Measurement of the inclusive leptonic asymmetry in top-quark pairs that decay to two charged leptons at CDF

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.Lett. 113 (2014) 042001, 2014.
Inspire Record 1290358 DOI 10.17182/hepdata.64422

We measure the inclusive forward-backward asymmetry of the charged-lepton pseudorapidities from top-quark pairs produced in proton-antiproton collisions, and decaying to final states that contain two charged leptons (electrons or muons), using data collected with the Collider Detector at Fermilab. With an integrated luminosity of 9.1 $\rm{fb}^{-1}$, the leptonic forward-backward asymmetry, $A_{\text{FB}}^{\ell}$, is measured to be $0.072 \pm 0.060$ and the leptonic pair forward-backward asymmetry, $A_{\text{FB}}^{\ell\ell}$, is measured to be $0.076 \pm 0.082$, compared with the standard model predictions of $A_{\text{FB}}^{\ell} = 0.038 \pm 0.003$ and $A_{\text{FB}}^{\ell\ell} = 0.048 \pm 0.004$, respectively. Additionally, we combine the $A_{\text{FB}}^{\ell}$ result with a previous determination from a final state with a single lepton and hadronic jets and obtain $A_{\text{FB}}^{\ell} = 0.090^{+0.028}_{-0.026}$.

3 data tables match query

The leptonic forward-backward asymmetry.

The leptonic pair forward-backward asymmetry.

The leptonic forward-backward asymmetry calculated as the combination of the current asymmetry measurement and a previous CDF measurement.


Measurement of the forward-backward asymmetry in low-mass bottom-quark pairs produced in proton-antiproton collisions

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.D 93 (2016) 112003, 2016.
Inspire Record 1416824 DOI 10.17182/hepdata.77045

We report a measurement of the forward-backward asymmetry, $A_{FB}$, in $b\bar{b}$ pairs produced in proton-antiproton collisions and identified by muons from semileptonic $b$-hadron decays. The event sample was collected at a center-of-mass energy of $\sqrt{s}=1.96$ TeV with the CDF II detector and corresponds to 6.9 fb$^{-1}$ of integrated luminosity. We obtain an integrated asymmetry of $A_{FB}(b\bar{b})=(1.2 \pm 0.7)$\% at the particle level for $b$-quark pairs with invariant mass, $m_{b\bar{b}}$, down to $40$ GeV/$c^2$ and measure the dependence of $A_{FB}(b\bar{b})$ on $m_{b\bar{b}}$. The results are compatible with expectations from the standard model.

1 data table match query

Results of the $A_{\rm{FB}}$ measurements as functions of $b\bar{b}$ invariant mass. The integral values for each bin are shown.


First measurement of the forward-backward asymmetry in bottom-quark pair production at high mass

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.D 92 (2015) 032006, 2015.
Inspire Record 1364882 DOI 10.17182/hepdata.73682

We measure the particle-level forward-backward production asymmetry in $b\bar{b}$ pairs with masses $m(b\bar{b})$ larger than 150 GeV/$c^2$, using events with hadronic jets and employing jet charge to distinguish $b$ from $\bar{b}$. The measurement uses 9.5/fb of ppbar collisions at a center of mass energy of 1.96 TeV recorded by the CDF II detector. The asymmetry as a function of $m(b\bar{b})$ is consistent with zero, as well as with the predictions of the standard model. The measurement disfavors a simple model including an axigluon with a mass of 200 GeV/$c^2$ whereas a model containing a heavier 345 GeV/$c^2$ axigluon is not excluded.

1 data table match query

Values of maximum a posteriori signal asymmetry as a function of $b\bar{b}$ mass. The error bars represent the 68% credible intervals.


Measurement of the forward-backward asymmetry of top-quark and antiquark pairs using the full CDF Run II data set

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.D 93 (2016) 112005, 2016.
Inspire Record 1424841 DOI 10.17182/hepdata.77054

We measure the forward--backward asymmetry of the production of top quark and antiquark pairs in proton-antiproton collisions at center-of-mass energy $\sqrt{s} = 1.96~\mathrm{TeV}$ using the full data set collected by the Collider Detector at Fermilab (CDF) in Tevatron Run II corresponding to an integrated luminosity of $9.1~\rm{fb}^{-1}$. The asymmetry is characterized by the rapidity difference between top quarks and antiquarks ($\Delta y$), and measured in the final state with two charged leptons (electrons and muons). The inclusive asymmetry, corrected to the entire phase space at parton level, is measured to be $A_{\text{FB}}^{t\bar{t}} = 0.12 \pm 0.13$, consistent with the expectations from the standard-model (SM) and previous CDF results in the final state with a single charged lepton. The combination of the CDF measurements of the inclusive $A_{\text{FB}}^{t\bar{t}}$ in both final states yields $A_{\text{FB}}^{t\bar{t}}=0.160\pm0.045$, which is consistent with the SM predictions. We also measure the differential asymmetry as a function of $\Delta y$. A linear fit to $A_{\text{FB}}^{t\bar{t}}(|\Delta y|)$, assuming zero asymmetry at $\Delta y=0$, yields a slope of $\alpha=0.14\pm0.15$, consistent with the SM prediction and the previous CDF determination in the final state with a single charged lepton. The combined slope of $A_{\text{FB}}^{t\bar{t}}(|\Delta y|)$ in the two final states is $\alpha=0.227\pm0.057$, which is $2.0\sigma$ larger than the SM prediction.

2 data tables match query

Bin centroids and the differential $A_{\rm{FB}}^{t\bar{t}}$ in the $A_{\rm{FB}}^{t\bar{t}}$ vs. $|\Delta y|$ measurement in the lepton+jets final state.

Bin centroids and the differential $A_{\rm{FB}}^{t\bar{t}}$ in the $A_{\rm{FB}}^{t\bar{t}}$ vs. $|\Delta y|$ measurement in the dilepton final state.


Indirect measurement of $\sin^2 \theta_W$ (or $M_W$) using $\mu^+\mu^-$ pairs from $\gamma^*/Z$ bosons produced in $p\bar{p}$ collisions at a center-of-momentum energy of 1.96 TeV

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.D 89 (2014) 072005, 2014.
Inspire Record 1280719 DOI 10.17182/hepdata.64738

Drell-Yan lepton pairs are produced in the process $p\bar{p} \rightarrow \mu^+\mu^- + X$ through an intermediate $\gamma^*/Z$ boson. The forward-backward asymmetry in the polar-angle distribution of the $\mu^-$ as a function of the invariant mass of the $\mu^+\mu^-$ pair is used to obtain the effective leptonic determination $\sin^2 \theta^{lept}_{eff}$ of the electroweak-mixing parameter $\sin^2 \theta_W$, from which the value of $\sin^2 \theta_W$ is derived assuming the standard model. The measurement sample, recorded by the Collider Detector at Fermilab (CDF), corresponds to 9.2 fb-1 of integrated luminosity from $p\bar{p}$ collisions at a center-of-momentum energy of 1.96 TeV, and is the full CDF Run II data set. The value of $\sin^2 \theta^{lept}_{eff}$ is found to be 0.2315 +- 0.0010, where statistical and systematic uncertainties are combined in quadrature. When interpreted within the context of the standard model using the on-shell renormalization scheme, where $\sin^2 \theta_W = 1 - M_W^2/M_Z^2$, the measurement yields $\sin^2 \theta_W$ = 0.2233 +- 0.0009, or equivalently a W-boson mass of 80.365 +- 0.047 GeV/c^2. The value of the W-boson mass is in agreement with previous determinations in electron-positron collisions and at the Tevatron collider.

1 data table match query

The fully corrected measurement of ASYM(FB) as a function of the muon-pair invariant mass.


Measurement of $\sin^2\theta^{\rm lept}_{\rm eff}$ using $e^+e^-$ pairs from $\gamma^*/Z$ bosons produced in $p\bar{p}$ collisions at a center-of-momentum energy of 1.96 TeV

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.D 93 (2016) 112016, 2016.
Inspire Record 1456804 DOI 10.17182/hepdata.78542

At the Fermilab Tevatron proton-antiproton ($p\bar{p}$) collider, Drell-Yan lepton pairs are produced in the process $p \bar{p} \rightarrow e^+e^- + X$ through an intermediate $\gamma^*/Z$ boson. The forward-backward asymmetry in the polar-angle distribution of the $e^-$ as a function of the $e^+e^-$-pair mass is used to obtain $\sin^2\theta^{\rm lept}_{\rm eff}$, the effective leptonic determination of the electroweak-mixing parameter $\sin^2\theta_W$. The measurement sample, recorded by the Collider Detector at Fermilab (CDF), corresponds to 9.4~fb$^{-1}$ of integrated luminosity from $p\bar{p}$ collisions at a center-of-momentum energy of 1.96 TeV, and is the full CDF Run II data set. The value of $\sin^2\theta^{\rm lept}_{\rm eff}$ is found to be $0.23248 \pm 0.00053$. The combination with the previous CDF measurement based on $\mu^+\mu^-$ pairs yields $\sin^2\theta^{\rm lept}_{\rm eff} = 0.23221 \pm 0.00046$. This result, when interpreted within the specified context of the standard model assuming $\sin^2 \theta_W = 1 - M_W^2/M_Z^2$ and that the $W$- and $Z$-boson masses are on-shell, yields $\sin^2\theta_W = 0.22400 \pm 0.00045$, or equivalently a $W$-boson mass of $80.328 \pm 0.024 \;{\rm GeV}/c^2$.

1 data table match query

Fully corrected $A_{fb}$ measurement for electron pairs with $|y|<1.7$. The measurement uncertainties are bin-by-bin unfolding estimates.


Measurement of the muon charge asymmetry in ppbar to W + X to mu nu + X events at sqrt{s} = 1.96 TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 88 (2013) 091102, 2013.
Inspire Record 1253555 DOI 10.17182/hepdata.66280

We present a measurement of the muon charge asymmetry from the decay of the $W$ boson via W to mu nu using 7.3 fb^{-1} of integrated luminosity collected with the D0 detector at the Fermilab Tevatron Collider at sqrt{s} = 1.96 TeV. The muon charge asymmetry is presented in two kinematic regions in muon transverse momentum and event missing transverse energy: (p^{\mu}_{T} > 25 GeV, \met > 25 GeV) and (p^{\mu}_{T} > 35 GeV, \met > 35 GeV). The measured asymmetries are compared with theory predictions made using three parton distribution function sets. The predictions do not describe the data well for p^{\mu}_{T} > 35 GeV, \met > 35 GeV, and larger values of muon pseudorapidity.

2 data tables match query

Muon charge asymmetry for data and predictions from RESBOS+PHOTOS using the CTEQ6.6 PDFs. The measurement is shown with statistical uncertainties followed by systematic uncertainties. The uncertainties for the predictions are only from the PDFs.

Contributions from individual sources of systematic uncertainty for the ($p^{\mu}_{T} > 25$, $E_T^{missing} > 25$) GeV kinematic region. All uncertainty values are multiplied by 100. The columns (1-7) correspond to: 1.0 = Electro-Weak background 2.0 = Multi-Jet background 3.0 = Charge mis-identification 4.0 = Relative charge efficiency 5.0 = Magnet polarity weighting 6.0 = Momentum/$E_T^{missing}$ resolution 7.0 = Trigger isolation.


Measurement of the forward-backward asymmetry in the distribution of leptons in $t\bar{t}$ events in the lepton+jets channel

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 90 (2014) 072001, 2014.
Inspire Record 1283842 DOI 10.17182/hepdata.64673

We present measurements of the forward-backward asymmetry in the angular distribution of leptons from decays of top quarks and antiquarks produced in proton-antiproton collisions. We consider the final state containing a lepton and at least three jets. The entire sample of data collected by the D0 experiment during Run II of the Fermilab Tevatron Collider, corresponding to 9.7 inverse fb of integrated luminosity, is used. The asymmetry measured for reconstructed leptons is $A_{FB}^l = \big(2.9 \pm 2.1(stat.) ^{+1.5}_{-1.7}(syst.) \big)$%. When corrected for efficiency and resolution effects within the lepton rapidity coverage of $|y_l|<1.5$, the asymmetry is found to be $A_{FB}^l = \big(4.2 \pm 2.3(stat.) ^{+1.7}_{-2.0}(syst.) \big)$%. Combination with the asymmetry measured in the dilepton final state yields $A_{FB}^l = \big(4.2 \pm 2.0(stat.) \pm 1.4(syst.) \big)$%. We examine the dependence of $A_{FB}^l$ on the transverse momentum and rapidity of the lepton. The results are in agreement with predictions from the next-to-leading-order QCD generator \mcatnlo, which predicts an asymmetry of $A_{FB}^l = 2.0$% for $|y_l|<1.5$.

14 data tables match query

Observed ASYMFB(LEPTON) as a function of PT(LEPTON) at reconstruction level.

Observed production-level ASYMFB(LEPTON) as a function of PT(LEPTON).

Observed production-level ASYMFB(LEPTON) as a function of ABS(YRAP(LEPTON)).

More…

Measurement of the Forward-Backward Asymmetry in Top Quark-Antiquark Production in $p\bar{p}$ Collisions using the Lepton+Jets Channel

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 90 (2014) 072011, 2014.
Inspire Record 1293918 DOI 10.17182/hepdata.64123

We present a measurement of the forward--backward asymmetry in top quark-antiquark production using the full Tevatron Run II dataset collected by the D0 experiment at Fermilab. The measurement is performed in lepton+jets final states using a new kinematic fitting algorithm for events with four or more jets and a new partial reconstruction algorithm for events with only three jets. Corrected for detector acceptance and resolution effects, the asymmetry is evaluated to be 10.6+-3.0 %. Results are consistent with the standard model predictions which range from 5.0% to 8.8%. We also present the dependence of the asymmetry on the invariant mass of the top quark--antiquark system and the difference in rapidities of top quark and antiquark.

2 data tables match query

Production-level forward-backward asymmetry as a function of the absolute difference in rapidity of the top quark and antiquark. The measured values are calibrated and listed with their total uncertainties. The theoretical predictions are based on MC@NLO simulation.

Production-level forward-backward asymmetry as a function of the invariant mass of the top quark-antiquark system. The measured values are calibrated and listed with their total uncertainties. The theoretical predictions are based on MC@NLO simulation.


Measurement of the forward-backward asymmetry of $\Lambda$ and $\bar{\Lambda}$ production in $p \bar{p}$ collisions

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 93 (2016) 032002, 2016.
Inspire Record 1404885 DOI 10.17182/hepdata.76972

We study $\Lambda$ and $\bar{\Lambda}$ production asymmetries in $p \bar{p} \rightarrow \Lambda (\bar{\Lambda}) X$, $p \bar{p} \rightarrow J/\psi \Lambda (\bar{\Lambda}) X$, and $p \bar{p} \rightarrow \mu^\pm \Lambda (\bar{\Lambda}) X$ events recorded by the D0 detector at the Fermilab Tevatron collider at $\sqrt{s} = 1.96$ TeV. We find an excess of $\Lambda$'s ($\bar{\Lambda}$'s) produced in the proton (antiproton) direction. This forward-backward asymmetry is measured as a function of rapidity. We confirm that the $\bar{\Lambda}/\Lambda$ production ratio, measured by several experiments with various targets and a wide range of energies, is a universal function of "rapidity loss", i.e., the rapidity difference of the beam proton and the lambda.

2 data tables match query

Forward-backward asymmetry $A_{FB}$ of $\Lambda$ and $\bar{\Lambda}$ with $p_T > 2.0$ GeV in minimum bias events $p \bar{p} \rightarrow \Lambda (\bar{\Lambda}) X$, events $p \bar{p} \rightarrow J/\psi \Lambda (\bar{\Lambda}) X$, and events $p \bar{p} \rightarrow \mu^\pm \Lambda (\bar{\Lambda}) X$.

Forward-backward asymmetry $A_{FB}$ of $\Lambda$ and $\bar{\Lambda}$ in bins of $p_T$ in events $p \bar{p} \rightarrow \mu^\pm \Lambda (\bar{\Lambda}) X$.


Measurement of the electron charge asymmetry in $\boldsymbol{p\bar{p}\rightarrow W+X \rightarrow e\nu +X}$ decays in $\boldsymbol{p\bar{p}}$ collisions at $\boldsymbol{\sqrt{s}=1.96}$ TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 91 (2015) 032007, 2015.
Inspire Record 1333394 DOI 10.17182/hepdata.73177

We present a measurement of the electron charge asymmetry in $p\bar{p}\rightarrow W+X \rightarrow e\nu +X$ events at a center-of-mass energy of 1.96 TeV, using data corresponding to 9.7~fb$^{-1}$ of integrated luminosity collected with the D0 detector at the Fermilab Tevatron Collider. The asymmetry is measured as a function of the electron pseudorapidity and is presented in five kinematic bins based on the electron transverse energy and the missing transverse energy in the event. The measured asymmetry is compared with next-to-leading-order predictions in perturbative quantum chromodynamics and provides accurate information for the determination of parton distribution functions of the proton. This is the most precise lepton charge asymmetry measurement to date.

3 data tables match query

CP-folded electron charge asymmetry for data with $E_T^{e} > 25$ GeV multiplied by 100. $\langle|\eta^e|\rangle$ is the cross section weighted average of electron pseudorapidity in each bin from RESBOS with PHOTOS.

CP-folded electron charge asymmetry for data with $25 < E_T^{e} < 35$ GeV multiplied by 100. $\langle|\eta^e|\rangle$ is the cross section weighted average of electron pseudorapidity in each bin from RESBOS with PHOTOS.

CP-folded electron charge asymmetry for data with $E_T^{e} > 35$ GeV multiplied by 100. $\langle|\eta^e|\rangle$ is the cross section weighted average of electron pseudorapidity in each bin from RESBOS with PHOTOS.


Measurement of the Forward-Backward Charge Asymmetry and Extraction of $sin^2\Theta^\mbox{eff}_W$ in $p\bar{p} \to Z/\gamma^{*}+X \to e^+e^- +X$ Events Produced at $\sqrt{s} = 1.96$ TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 101 (2008) 191801, 2008.
Inspire Record 783813 DOI 10.17182/hepdata.52605

We present a measurement of the forward-backward charge asymmetry ($A_{FB}$) in $p\bar{p} \to Z/\gamma^{*}+X \to e^+e^-+X$ events at a center-of-mass energy of 1.96 TeV using 1.1 fb$^{-1}$ of data collected with the D0 detector at the Fermilab Tevatron collider. $A_{FB}$ is measured as a function of the invariant mass of the electron-positron pair, and found to be consistent with the standard model prediction. We use the $A_{FB}$ measurement to extract the effective weak mixing angle sin$^2\Theta^{eff}_W = 0.2327 \pm 0.0018 (stat.) \pm 0.0006 (syst.)$.

1 data table match query

Unfolded forward-backward asymmetry as a function of the di-electron mass.


Measurement of the forward-backward asymmetries in the production of $\Xi$ and $\Omega$ baryons in $p \bar{p}$ collisions

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 93 (2016) 112001, 2016.
Inspire Record 1457606 DOI 10.17182/hepdata.78545

We measure the forward-backward asymmetries $A_{\rm FB}$ of charged $\Xi$ and $\Omega$ baryons produced in $p \bar{p}$ collisions recorded by the D0 detector at the Fermilab Tevatron collider at $\sqrt{s} = 1.96$ TeV as a function of the baryon rapidity $y$. We find that the asymmetries $A_{\rm FB}$ for charged $\Xi$ and $\Omega$ baryons are consistent with zero within statistical uncertainties.

1 data table match query

Forward-backward asymmetry $A_{\rm FB}$ of $\Xi^\mp$ baryons with $p_T > 2$ GeV in minimum bias events, $p\bar{p} \rightarrow \Xi^\mp X$, and muon events $p \bar{p} \rightarrow \mu \Xi^\mp X$, and $A_{\rm FB}$ of $\Omega^-$ and $\Omega^+$ baryons with $p_T > 2$ GeV in muon events $p \bar{p} \rightarrow \mu \Omega^\mp X$. The first uncertainty is statistical, the second is systematic due to the detector asymmetry $A'_{\rm NS} A'_\Xi$.


Measurement of the $\boldsymbol{W}$ boson production charge asymmetry in $\boldsymbol{p\bar{p}\rightarrow W+X \rightarrow e\nu +X}$ events at $\boldsymbol{\sqrt{s}=1.96}$ TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.Lett. 112 (2014) 151803, 2014.
Inspire Record 1268647 DOI 10.17182/hepdata.66256

We present a measurement of the $W$ boson production charge asymmetry in $p\bar{p}\rightarrow W+X \rightarrow e\nu +X$ events at a center of mass energy of 1.96 TeV, using 9.7 fb$^{-1}$ of integrated luminosity collected with the D0 detector at the Fermilab Tevatron Collider. The neutrino longitudinal momentum is determined using a neutrino weighting method, and the asymmetry is measured as a function of the $W$ boson rapidity. The measurement extends over wider electron pseudorapidity region than previous results, and is the most precise to date, allowing for precise determination of proton parton distribution functions in global fits.

2 data tables match query

${\it CP}$-folded $W$ charge asymmetry for data and predictions from MC@NLO using NNPDF2.3 PDFs tabulated in percent (%) for each $|y_W|$ bin. The $\langle|y_W|\rangle$ is calculated as the cross section weighted average of $y_W$ in each bin from RESBOS with photos. For data, the first uncertainty is statistical and the second is systematic. The uncertainties on the prediction come from both the PDF uncertainties and $\alpha_s$ uncertainties. The numbers in this table are the revised data published on 10th December 2014 (after the journal publication).

Correlation coefficients between central values of asymmetry in different $|y_W|$ bins.


Measurement of the forward-backward asymmetry in $\Lambda_b^0$ and $\overline \Lambda_b^0$ baryon production in $p \overline p$ collisions at $\sqrt s =1.96$ TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 91 (2015) 072008, 2015.
Inspire Record 1352125 DOI 10.17182/hepdata.73327

We measure the forward-backward asymmetry in the production of $\Lambda_b^0$ and $\overline \Lambda_b^0$ baryons as a function of rapidity in $p \overline p $ collisions at $\sqrt s =1.96$ TeV using $10.4$ fb$^{-1}$ of data collected with the D0 detector at the Fermilab Tevatron collider. The asymmetry is determined by the preference of $\Lambda_b^0$ or $\overline \Lambda_b^0$ particles to be produced in the direction of the beam protons or antiprotons, respectively. The measured asymmetry integrated over rapidity $y$ in the range $0.1<|y|<2$ is $A=0.04 \pm 0.07 {\rm (stat)} \pm 0.02 {\rm (syst)}$.

1 data table match query

Efficiencies $\epsilon$, averaged values of background-subtracted transverse momenta $\left< p_T\right>$, backward and forward fitted yields for the signal $N(B)$ and $N(F)$, forward-backward asymmetries $A$, and cross-section ratios $R$ in four intervals of rapidity. Uncertainties on $\left< p_T\right>$, $N(B)$ and $N(F)$ are statistical only. Uncertainties on $\epsilon$ arise from the statistical precision of the simulated event samples.


Measurements of the t t-bar charge asymmetry using the dilepton decay channel in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 04 (2014) 191, 2014.
Inspire Record 1281538 DOI 10.17182/hepdata.64729

The t t-bar charge asymmetry in proton-proton collisions at sqrt(s) = 7 TeV is measured using the dilepton decay channel (ee, e mu, or mu mu). The data correspond to a total integrated luminosity of 5.0 inverse femtobarns, collected by the CMS experiment at the LHC. The t t-bar and lepton charge asymmetries, defined as the differences in absolute values of the rapidities between the reconstructed top quarks and antiquarks and of the pseudorapidities between the positive and negative leptons, respectively, are measured to be Ac = -0.010 +/- 0.017 (stat.) +/- 0.008 (syst.) and Ac[lep] = 0.009 +/- 0.010 (stat.) +/- 0.006 (syst). The lepton charge asymmetry is also measured as a function of the invariant mass, rapidity, and transverse momentum of the t t-bar system. All measurements are consistent with the expectations of the standard model.

4 data tables match query

The unfolded ASYMC and ASYMC(LEPTON) measurements.

Measurements of the unfolded ASYMC(LEPTON) values in bins of M(TOP TOPBAR).

Measurements of the unfolded ASYMC(LEPTON) values in bins of ABS(YRAP(TOP TOPBAR)).

More…

Measurement of the electron charge asymmetry in inclusive W production in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.Lett. 109 (2012) 111806, 2012.
Inspire Record 1118047 DOI 10.17182/hepdata.66333

A measurement of the electron charge asymmetry in inclusive pp to W + X to e nu + X production at sqrt(s) = 7 TeV is presented based on data recorded by the CMS detector at the LHC and corresponding to an integrated luminosity of 840 inverse picobarns. The electron charge asymmetry reflects the unequal production of positive and negative W bosons in pp collisions. The electron charge asymmetry is measured in bins of absolute value of electron pseudorapidity in the range of abs(eta) < 2.4. The asymmetry rises from about 0.1 to 0.2 as a function of the pseudorapidity and is measured with a relative precision better than 7%. This measurement provides new stringent constraints for parton distribution functions.

2 data tables match query

Summary of the measured charge asymmetry results. The first uncertainty is statistical and the second is systematic. The theoretical predictions are obtained using MCFM interfaced with four different PDF models. The PDF uncertainties are estimated using the PDF reweighting technique. All values are in units of $10^{-3}$.

Covariance matrix for the systematic uncertainties on the asymmetry. All values are given in units of $10^{-6}$.


Forward-backward asymmetry of Drell-Yan lepton pairs in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 718 (2013) 752-772, 2013.
Inspire Record 1122847 DOI 10.17182/hepdata.65322

A measurement of the forward-backward asymmetry (A[FB]) of Drell-Yan lepton pairs in pp collisions at sqrt(s) = 7 TeV is presented. The data sample, collected with the CMS detector, corresponds to an integrated luminosity of 5 inverse femtobarns. The asymmetry is measured as a function of dilepton mass and rapidity in the dielectron and dimuon channels. Combined results from the two channels are also presented. The A[FB] measurement in the dimuon channel and the combination of the two channels are the first such results obtained at a hadron collider. The measured asymmetries are consistent with the standard model predictions.

15 data tables match query

The unfolded mu+mu- measurement of AFB at the Born level in four rapidity bins. The errors on data are statistical only.

The unfolded e+e- measurement of AFB at the Born level in four rapidity bins. The errors on data are statistical only.

Unfolded combined measurements of AFB in each M-|y| bin (mu+mu- and e+e- combined).

More…

Measurement of the Muon Charge Asymmetry in Inclusive $pp \to W+X$ Production at $\sqrt s =$ 7 TeV and an Improved Determination of Light Parton Distribution Functions

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.D 90 (2014) 032004, 2014.
Inspire Record 1273570 DOI 10.17182/hepdata.65456

Measurements of the muon charge asymmetry in inclusive pp to WX production at sqrt(s) = 7 TeV are presented. The data sample corresponds to an integrated luminosity of 4.7 inverse femtobarns recorded with the CMS detector at the LHC. With a sample of more than twenty million W to mu nu events, the statistical precision is greatly improved in comparison to previous measurements. These new results provide additional constraints on the parton distribution functions of the proton in the range of the Bjorken scaling variable x from 10E-3 to 10E-1. These measurements and the recent CMS measurement of associated W + charm production are used together with the cross sections for inclusive deep inelastic ep scattering at HERA in a next-to-leading-order QCD analysis. The determination of the valence quark distributions is improved, and the strange-quark distribution is probed directly through the leading-order process g + s to W + c in proton-proton collisions at the LHC.

4 data tables match query

Summary of the final results for muon charge asymmetry $\mathcal{A}$ with the muon $p_{T}>25$ GeV. The first uncertainty is statistical and the second is systematic. The theoretical predictions are obtained using the FEWZ 3.1 MC tool interfaced with the NLO CT10, NNPDF2.3, HERAPDF1.5, and MSTW2008CPdeut PDF sets. The PDF uncertainty is at 68% C.L. The values are expressed as percentages.

Summary of the final results for muon charge asymmetry $\mathcal{A}$ with the muon $p_{T}>35$ GeV. The first uncertainty is statistical and the second is systematic. The theoretical predictions are obtained using the FEWZ 3.1 MC tool interfaced with the NLO CT10, NNPDF2.3, HERAPDF1.5, and MSTW2008CPdeut PDF sets. The PDF uncertainty is at 68% C.L. The values are expressed as percentages.

Covariance matrix (statistical and systematic uncertainties combined) with the muon $p_{T}>25$ GeV. The units are in $10^{-4}$.

More…

Measurement of the charge asymmetry in top quark pair production in pp collisions at sqrt(s) = 8 TeV using a template method

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 93 (2016) 034014, 2016.
Inspire Record 1388178 DOI 10.17182/hepdata.69208

The charge asymmetry in the production of top quark and antiquark pairs is measured in proton-proton collisions at a center-of-mass energy of 8 TeV. The data, corresponding to an integrated luminosity of 19.6 inverse femtobarns, were collected by the CMS experiment at the LHC. Events with a single isolated electron or muon, and four or more jets, at least one of which is likely to have originated from hadronization of a bottom quark, are selected. A template technique is used to measure the asymmetry in the distribution of differences in the top quark and antiquark absolute rapidities. The measured asymmetry is A[c,y] = [0.33 +/- 0.26 (stat) +/- 0.33 (syst)]%, which is the most precise result to date. The results are compared to calculations based on the standard model and on several beyond-the-standard-model scenarios.

1 data table match query

The measured $t\bar{t}$ production asymmetry $A_c^y$.


Inclusive and differential measurements of the t t-bar charge asymmetry in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 757 (2016) 154-179, 2016.
Inspire Record 1382590 DOI 10.17182/hepdata.68759

The t t-bar charge asymmetry is measured in proton-proton collisions at a centre-of-mass energy of 8 TeV. The data, collected with the CMS experiment at the LHC, correspond to an integrated luminosity of 19.7 inverse femtobarns. Selected events contain an electron or a muon and four or more jets, where at least one jet is identified as originating from b-quark hadronization. The inclusive charge asymmetry is found to be 0.0010 +/- 0.0068 (stat) +/- 0.0037 (syst). In addition, differential charge asymmetries as a function of rapidity, transverse momentum, and invariant mass of the t t-bar system are studied. For the first time at the LHC, the measurements are also performed in a reduced fiducial phase space of top quark pair production, with an integrated result of -0.0035 +/- 0.0072 (stat) +/- 0.0031 (syst). All measurements are consistent within two standard deviations with zero asymmetry as well as with the predictions of the standard model.

16 data tables match query

Corrected asymmetry as a function of $|y_\mathrm{t\bar{t}}|$ in the fiducial phase space. The value 9999 is used as a placeholder for infinity. The correlation matrix for these values can be found in a separate table.

Correlation matrix for the asymmetries as a function of $|y_\mathrm{t\bar{t}}|$ in the fiducial phase space. Both statistical and systematic effects are considered.

Corrected asymmetry as a function of $p_\text{T}^\mathrm{t\bar{t}}$ in the fiducial phase space. The value 9999 is used as a placeholder for infinity. The correlation matrix for these values can be found in a separate table.

More…

Forward-backward asymmetry of Drell-Yan lepton pairs in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 76 (2016) 325, 2016.
Inspire Record 1415949 DOI 10.17182/hepdata.73121

A measurement of the forward-backward asymmetry A[FB] of oppositely charged lepton pairs (mu mu and e e) produced via Z/gamma* boson exchange in pp collisions at sqrt(s) = 8 TeV is presented. The data sample corresponds to an integrated luminosity of 19.7 inverse femtobarns collected with the CMS detector at the LHC. The measurement of A[FB] is performed for dilepton masses between 40 GeV and 2 TeV and for dilepton rapidity up to 5. The A[FB] measurements as a function of dilepton mass and rapidity are compared with the standard model predictions.

40 data tables match query

Unfolded combined measurements of AFB in each M-|y| bin (mu+mu- and e+e- combined).

Unfolded measurement of AFB for the forward rapidity region (e+e-).

Unfolded measurements of AFB in each M-|y| bin (mu+mu-).

More…

Measurement of the Drell-Yan forward-backward asymmetry at high dilepton masses in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 2022 (2022) 063, 2022.
Inspire Record 2038801 DOI 10.17182/hepdata.114012

A measurement of the forward-backward asymmetry of pairs of oppositely charged leptons (dimuons and dielectrons) produced by the Drell-­Yan process in proton-proton collisions is presented. The data sample corresponds to an integrated luminosity of 138 fb$^{-1}$ collected with the CMS detector at the LHC at a center-of-mass energy of 13 TeV. The asymmetry is measured as a function of lepton pair mass for masses larger than 170\GeV and compared with standard model predictions. An inclusive measurement across both channels and the full mass range yields an asymmetry of 0.599 $\pm$ 0.005 (stat) $\pm$ 0.007 (syst). As a test of lepton flavor universality, the difference between the dimuon and dielectron asymmetries is measured as well. No statistically significant deviations from standard model predictions are observed. The measurements are used to set limits on the presence of additional gauge bosons. For a Z' in the sequential standard model, a lower mass limit of 4.4 TeV is set at 95% confidence level.

1 data table match query

Results for the measurement of $A_\mathrm{FB}$ from the maximum likelihood fit to data in different dilepton mass bins in the different channels as well as an inclusive measurement across all mass bins.


Experimental investigation of transverse spin asymmetries in muon-p SIDIS processes: Sivers asymmetries

The COMPASS collaboration Adolph, C. ; Alekseev, M.G. ; Alexakhin, V.Yu. ; et al.
Phys.Lett.B 717 (2012) 383-389, 2012.
Inspire Record 1115721 DOI 10.17182/hepdata.59737

The COMPASS Collaboration at CERN has measured the transverse spin azimuthal asymmetry of charged hadrons produced in semi-inclusive deep inelastic scattering using a 160 GeV positive muon beam and a transversely polarised NH_3 target. The Sivers asymmetry of the proton has been extracted in the Bjorken x range 0.003<x<0.7. The new measurements have small statistical and systematic uncertainties of a few percent and confirm with considerably better accuracy the previous COMPASS measurement. The Sivers asymmetry is found to be compatible with zero for negative hadrons and positive for positive hadrons, a clear indication of a spin-orbit coupling of quarks in a transversely polarised proton. As compared to measurements at lower energy, a smaller Sivers asymmetry for positive hadrons is found in the region x > 0.03. The asymmetry is different from zero and positive also in the low x region, where sea-quarks dominate. The kinematic dependence of the asymmetry has also been investigated and results are given for various intervals of hadron and virtual photon fractional energy. In contrast to the case of the Collins asymmetry, the results on the Sivers asymmetry suggest a strong dependence on the four-momentum transfer to the nucleon, in agreement with the most recent calculations.

54 data tables match query

The Sivers asymmetry, from the 2010 data set, for positive hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Collins data measurments.

The Sivers asymmetry, from the 2010 data set, for negative hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Collins data measurments.

The Sivers asymmetry, from the 2010 data set, for positive hadrons as a function of PT for full range. Also shown are the mean values of other variables plus the correlation with the Collins data measurments.

More…

Experimental investigation of transverse spin asymmetries in muon-p SIDIS processes: Collins asymmetries

The COMPASS collaboration Adolph, C. ; Alekseev, M.G. ; Alexakhin, V.Yu. ; et al.
Phys.Lett.B 717 (2012) 376-382, 2012.
Inspire Record 1115720 DOI 10.17182/hepdata.59732

The COMPASS Collaboration at CERN has measured the transverse spin azimuthal asymmetry of charged hadrons produced in semi-inclusive deep inelastic scattering using a 160 GeV positive muon beam and a transversely polarised NH_3 target. The Collins asymmetry of the proton was extracted in the Bjorken x range 0.003<x<0.7. These new measurements confirm with higher accuracy previous measurements from the COMPASS and HERMES collaborations, which exhibit a definite effect in the valence quark region. The asymmetries for negative and positive hadrons are similar in magnitude and opposite in sign. They are compatible with model calculations in which the u-quark transversity is opposite in sign and somewhat larger than the d-quark transversity distribution function. The asymmetry is extracted as a function of Bjorken $x$, the relative hadron energy $z$ and the hadron transverse momentum p_T^h. The high statistics and quality of the data also allow for more detailed investigations of the dependence on the kinematic variables. These studies confirm the leading-twist nature of the Collins asymmetry.

54 data tables match query

The Collins asymmetry, from the 2010 data set, for positive hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Sivers data measurments.

The Collins asymmetry, from the 2010 data set, for negative hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Sivers data measurments.

The Collins asymmetry, from the 2010 data set, for positive hadrons as a function of PT for full range. Also shown are the mean values of other variables plus the correlation with the Sivers data measurments.

More…