <li><a href="103063?version=1&table=Table 574">D2SIG/DABS_T1_Y/DTT_M ( 700.0 GeV < TT_M < 970.0 GeV)</a> (Table 574) <li><a href="103063?version=1&table=Table 575">D2SIG/DABS_T1_Y/DTT_M ( 970.0 GeV < TT_M < 3000.0 GeV)</a> (Table 575) <li><a href="103063?version=1&table=Table 582">1/SIG*D2SIG/DABS_T2_Y/DTT_M ( 0.0 GeV < TT_M < 700.0 GeV)</a> (Table 582) <li><a href="103063?version=1&table=Table 583">1/SIG*D2SIG/DABS_T2_Y/DTT_M ( 700.0 GeV < TT_M < 970.0 GeV)</a> (Table 583) <li><a href="103063?version=1&table=Table 584">1/SIG*D2SIG/DABS_T2_Y/DTT_M ( 970.0 GeV < TT_M < 3000.0 GeV)</a> (Table 584) <li><a href="103063?version=1&table=Table 591">D2SIG/DABS_T2_Y/DTT_M ( 0.0 GeV < TT_M < 700.0 GeV)</a> (Table 591) <li><a href="103063?version=1&table=Table 592">D2SIG/DABS_T2_Y/DTT_M ( 700.0 GeV < TT_M < 970.0 GeV)</a> (Table 592) <li><a href="103063?version=1&table=Table 593">D2SIG/DABS_T2_Y/DTT_M ( 970.0 GeV < TT_M < 3000.0 GeV)</a> (Table 593) <li><a href="103063?version=1&table=Table 600">1/SIG*D2SIG/DTT_PT/DTT_M ( 0.0 GeV < TT_M < 700.0 GeV)</a> (Table 600) <li><a href="103063?version=1&table=Table 601">1/SIG*D2SIG/DTT_PT/DTT_M ( 700.0 GeV < TT_M < 970.0 GeV)</a> (Table 601) <li><a href="103063?version=1&table=Table 602">1/SIG*D2SIG/DTT_PT/DTT_M ( 970.0 GeV < TT_M < 1315.0 GeV)</a> (Table 602) <li><a href="103063?version=1&table=Table 603">1/SIG*D2SIG/DTT_PT/DTT_M ( 1315.0 GeV < TT_M < 3000.0 GeV)</a> (Table 603) <li><a href="103063?version=1&table=Table 614">D2SIG/DTT_PT/DTT_M ( 0.0 GeV < TT_M < 700.0 GeV)</a> (Table 614) <li><a href="103063?version=1&table=Table 615">D2SIG/DTT_PT/DTT_M ( 700.0 GeV < TT_M < 970.0 GeV)</a> (Table 615) <li><a href="103063?version=1&table=Table 616">D2SIG/DTT_PT/DTT_M ( 970.0 GeV < TT_M < 1315.0 GeV)</a> (Table 616) <li><a href="103063?version=1&table=Table 617">D2SIG/DTT_PT/DTT_M ( 1315.0 GeV < TT_M < 3000.0 GeV)</a> (Table 617) <li><a href="103063?version=1&table=Table 628">1/SIG*D2SIG/DT1_PT/DTT_M ( 0.0 GeV < TT_M < 700.0 GeV)</a> (Table 628) <li><a href="103063?version=1&table=Table 629">1/SIG*D2SIG/DT1_PT/DTT_M ( 700.0 GeV < TT_M < 970.0 GeV)</a> (Table 629) <li><a href="103063?version=1&table=Table 630">1/SIG*D2SIG/DT1_PT/DTT_M ( 970.0 GeV < TT_M < 3000.0 GeV)</a> (Table 630) <li><a href="103063?version=1&table=Table 637">D2SIG/DT1_PT/DTT_M ( 0.0 GeV < TT_M < 700.0 GeV)</a> (Table 637) <li><a href="103063?version=1&table=Table 638">D2SIG/DT1_PT/DTT_M ( 700.0 GeV < TT_M < 970.0 GeV)</a> (Table 638) <li><a href="103063?version=1&table=Table 639">D2SIG/DT1_PT/DTT_M ( 970.0 GeV < TT_M < 3000.0 GeV)</a> (Table 639) <li><a href="103063?version=1&table=Table 646">1/SIG*D2SIG/DT1_PT/DT2_PT ( 0.0 GeV < T2_PT < 170.0 GeV)</a> (Table 646) <li><a href="103063?version=1&table=Table 647">1/SIG*D2SIG/DT1_PT/DT2_PT ( 170.0 GeV < T2_PT < 290.0 GeV)</a> (Table 647) <li><a href="103063?version=1&table=Table 648">1/SIG*D2SIG/DT1_PT/DT2_PT ( 290.0 GeV < T2_PT < 450.0 GeV)</a> (Table 648) <li><a href="103063?version=1&table=Table 649">1/SIG*D2SIG/DT1_PT/DT2_PT ( 450.0 GeV < T2_PT < 1000.0 GeV)</a> (Table 649) <li><a href="103063?version=1&table=Table 660">D2SIG/DT1_PT/DT2_PT ( 0.0 GeV < T2_PT < 170.0 GeV)</a> (Table 660) <li><a href="103063?version=1&table=Table 661">D2SIG/DT1_PT/DT2_PT ( 170.0 GeV < T2_PT < 290.0 GeV)</a> (Table 661) <li><a href="103063?version=1&table=Table 662">D2SIG/DT1_PT/DT2_PT ( 290.0 GeV < T2_PT < 450.0 GeV)</a> (Table 662) <li><a href="103063?version=1&table=Table 663">D2SIG/DT1_PT/DT2_PT ( 450.0 GeV < T2_PT < 1000.0 GeV)</a> (Table 663) </ul><br/> Covariances:<br/> <ul><br/> <li><a href="103063?version=1&table=Table 493">Matrix for 1/SIG*D2SIG/DABS_TT_Y/DTT_M between the 1th and 1th bins of TT_M</a> (Table 493) <li><a href="103063?version=1&table=Table 494">Matrix for 1/SIG*D2SIG/DABS_TT_Y/DTT_M between the 2th and 1th bins of TT_M</a> (Table 494) <li><a href="103063?version=1&table=Table 495">Matrix for 1/SIG*D2SIG/DABS_TT_Y/DTT_M between the 2th and 2th bins of TT_M</a> (Table 495) <li><a href="103063?version=1&table=Table 496">Matrix for 1/SIG*D2SIG/DABS_TT_Y/DTT_M between the 3th and 1th bins of TT_M</a> (Table 496) <li><a href="103063?version=1&table=Table 497">Matrix for 1/SIG*D2SIG/DABS_TT_Y/DTT_M between the 3th and 2th bins of TT_M</a> (Table 497) <li><a href="103063?version=1&table=Table 498">Matrix for 1/SIG*D2SIG/DABS_TT_Y/DTT_M between the 3th and 3th bins of TT_M</a> (Table 498) <li><a href="103063?version=1&table=Table 502">Matrix for D2SIG/DABS_TT_Y/DTT_M between the 1th and 1th bins of TT_M</a> (Table 502) <li><a href="103063?version=1&table=Table 503">Matrix for D2SIG/DABS_TT_Y/DTT_M between the 2th and 1th bins of TT_M</a> (Table 503) <li><a href="103063?version=1&table=Table 504">Matrix for D2SIG/DABS_TT_Y/DTT_M between the 2th and 2th bins of TT_M</a> (Table 504) <li><a href="103063?version=1&table=Table 505">Matrix for D2SIG/DABS_TT_Y/DTT_M between the 3th and 1th bins of TT_M</a> (Table 505) <li><a href="103063?version=1&table=Table 506">Matrix for D2SIG/DABS_TT_Y/DTT_M between the 3th and 2th bins of TT_M</a> (Table 506) <li><a href="103063?version=1&table=Table 507">Matrix for D2SIG/DABS_TT_Y/DTT_M between the 3th and 3th bins of TT_M</a> (Table 507) <li><a href="103063?version=1&table=Table 512">Matrix for 1/SIG*D2SIG/DABS_T2_Y/DABS_T1_Y between the 1th and 1th bins of ABS_T1_Y</a> (Table 512) <li><a href="103063?version=1&table=Table 513">Matrix for 1/SIG*D2SIG/DABS_T2_Y/DABS_T1_Y between the 2th and 1th bins of ABS_T1_Y</a> (Table 513) <li><a href="103063?version=1&table=Table 514">Matrix for 1/SIG*D2SIG/DABS_T2_Y/DABS_T1_Y between the 2th and 2th bins of ABS_T1_Y</a> (Table 514) <li><a href="103063?version=1&table=Table 515">Matrix for 1/SIG*D2SIG/DABS_T2_Y/DABS_T1_Y between the 3th and 1th bins of ABS_T1_Y</a> (Table 515) <li><a href="103063?version=1&table=Table 516">Matrix for 1/SIG*D2SIG/DABS_T2_Y/DABS_T1_Y between the 3th and 2th bins of ABS_T1_Y</a> (Table 516) <li><a href="103063?version=1&table=Table 517">Matrix for 1/SIG*D2SIG/DABS_T2_Y/DABS_T1_Y between the 3th and 3th bins of ABS_T1_Y</a> (Table 517) <li><a href="103063?version=1&table=Table 518">Matrix for 1/SIG*D2SIG/DABS_T2_Y/DABS_T1_Y between the 4th and 1th bins of ABS_T1_Y</a> (Table 518) <li><a href="103063?version=1&table=Table 519">Matrix for 1/SIG*D2SIG/DABS_T2_Y/DABS_T1_Y between the 4th and 2th bins of ABS_T1_Y</a> (Table 519) <li><a href="103063?version=1&table=Table 520">Matrix for 1/SIG*D2SIG/DABS_T2_Y/DABS_T1_Y between the 4th and 3th bins of ABS_T1_Y</a> (Table 520) <li><a href="103063?version=1&table=Table 521">Matrix for 1/SIG*D2SIG/DABS_T2_Y/DABS_T1_Y between the 4th and 4th bins of ABS_T1_Y</a> (Table 521) <li><a href="103063?version=1&table=Table 526">Matrix for D2SIG/DABS_T2_Y/DABS_T1_Y between the 1th and 1th bins of ABS_T1_Y</a> (Table 526) <li><a href="103063?version=1&table=Table 527">Matrix for D2SIG/DABS_T2_Y/DABS_T1_Y between the 2th and 1th bins of ABS_T1_Y</a> (Table 527) <li><a href="103063?version=1&table=Table 528">Matrix for D2SIG/DABS_T2_Y/DABS_T1_Y between the 2th and 2th bins of ABS_T1_Y</a> (Table 528) <li><a href="103063?version=1&table=Table 529">Matrix for D2SIG/DABS_T2_Y/DABS_T1_Y between the 3th and 1th bins of ABS_T1_Y</a> (Table 529) <li><a href="103063?version=1&table=Table 530">Matrix for D2SIG/DABS_T2_Y/DABS_T1_Y between the 3th and 2th bins of ABS_T1_Y</a> (Table 530) <li><a href="103063?version=1&table=Table 531">Matrix for D2SIG/DABS_T2_Y/DABS_T1_Y between the 3th and 3th bins of ABS_T1_Y</a> (Table 531) <li><a href="103063?version=1&table=Table 532">Matrix for D2SIG/DABS_T2_Y/DABS_T1_Y between the 4th and 1th bins of ABS_T1_Y</a> (Table 532) <li><a href="103063?version=1&table=Table 533">Matrix for D2SIG/DABS_T2_Y/DABS_T1_Y between the 4th and 2th bins of ABS_T1_Y</a> (Table 533) <li><a href="103063?version=1&table=Table 534">Matrix for D2SIG/DABS_T2_Y/DABS_T1_Y between the 4th and 3th bins of ABS_T1_Y</a> (Table 534) <li><a href="103063?version=1&table=Table 535">Matrix for D2SIG/DABS_T2_Y/DABS_T1_Y between the 4th and 4th bins of ABS_T1_Y</a> (Table 535) <li><a href="103063?version=1&table=Table 540">Matrix for 1/SIG*D2SIG/DT2_PT/DM between the 1th and 1th bins of M</a> (Table 540) <li><a href="103063?version=1&table=Table 541">Matrix for 1/SIG*D2SIG/DT2_PT/DM between the 2th and 1th bins of M</a> (Table 541) <li><a href="103063?version=1&table=Table 542">Matrix for 1/SIG*D2SIG/DT2_PT/DM between the 2th and 2th bins of M</a> (Table 542) <li><a href="103063?version=1&table=Table 543">Matrix for 1/SIG*D2SIG/DT2_PT/DM between the 3th and 1th bins of M</a> (Table 543) <li><a href="103063?version=1&table=Table 544">Matrix for 1/SIG*D2SIG/DT2_PT/DM between the 3th and 2th bins of M</a> (Table 544) <li><a href="103063?version=1&table=Table 545">Matrix for 1/SIG*D2SIG/DT2_PT/DM between the 3th and 3th bins of M</a> (Table 545) <li><a href="103063?version=1&table=Table 546">Matrix for 1/SIG*D2SIG/DT2_PT/DM between the 4th and 1th bins of M</a> (Table 546) <li><a href="103063?version=1&table=Table 547">Matrix for 1/SIG*D2SIG/DT2_PT/DM between the 4th and 2th bins of M</a> (Table 547) <li><a href="103063?version=1&table=Table 548">Matrix for 1/SIG*D2SIG/DT2_PT/DM between the 4th and 3th bins of M</a> (Table 548) <li><a href="103063?version=1&table=Table 549">Matrix for 1/SIG*D2SIG/DT2_PT/DM between the 4th and 4th bins of M</a> (Table 549) <li><a href="103063?version=1&table=Table 554">Matrix for D2SIG/DT2_PT/DM between the 1th and 1th bins of M</a> (Table 554) <li><a href="103063?version=1&table=Table 555">Matrix for D2SIG/DT2_PT/DM between the 2th and 1th bins of M</a> (Table 555) <li><a href="103063?version=1&table=Table 556">Matrix for D2SIG/DT2_PT/DM between the 2th and 2th bins of M</a> (Table 556) <li><a href="103063?version=1&table=Table 557">Matrix for D2SIG/DT2_PT/DM between the 3th and 1th bins of M</a> (Table 557) <li><a href="103063?version=1&table=Table 558">Matrix for D2SIG/DT2_PT/DM between the 3th and 2th bins of M</a> (Table 558) <li><a href="103063?version=1&table=Table 559">Matrix for D2SIG/DT2_PT/DM between the 3th and 3th bins of M</a> (Table 559) <li><a href="103063?version=1&table=Table 560">Matrix for D2SIG/DT2_PT/DM between the 4th and 1th bins of M</a> (Table 560) <li><a href="103063?version=1&table=Table 561">Matrix for D2SIG/DT2_PT/DM between the 4th and 2th bins of M</a> (Table 561) <li><a href="103063?version=1&table=Table 562">Matrix for D2SIG/DT2_PT/DM between the 4th and 3th bins of M</a> (Table 562) <li><a href="103063?version=1&table=Table 563">Matrix for D2SIG/DT2_PT/DM between the 4th and 4th bins of M</a> (Table 563) <li><a href="103063?version=1&table=Table 567">Matrix for 1/SIG*D2SIG/DABS_T1_Y/DTT_M between the 1th and 1th bins of TT_M</a> (Table 567) <li><a href="103063?version=1&table=Table 568">Matrix for 1/SIG*D2SIG/DABS_T1_Y/DTT_M between the 2th and 1th bins of TT_M</a> (Table 568) <li><a href="103063?version=1&table=Table 569">Matrix for 1/SIG*D2SIG/DABS_T1_Y/DTT_M between the 2th and 2th bins of TT_M</a> (Table 569) <li><a href="103063?version=1&table=Table 570">Matrix for 1/SIG*D2SIG/DABS_T1_Y/DTT_M between the 3th and 1th bins of TT_M</a> (Table 570) <li><a href="103063?version=1&table=Table 571">Matrix for 1/SIG*D2SIG/DABS_T1_Y/DTT_M between the 3th and 2th bins of TT_M</a> (Table 571) <li><a href="103063?version=1&table=Table 572">Matrix for 1/SIG*D2SIG/DABS_T1_Y/DTT_M between the 3th and 3th bins of TT_M</a> (Table 572) <li><a href="103063?version=1&table=Table 576">Matrix for D2SIG/DABS_T1_Y/DTT_M between the 1th and 1th bins of TT_M</a> (Table 576) <li><a href="103063?version=1&table=Table 577">Matrix for D2SIG/DABS_T1_Y/DTT_M between the 2th and 1th bins of TT_M</a> (Table 577) <li><a href="103063?version=1&table=Table 578">Matrix for D2SIG/DABS_T1_Y/DTT_M between the 2th and 2th bins of TT_M</a> (Table 578) <li><a href="103063?version=1&table=Table 579">Matrix for D2SIG/DABS_T1_Y/DTT_M between the 3th and 1th bins of TT_M</a> (Table 579) <li><a href="103063?version=1&table=Table 580">Matrix for D2SIG/DABS_T1_Y/DTT_M between the 3th and 2th bins of TT_M</a> (Table 580) <li><a href="103063?version=1&table=Table 581">Matrix for D2SIG/DABS_T1_Y/DTT_M between the 3th and 3th bins of TT_M</a> (Table 581) <li><a href="103063?version=1&table=Table 585">Matrix for 1/SIG*D2SIG/DABS_T2_Y/DTT_M between the 1th and 1th bins of TT_M</a> (Table 585) <li><a href="103063?version=1&table=Table 586">Matrix for 1/SIG*D2SIG/DABS_T2_Y/DTT_M between the 2th and 1th bins of TT_M</a> (Table 586) <li><a href="103063?version=1&table=Table 587">Matrix for 1/SIG*D2SIG/DABS_T2_Y/DTT_M between the 2th and 2th bins of TT_M</a> (Table 587) <li><a href="103063?version=1&table=Table 588">Matrix for 1/SIG*D2SIG/DABS_T2_Y/DTT_M between the 3th and 1th bins of TT_M</a> (Table 588) <li><a href="103063?version=1&table=Table 589">Matrix for 1/SIG*D2SIG/DABS_T2_Y/DTT_M between the 3th and 2th bins of TT_M</a> (Table 589) <li><a href="103063?version=1&table=Table 590">Matrix for 1/SIG*D2SIG/DABS_T2_Y/DTT_M between the 3th and 3th bins of TT_M</a> (Table 590) <li><a href="103063?version=1&table=Table 594">Matrix for D2SIG/DABS_T2_Y/DTT_M between the 1th and 1th bins of TT_M</a> (Table 594) <li><a href="103063?version=1&table=Table 595">Matrix for D2SIG/DABS_T2_Y/DTT_M between the 2th and 1th bins of TT_M</a> (Table 595) <li><a href="103063?version=1&table=Table 596">Matrix for D2SIG/DABS_T2_Y/DTT_M between the 2th and 2th bins of TT_M</a> (Table 596) <li><a href="103063?version=1&table=Table 597">Matrix for D2SIG/DABS_T2_Y/DTT_M between the 3th and 1th bins of TT_M</a> (Table 597) <li><a href="103063?version=1&table=Table 598">Matrix for D2SIG/DABS_T2_Y/DTT_M between the 3th and 2th bins of TT_M</a> (Table 598) <li><a href="103063?version=1&table=Table 599">Matrix for D2SIG/DABS_T2_Y/DTT_M between the 3th and 3th bins of TT_M</a> (Table 599) <li><a href="103063?version=1&table=Table 604">Matrix for 1/SIG*D2SIG/DTT_PT/DTT_M between the 1th and 1th bins of TT_M</a> (Table 604) <li><a href="103063?version=1&table=Table 605">Matrix for 1/SIG*D2SIG/DTT_PT/DTT_M between the 2th and 1th bins of TT_M</a> (Table 605) <li><a href="103063?version=1&table=Table 606">Matrix for 1/SIG*D2SIG/DTT_PT/DTT_M between the 2th and 2th bins of TT_M</a> (Table 606) <li><a href="103063?version=1&table=Table 607">Matrix for 1/SIG*D2SIG/DTT_PT/DTT_M between the 3th and 1th bins of TT_M</a> (Table 607) <li><a href="103063?version=1&table=Table 608">Matrix for 1/SIG*D2SIG/DTT_PT/DTT_M between the 3th and 2th bins of TT_M</a> (Table 608) <li><a href="103063?version=1&table=Table 609">Matrix for 1/SIG*D2SIG/DTT_PT/DTT_M between the 3th and 3th bins of TT_M</a> (Table 609) <li><a href="103063?version=1&table=Table 610">Matrix for 1/SIG*D2SIG/DTT_PT/DTT_M between the 4th and 1th bins of TT_M</a> (Table 610) <li><a href="103063?version=1&table=Table 611">Matrix for 1/SIG*D2SIG/DTT_PT/DTT_M between the 4th and 2th bins of TT_M</a> (Table 611) <li><a href="103063?version=1&table=Table 612">Matrix for 1/SIG*D2SIG/DTT_PT/DTT_M between the 4th and 3th bins of TT_M</a> (Table 612) <li><a href="103063?version=1&table=Table 613">Matrix for 1/SIG*D2SIG/DTT_PT/DTT_M between the 4th and 4th bins of TT_M</a> (Table 613) <li><a href="103063?version=1&table=Table 618">Matrix for D2SIG/DTT_PT/DTT_M between the 1th and 1th bins of TT_M</a> (Table 618) <li><a href="103063?version=1&table=Table 619">Matrix for D2SIG/DTT_PT/DTT_M between the 2th and 1th bins of TT_M</a> (Table 619) <li><a href="103063?version=1&table=Table 620">Matrix for D2SIG/DTT_PT/DTT_M between the 2th and 2th bins of TT_M</a> (Table 620) <li><a href="103063?version=1&table=Table 621">Matrix for D2SIG/DTT_PT/DTT_M between the 3th and 1th bins of TT_M</a> (Table 621) <li><a href="103063?version=1&table=Table 622">Matrix for D2SIG/DTT_PT/DTT_M between the 3th and 2th bins of TT_M</a> (Table 622) <li><a href="103063?version=1&table=Table 623">Matrix for D2SIG/DTT_PT/DTT_M between the 3th and 3th bins of TT_M</a> (Table 623) <li><a href="103063?version=1&table=Table 624">Matrix for D2SIG/DTT_PT/DTT_M between the 4th and 1th bins of TT_M</a> (Table 624) <li><a href="103063?version=1&table=Table 625">Matrix for D2SIG/DTT_PT/DTT_M between the 4th and 2th bins of TT_M</a> (Table 625) <li><a href="103063?version=1&table=Table 626">Matrix for D2SIG/DTT_PT/DTT_M between the 4th and 3th bins of TT_M</a> (Table 626) <li><a href="103063?version=1&table=Table 627">Matrix for D2SIG/DTT_PT/DTT_M between the 4th and 4th bins of TT_M</a> (Table 627) <li><a href="103063?version=1&table=Table 631">Matrix for 1/SIG*D2SIG/DT1_PT/DTT_M between the 1th and 1th bins of TT_M</a> (Table 631) <li><a href="103063?version=1&table=Table 632">Matrix for 1/SIG*D2SIG/DT1_PT/DTT_M between the 2th and 1th bins of TT_M</a> (Table 632) <li><a href="103063?version=1&table=Table 633">Matrix for 1/SIG*D2SIG/DT1_PT/DTT_M between the 2th and 2th bins of TT_M</a> (Table 633) <li><a href="103063?version=1&table=Table 634">Matrix for 1/SIG*D2SIG/DT1_PT/DTT_M between the 3th and 1th bins of TT_M</a> (Table 634) <li><a href="103063?version=1&table=Table 635">Matrix for 1/SIG*D2SIG/DT1_PT/DTT_M between the 3th and 2th bins of TT_M</a> (Table 635) <li><a href="103063?version=1&table=Table 636">Matrix for 1/SIG*D2SIG/DT1_PT/DTT_M between the 3th and 3th bins of TT_M</a> (Table 636) <li><a href="103063?version=1&table=Table 640">Matrix for D2SIG/DT1_PT/DTT_M between the 1th and 1th bins of TT_M</a> (Table 640) <li><a href="103063?version=1&table=Table 641">Matrix for D2SIG/DT1_PT/DTT_M between the 2th and 1th bins of TT_M</a> (Table 641) <li><a href="103063?version=1&table=Table 642">Matrix for D2SIG/DT1_PT/DTT_M between the 2th and 2th bins of TT_M</a> (Table 642) <li><a href="103063?version=1&table=Table 643">Matrix for D2SIG/DT1_PT/DTT_M between the 3th and 1th bins of TT_M</a> (Table 643) <li><a href="103063?version=1&table=Table 644">Matrix for D2SIG/DT1_PT/DTT_M between the 3th and 2th bins of TT_M</a> (Table 644) <li><a href="103063?version=1&table=Table 645">Matrix for D2SIG/DT1_PT/DTT_M between the 3th and 3th bins of TT_M</a> (Table 645) <li><a href="103063?version=1&table=Table 650">Matrix for 1/SIG*D2SIG/DT1_PT/DT2_PT between the 1th and 1th bins of T2_PT</a> (Table 650) <li><a href="103063?version=1&table=Table 651">Matrix for 1/SIG*D2SIG/DT1_PT/DT2_PT between the 2th and 1th bins of T2_PT</a> (Table 651) <li><a href="103063?version=1&table=Table 652">Matrix for 1/SIG*D2SIG/DT1_PT/DT2_PT between the 2th and 2th bins of T2_PT</a> (Table 652) <li><a href="103063?version=1&table=Table 653">Matrix for 1/SIG*D2SIG/DT1_PT/DT2_PT between the 3th and 1th bins of T2_PT</a> (Table 653) <li><a href="103063?version=1&table=Table 654">Matrix for 1/SIG*D2SIG/DT1_PT/DT2_PT between the 3th and 2th bins of T2_PT</a> (Table 654) <li><a href="103063?version=1&table=Table 655">Matrix for 1/SIG*D2SIG/DT1_PT/DT2_PT between the 3th and 3th bins of T2_PT</a> (Table 655) <li><a href="103063?version=1&table=Table 656">Matrix for 1/SIG*D2SIG/DT1_PT/DT2_PT between the 4th and 1th bins of T2_PT</a> (Table 656) <li><a href="103063?version=1&table=Table 657">Matrix for 1/SIG*D2SIG/DT1_PT/DT2_PT between the 4th and 2th bins of T2_PT</a> (Table 657) <li><a href="103063?version=1&table=Table 658">Matrix for 1/SIG*D2SIG/DT1_PT/DT2_PT between the 4th and 3th bins of T2_PT</a> (Table 658) <li><a href="103063?version=1&table=Table 659">Matrix for 1/SIG*D2SIG/DT1_PT/DT2_PT between the 4th and 4th bins of T2_PT</a> (Table 659) <li><a href="103063?version=1&table=Table 664">Matrix for D2SIG/DT1_PT/DT2_PT between the 1th and 1th bins of T2_PT</a> (Table 664) <li><a href="103063?version=1&table=Table 665">Matrix for D2SIG/DT1_PT/DT2_PT between the 2th and 1th bins of T2_PT</a> (Table 665) <li><a href="103063?version=1&table=Table 666">Matrix for D2SIG/DT1_PT/DT2_PT between the 2th and 2th bins of T2_PT</a> (Table 666) <li><a href="103063?version=1&table=Table 667">Matrix for D2SIG/DT1_PT/DT2_PT between the 3th and 1th bins of T2_PT</a> (Table 667) <li><a href="103063?version=1&table=Table 668">Matrix for D2SIG/DT1_PT/DT2_PT between the 3th and 2th bins of T2_PT</a> (Table 668) <li><a href="103063?version=1&table=Table 669">Matrix for D2SIG/DT1_PT/DT2_PT between the 3th and 3th bins of T2_PT</a> (Table 669) <li><a href="103063?version=1&table=Table 670">Matrix for D2SIG/DT1_PT/DT2_PT between the 4th and 1th bins of T2_PT</a> (Table 670) <li><a href="103063?version=1&table=Table 671">Matrix for D2SIG/DT1_PT/DT2_PT between the 4th and 2th bins of T2_PT</a> (Table 671) <li><a href="103063?version=1&table=Table 672">Matrix for D2SIG/DT1_PT/DT2_PT between the 4th and 3th bins of T2_PT</a> (Table 672) <li><a href="103063?version=1&table=Table 673">Matrix for D2SIG/DT1_PT/DT2_PT between the 4th and 4th bins of T2_PT</a> (Table 673) </ul><br/>

Relative differential cross-section as a function of $\Delta R^{extra1}_{jet1}$ at particle level in the all hadronic resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.

Covariance matrix of the relative differential cross-section as function of $\Delta R^{extra1}_{jet1}$ at particle level in the all hadronic resolved topology, accounting for the statistical and systematic uncertainties.

More…

Version 3
Measurement of the transverse momentum distribution of Drell-Yan lepton pairs in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 616, 2020.
Inspire Record 1768911 DOI 10.17182/hepdata.92377

This paper describes precision measurements of the transverse momentum $p_\mathrm{T}^{\ell\ell}$ ($\ell=e,\mu$) and of the angular variable $\phi^{*}_{\eta}$ distributions of Drell-Yan lepton pairs in a mass range of 66-116 GeV. The analysis uses data from 36.1 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=13$ TeV collected by the ATLAS experiment at the LHC in 2015 and 2016. Measurements in electron-pair and muon-pair final states are performed in the same fiducial volumes, corrected for detector effects, and combined. Compared to previous measurements in proton-proton collisions at $\sqrt{s}=$7 and 8 TeV, these new measurements probe perturbative QCD at a higher centre-of-mass energy with a different composition of initial states. They reach a precision of 0.2% for the normalized spectra at low values of $p_\mathrm{T}^{\ell\ell}$. The data are compared with different QCD predictions, where it is found that predictions based on resummation approaches can describe the full spectrum within uncertainties.

80 data tables match query

Selected signal candidate events in data for both decay channels as well as the expected background contributions including their total uncertainties.

Selected signal candidate events in data for both decay channels as well as the expected background contributions including their total uncertainties.

Selected signal candidate events in data for both decay channels as well as the expected background contributions including their total uncertainties.

More…

Measurement of the $t\bar{t}$ production cross-section and lepton differential distributions in $e\mu $ dilepton events from $pp$ collisions at $\sqrt{s}=13\,\text {TeV}$ with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 528, 2020.
Inspire Record 1759875 DOI 10.17182/hepdata.91242

The inclusive top quark pair ($t\bar{t}$) production cross-section $\sigma_{t\bar{t}}$ has been measured in proton$-$proton collisions at $\sqrt{s}=13$ TeV, using $36.1$ fb$^{-1}$ of data collected in 2015$-$16 by the ATLAS experiment at the LHC. Using events with an opposite-charge $e\mu$ pair and $b$-tagged jets, the cross-section is measured to be: \begin{equation}\nonumber \sigma_{t\bar{t}} = 826.4 \pm 3.6\,\mathrm{(stat)}\ \pm 11.5\,\mathrm{(syst)}\ \pm 15.7\,\mathrm{(lumi)}\ \pm 1.9\,\mathrm{(beam)}\,\mathrm{pb}, \end{equation} where the uncertainties reflect the limited size of the data sample, experimental and theoretical systematic effects, the integrated luminosity, and the LHC beam energy, giving a total uncertainty of 2.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. It is used to determine the top quark pole mass via the dependence of the predicted cross-section on $m_t^{\mathrm{pole}}$, giving $m_t^{\mathrm{pole}}=173.1^{+2.0}_{-2.1}$ GeV. It is also combined with measurements at $\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV to derive ratios and double ratios of $t\bar{t}$ and $Z$ cross-sections at different energies. The same event sample is used to measure absolute and normalised differential cross-sections as functions of single-lepton and dilepton kinematic variables, and the results compared with predictions from various Monte Carlo event generators.

59 data tables match query

Absolute differential cross-section in the fiducial region as a function of lepton pT. The first column gives the cross-section including contributions from leptonic tau decays, the second without. Systematic uncertainties are given for ttbar modelling (ttmod), lepton calibration (lept), jet and b-tagging calibration (jet), backgrounds (bkg) and integrated luminosity and beam energy (leb). The last bin includes overflow beyond the upper bin boundary. The corresponding correlation matrices are given in Tables 23 and 24.

Normalised differential cross-section in the fiducial region as a function of lepton pT. The first column gives the cross-section including contributions from leptonic tau decays, the second without. Systematic uncertainties are given for ttbar modelling (ttmod), lepton calibration (lept), jet and b-tagging calibration (jet), backgrounds (bkg) and integrated luminosity and beam energy (leb). The last bin includes overflow beyond the upper bin boundary. The corresponding correlation matrices are given in Tables 25 and 26.

Absolute differential cross-section in the fiducial region as a function of lepton |eta|. The first column gives the cross-section including contributions from leptonic tau decays, the second without. Systematic uncertainties are given for ttbar modelling (ttmod), lepton calibration (lept), jet and b-tagging calibration (jet), backgrounds (bkg) and integrated luminosity and beam energy (leb). The corresponding correlation matrices are given in Tables 27 and 28.

More…

Search for long-lived neutral particles produced in $pp$ collisions at $\sqrt{s} = 13$ TeV decaying into displaced hadronic jets in the ATLAS inner detector and muon spectrometer

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 101 (2020) 052013, 2020.
Inspire Record 1767646 DOI 10.17182/hepdata.92075

A search is presented for pair-production of long-lived neutral particles using 33 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data, collected during 2016 by the ATLAS detector at the LHC. This search focuses on a topology in which one long-lived particle decays in the ATLAS inner detector and the other decays in the muon spectrometer. Special techniques are employed to reconstruct the displaced tracks and vertices in the inner detector and in the muon spectrometer. One event is observed that passes the full event selection, which is consistent with the estimated background. Limits are placed on scalar boson propagators with masses from 125 GeV to 1000 GeV decaying into pairs of long-lived hidden-sector scalars with masses from 8 GeV to 400 GeV. The limits placed on several low-mass scalars extend previous exclusion limits in the range of proper lifetimes $c \tau$ from 5 cm to 1 m.

41 data tables match query

IDVx selection efficiency as a function of the radial decay position for $m_H = 125$ GeV.

IDVx selection efficiency as a function of the radial decay position for $m_s = 50$ GeV.

Observed $CL_S$ limits on $BR$ for $m_H = 125$ GeV.

More…