A search for resonant and non-resonant pair production of Higgs bosons in the $b\bar{b}\tau^+\tau^-$ final state is presented. The search uses 36.1 fb$^{-1}$ of $pp$ collision data with $\sqrt{s}= 13$ TeV recorded by the ATLAS experiment at the LHC in 2015 and 2016. The semileptonic and fully hadronic decays of the $\tau$-lepton pair are considered. No significant excess above the expected background is observed in the data. The cross-section times branching ratio for non-resonant Higgs boson pair production is constrained to be less than 30.9 fb, 12.7 times the Standard Model expectation, at 95% confidence level. The data are also analyzed to probe resonant Higgs boson pair production, constraining a model with an extended Higgs sector based on two doublets and a Randall-Sundrum bulk graviton model. Upper limits are placed on the resonant Higgs boson pair production cross-section times branching ratio, excluding resonances $X$ in the mass range $305~{\rm GeV} < m_X < 402~{\rm GeV}$ in the simplified hMSSM minimal supersymmetric model for $\tan\beta=2$ and excluding bulk Randall-Sundrum gravitons $G_{\mathrm{KK}}$ in the mass range $325~{\rm GeV} < m_{G_{\mathrm{KK}}} < 885~{\rm GeV}$ for $k/\overline{M}_{\mathrm{Pl}} = 1$.
Observed and expected limits at 95% CL on the cross-sections of RS Graviton to HH for k/MPl = 1 process
Observed and expected limits at 95% CL on the cross-sections of RS Graviton to HH for k/MPl = 2 process
Observed and expected limits at 95% CL on the cross-sections of hMSSM scalar X to HH process
A search for supersymmetric partners of top quarks decaying as $\tilde{t}_1\to c\tilde\chi^0_1$ and supersymmetric partners of charm quarks decaying as $\tilde{c}_1\to c\tilde\chi^0_1$, where $\tilde\chi^0_1$ is the lightest neutralino, is presented. The search uses 36.1 ${\rm fb}^{-1}$ $pp$ collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS experiment at the Large Hadron Collider and is performed in final states with jets identified as containing charm hadrons. Assuming a 100% branching ratio to $c\tilde\chi^0_1$, top and charm squarks with masses up to 850 GeV are excluded at 95% confidence level for a massless lightest neutralino. For $m_{\tilde{t}_1,\tilde{c}_1}-m_{\tilde\chi^0_1}
Acceptance for SR1 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR2 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR3 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
A search for pair production of the supersymmetric partners of the Higgs boson (higgsinos $\tilde{H}$) in gauge-mediated scenarios is reported. Each higgsino is assumed to decay to a Higgs boson and a gravitino. Two complementary analyses, targeting high- and low-mass signals, are performed to maximize sensitivity. The two analyses utilize LHC $pp$ collision data at a center-of-mass energy $\sqrt{s} = 13$ TeV, the former with an integrated luminosity of 36.1 fb$^{-1}$ and the latter with 24.3 fb$^{-1}$, collected with the ATLAS detector in 2015 and 2016. The search is performed in events containing missing transverse momentum and several energetic jets, at least three of which must be identified as $b$-quark jets. No significant excess is found above the predicted background. Limits on the cross-section are set as a function of the mass of the $\tilde{H}$ in simplified models assuming production via mass-degenerate higgsinos decaying to a Higgs boson and a gravitino. Higgsinos with masses between 130 and 230 GeV and between 290 and 880 GeV are excluded at the 95% confidence level. Interpretations of the limits in terms of the branching ratio of the higgsino to a $Z$ boson or a Higgs boson are also presented, and a 45% branching ratio to a Higgs boson is excluded for $m_{\tilde{H}} \approx 400$ GeV.
Distribution of m(h1) for events passing the preselection criteria of the high-mass analysis.
Distribution of effective mass for events passing the preselection criteria of the high-mass analysis.
Exclusion limits on higgsino pair production. The results of the low-mass analysis are used below m(higgsino) = 300 GeV, while those of the high-mass analysis are used above. The figure shows the observed and expected 95% upper limits on the higgsino pair production cross-section as a function of m(higgsino).
A search is presented for the pair production of heavy vector-like quarks, $T\bar T$ or $B\bar B$, that decay into final states with jets and no reconstructed leptons. Jets in the final state are classified using a deep neural network as arising from hadronically decaying $W/Z$ bosons, Higgs bosons, top quarks, or background. The analysis uses data from the ATLAS experiment corresponding to 36.1 fb$^{-1}$ of proton-proton collisions with a center-of-mass energy of $\sqrt{s} = 13$ TeV delivered by the Large Hadron Collider in 2015 and 2016. No significant deviation from the Standard Model expectation is observed. Results are interpreted assuming the vector-like quarks decay into a Standard Model boson and a third-generation-quark, $T\rightarrow Wb,Ht,Zt$ or $B\rightarrow Wt,Hb,Zb$, for a variety of branching ratios. At 95% confidence level, the observed (expected) lower limit on the vector-like $B$-quark mass for a weak-isospin doublet ($B, Y$) is 950 (890) GeV, and the lower limits on the masses for the pure decays $B\rightarrow Hb$ and $T\rightarrow Ht$, where these results are strongest, are 1010 (970) GeV and 1010 (1010) GeV, respectively.
Expected and observed upper limits at the 95% CL on the $T\bar T$ cross section as a function of $T$ mass under the assumption BR($T\to Ht$)=1.
Expected and observed upper limits at the 95% CL on the $B\bar B$ cross section as a function of $B$ mass under the assumption BR($B\to Hb$)=1.
Expected and observed upper limits at the 95% CL on the $B\bar B$ cross section as a function of $B$ mass under the assumption of a weak-isospin doublet.
A search for new resonances decaying into jets containing b-hadrons in $pp$ collisions with the ATLAS detector at the LHC is presented in the dijet mass range from 0.57 TeV to 7 TeV. The dataset corresponds to an integrated luminosity of up to 36.1 fb$^{-1}$ collected in 2015 and 2016 at $\sqrt{s} = 13$ TeV. No evidence of a significant excess of events above the smooth background shape is found. Upper cross-section limits and lower limits on the corresponding signal mass parameters for several types of signal hypotheses are provided at 95% CL. In addition, 95% CL upper limits are set on the cross-sections for new processes that would produce Gaussian-shaped signals in the di-b-jet mass distributions.
The per-event b-tagging efficiencies after the event selection, as a function of the reconstructed invariant mass, for both single b-tagged and double b-tagged categories. The efficiencies are shown for simulated event samples corresponding to seven different b and Z' resonance masses in the high-mass region.
The per-event b-tagging efficiencies after the event selection, as a function of the reconstructed invariant mass, for double b-tagged category. The efficiencies are shown for simulated event samples corresponding to four different Z' resonance masses in the low-mass region. The efficiencies of identifying an event with two b-jets at trigger level only (Online) and when requiring offline confirmation (Online+offline) are shown.
Dijet mass spectra after the background only fit with the background prediction in the inclusive 1-b-tag high-mass region.
This paper presents measurements of $W^{\pm}Z$ production cross sections in $pp$ collisions at a centre-of-mass energy of 13 TeV. The data were collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider, and correspond to an integrated luminosity of 36.1 fb$^{-1}$. The $W^{\pm}Z$ candidate events are reconstructed using leptonic decay modes of the gauge bosons into electrons and muons. The measured inclusive cross section in the detector fiducial region for a single leptonic decay mode is $\sigma_{W^\pm Z \rightarrow \ell^{'} \nu \ell \ell}^{\textrm{fid.}} = 63.7 \pm 1.0$ (stat.) $\pm 2.3$ (syst.) $\pm 1.4$ (lumi.) fb, reproduced by the next-to-next-to-leading-order Standard Model prediction of $61.5^{+1.4}_{-1.3}$ fb. Cross sections for $W^+Z$ and $W^-Z$ production and their ratio are presented as well as differential cross sections for several kinematic observables. An analysis of angular distributions of leptons from decays of $W$ and $Z$ bosons is performed for the first time in pair-produced events in hadronic collisions, and integrated helicity fractions in the detector fiducial region are measured for the $W$ and $Z$ bosons separately. Of particular interest, the longitudinal helicity fraction of pair-produced vector bosons is also measured.
Measured fiducial cross section for a single leptonic decay channel $\ell'^\pm \nu \ell^+ \ell'^-$ of the $W The relative uncertainties are reported as percentages. The systematic uncertainties are in order of appearance: total uncorrelated systematic and correlated systematics related respectively to unfolding, electrons, muons, jets, reducible and irreducible backgrounds and pileup. the last bin is a cross section for all events above the lower end of the bin.
Measured fiducial cross section for a single leptonic decay channel $\ell'^\pm \nu \ell^+ \ell'^-$ of the $W The relative uncertainties are reported as percentages. The systematic uncertainties are in order of appearance: total uncorrelated systematic and correlated systematics related respectively to unfolding, electrons, muons, jets, reducible and irreducible backgrounds and pileup. the last bin is a cross section for all events above the lower end of the bin.
Measured fiducial cross section for a single leptonic decay channel $\ell'^\pm \nu \ell^+ \ell'^-$ of the $W The relative uncertainties are reported as percentages. The systematic uncertainties are in order of appearance: total uncorrelated systematic and correlated systematics related respectively to unfolding, electrons, muons, jets, reducible and irreducible backgrounds and pileup. the last bin is a cross section for all events above the lower end of the bin.
A search for dark matter (DM) particles produced in association with a hadronically decaying vector boson is performed using $pp$ collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV corresponding to an integrated luminosity of 36.1 fb$^{-1}$, recorded by the ATLAS detector at the Large Hadron Collider. This analysis improves on previous searches for processes with hadronic decays of $W$ and $Z$ bosons in association with large missing transverse momentum (mono-$W/Z$ searches) due to the larger dataset and further optimization of the event selection and signal region definitions. In addition to the mono-$W/Z$ search, the as yet unexplored hypothesis of a new vector boson $Z^\prime$ produced in association with dark matter is considered (mono-$Z^\prime$ search). No significant excess over the Standard Model prediction is observed. The results of the mono-$W/Z$ search are interpreted in terms of limits on invisible Higgs boson decays into dark matter particles, constraints on the parameter space of the simplified vector-mediator model and generic upper limits on the visible cross sections for $W/Z$+DM production. The results of the mono-$Z^\prime$ search are shown in the framework of several simplified-model scenarios involving DM production in association with the $Z^\prime$ boson.
The product of the acceptance and effifiency. Defined as the number of signal events satisfying the full set of selection criteria, divided by the total number of generated signal events, after the full event selection for the combined mono-W and mono-Z signal of the simplified vector-mediator model, shown in dependence on mass of the Z' mediator (mZp). For a given model, the signal contributions from each category are summed together.
The product of the acceptance and effifiency. Defined as the number of signal events satisfying the full set of selection criteria, divided by the total number of generated signal events, after the full event selection for the mono-Z' dark fermion and dark-Higgs signal models, shown in dependence on the mass of the Z' mediator (mZp). For a given model, the signal contributions from each category are summed together.
The observed and expected MET distributions with 36.1fb-1 of data with sqrt(s) = 13 TeV in the mono-W/Z signal region with the merged event topology after the profile-likelihood fit. This is shown for the 0b-tagged jet, high purity, event category.
A search for electroweak production of supersymmetric particles is performed in two-lepton and three-lepton final states using recursive jigsaw reconstruction. The search uses data collected in 2015 and 2016 by the ATLAS experiment in $\sqrt{s}$ = 13 TeV proton--proton collisions at the CERN Large Hadron Collider corresponding to an integrated luminosity of 36.1 fb$^{-1}$. Chargino-neutralino pair production, with decays via W/Z bosons, is studied in final states involving leptons and jets and missing transverse momentum for scenarios with large and intermediate mass-splittings between the parent particle and lightest supersymmetric particle, as well as for the scenario where this mass splitting is close to the mass of the Z boson. The latter case is challenging since the vector bosons are produced with kinematic properties that are similar to those in Standard Model processes. Results are found to be compatible with the Standard Model expectations in the signal regions targeting large and intermediate mass-splittings, and chargino-neutralino masses up to 600 GeV are excluded at 95% confidence level for a massless lightest supersymmetric particle. Excesses of data above the expected background are found in the signal regions targeting low mass-splittings, and the largest local excess amounts to 3.0 standard deviations.
Distributions of kinematic variables in the signal regions for the $2\ell$ channels after applying all selection requirements. The histograms show the post-fit background predictions. The last bin includes the overflow. The distribution for $H_{4,1}^{\textrm{PP}}$ in SR$2\ell$_Low is plotted. The expected distribution for a benchmark signal model, normalized to the NLO+NLL cross-section times integrated luminosity, is also shown for comparison.
Distributions of kinematic variables in the signal regions for the $2\ell$ channels after applying all selection requirements. The histograms show the post-fit background predictions. The last bin includes the overflow. The distribution for $\textrm{min}(H^{\textrm{P}_{\textrm{a}}}_{1,1},H^{\textrm{P}_{\textrm{b}}}_{1,1})/\textrm{min}(H^{\textrm{P}_{\textrm{a}}}_{2,1},H^{\textrm{P}_{\textrm{b}}}_{2,1})$ in SR$2\ell$_Low is plotted. The expected distribution for a benchmark signal model, normalized to the NLO+NLL cross-section times integrated luminosity, is also shown for comparison.
Distributions of kinematic variables in the signal regions for the $2\ell$ channels after applying all selection requirements. The histograms show the post-fit background predictions. The last bin includes the overflow. The distribution for $p_{\mathrm{T\ ISR}}^{~\textrm{CM}}$ in SR2$\ell$_ISR is plotted. The expected distribution for a benchmark signal model, normalized to the NLO+NLL cross-section times integrated luminosity, is also shown for comparison.
Charged Higgs bosons produced either in top-quark decays or in association with a top-quark, subsequently decaying via $H^{\pm} \to \tau^{\pm}\nu_{\tau}$, are searched for in 36.1 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. Depending on whether the top-quark produced together with $H^{\pm}$ decays hadronically or leptonically, the search targets $\tau$+jets and $\tau$+lepton final states, in both cases with a hadronically decaying $\tau$-lepton. No evidence of a charged Higgs boson is found. For the mass range of $m_{H^{\pm}}$ = 90-2000 GeV, upper limits at the 95% confidence level are set on the production cross-section of the charged Higgs boson times the branching fraction $\mathrm{B}(H^{\pm} \to \tau^{\pm}\nu_{\tau})$ in the range 4.2-0.0025 pb. In the mass range 90-160 GeV, assuming the Standard Model cross-section for $t\overline{t}$ production, this corresponds to upper limits between 0.25% and 0.031% for the branching fraction $\mathrm{B}(t\to bH^{\pm}) \times \mathrm{B}(H^{\pm} \to \tau^{\pm}\nu_{\tau})$.
Observed and expected 95% CL exclusion limits on $\sigma(pp\to tbH^+)\times \mathrm{\cal{B}}(H^+\to\tau\nu)$ as a function of the charged Higgs boson mass in 36.1 fb$^{-1}$ of $pp$ collision data at $\sqrt{s} = 13$ TeV, after combination of the $\tau_{\rm had-vis}$+jets and $\tau_{\rm had-vis}$+lepton final states.
Observed and expected 95% CL exclusion limits on $\mathrm{\cal{B}}(t\to bH^+)\times\mathrm{\cal{B}}(H^+\to\tau\nu)$ as a function of the charged Higgs boson mass in 36.1 fb$^{-1}$ of $pp$ collision data at $\sqrt{s} = 13$ TeV, after combination of the $\tau_{\rm had-vis}$+jets and $\tau_{\rm had-vis}$+lepton final states.
Observed 95% CL exclusion contour in the tan$\beta$ - $m_H$ plane shown in the context of the hMSSM, for the regions in which theoretical predictions are available (0.5$\leq\text{tan}\beta\leq60$).
This Letter presents the observation and measurement of electroweak production of a same-sign $W$ boson pair in association with two jets using 36.1 fb$^{-1}$ of proton-proton collision data recorded at a center-of-mass energy of $\sqrt{s}=13$ TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed in the detector fiducial phase-space region, defined by the presence of two same-sign leptons, electron or muon, and at least two jets with a large invariant mass and rapidity difference. A total of 122 candidate events are observed for a background expectation of $69 \pm 7$ events, corresponding to an observed signal significance of 6.5 standard deviations. The measured fiducial signal cross section is $\sigma^{\mathrm {fid.}}=2.89^{+0.51}_{-0.48} \mathrm{(stat.)} ^{+0.29}_{-0.28} \mathrm{(syst.)}$ fb.
The $m_{jj}$ distribution for events meeting all selection criteria for the signal region. Signal and individual background distributions are shown as predicted after the fit. The last bin includes the overflow. The highest value measured in a candidate event in data is $m_{jj}=3.8$ TeV.
The $m_{ll}$ distribution for events meeting all selection criteria for the signal region as predicted after the fit. The fitted signal strength and nuisance parameters have been propagated, with the exception of the uncertainties due to the interference and electroweak corrections for which a flat uncertainty is assigned. The last bin includes the overflow. The highest value measured in a candidate event in data is $m_{ll}=824$ GeV.