Version 2
Longitudinal Spin Transfer to $\Lambda$ and $\bar{\Lambda}$ Hyperons in Polarized Proton-Proton Collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.D 80 (2009) 111102, 2009.
Inspire Record 833423 DOI 10.17182/hepdata.99048

The longitudinal spin transfer, $D_{LL}$, from high energy polarized protons to $\Lambda$ and $\bar{\Lambda}$ hyperons has been measured for the first time in proton-proton collisions at $\sqrt{s} = 200 \mathrm{GeV}$ with the STAR detector at RHIC. The measurements cover pseudorapidity, $\eta$, in the range $|\eta| < 1.2$ and transverse momenta, $p_\mathrm{T}$, up to $4 \mathrm{GeV}/c$. The longitudinal spin transfer is found to be $D_{LL}= -0.03\pm 0.13(\mathrm{stat}) \pm 0.04(\mathrm{syst})$ for inclusive $\Lambda$ and $D_{LL} = -0.12 \pm 0.08(\mathrm{stat}) \pm 0.03(\mathrm{syst})$ for inclusive $\bar{\Lambda}$ hyperons with $<\eta> = 0.5$ and $<p_\mathrm{T}> = 3.7 \mathrm{GeV}/c$. The dependence on $\eta$ and $p_\mathrm{T}$ is presented.

9 data tables match query

The spin transfer $D_{LL}$ to (a) $\Lambda$ and (b) $\bar{\Lambda}$ hyperons produced at positive pseudorapidity with respect to the polarized proton beam from $MB$, $JP$, and $HT$ data versus hyperon transverse momenta $p_{T}$. The sizes of the statistical and systematic uncertainties are indicated by the vertical bars and bands, respectively. For clarity, the HT data points have been shifted slightly in $p_{T}$. The dotted vertical lines indicate the $p_{T}$ intervals in the analysis of HT and JP data.

The spin transfer $D_{LL}$ to (a) $\Lambda$ and (b) $\bar{\Lambda}$ hyperons produced at positive pseudorapidity with respect to the polarized proton beam from $MB$, $JP$, and $HT$ data versus hyperon transverse momenta $p_{T}$. The sizes of the statistical and systematic uncertainties are indicated by the vertical bars and bands, respectively. For clarity, the HT data points have been shifted slightly in $p_{T}$. The dotted vertical lines indicate the $p_{T}$ intervals in the analysis of HT and JP data.

The spin transfer $D_{LL}$ to (a) $\Lambda$ and (b) $\bar{\Lambda}$ hyperons produced at positive pseudorapidity with respect to the polarized proton beam from $MB$, $JP$, and $HT$ data versus hyperon transverse momenta $p_{T}$. The sizes of the statistical and systematic uncertainties are indicated by the vertical bars and bands, respectively. For clarity, the HT data points have been shifted slightly in $p_{T}$. The dotted vertical lines indicate the $p_{T}$ intervals in the analysis of HT and JP data.

More…

Search for the Chiral Magnetic Effect with Isobar Collisions at $\sqrt{s_{NN}}$ = 200 GeV by the STAR Collaboration at RHIC

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 105 (2022) 014901, 2022.
Inspire Record 1914564 DOI 10.17182/hepdata.115993

The chiral magnetic effect (CME) is predicted to occur as a consequence of a local violation of $\cal P$ and $\cal CP$ symmetries of the strong interaction amidst a strong electro-magnetic field generated in relativistic heavy-ion collisions. Experimental manifestation of the CME involves a separation of positively and negatively charged hadrons along the direction of the magnetic field. Previous measurements of the CME-sensitive charge-separation observables remain inconclusive because of large background contributions. In order to better control the influence of signal and backgrounds, the STAR Collaboration performed a blind analysis of a large data sample of approximately 3.8 billion isobar collisions of $^{96}_{44}$Ru+$^{96}_{44}$Ru and $^{96}_{40}$Zr+$^{96}_{40}$Zr at $\sqrt{s_{\rm NN}}=200$ GeV. Prior to the blind analysis, the CME signatures are predefined as a significant excess of the CME-sensitive observables in Ru+Ru collisions over those in Zr+Zr collisions, owing to a larger magnetic field in the former. A precision down to 0.4% is achieved, as anticipated, in the relative magnitudes of the pertinent observables between the two isobar systems. Observed differences in the multiplicity and flow harmonics at the matching centrality indicate that the magnitude of the CME background is different between the two species. No CME signature that satisfies the predefined criteria has been observed in isobar collisions in this blind analysis.

225 data tables match query

fig2_left_low_isobarpaper_star_blue_case2_zrzr_nonzeros.

fig2_left_low_isobarpaper_star_grey_data_zrzr_nonzeros.

fig2_left_low_isobarpaper_star_red_case3_zrzr_nonzeros.

More…

Measurement of the nuclear modification factor and prompt charged particle production in $p\mathrm{Pb}$ and $pp$ collisions at $\sqrt{s_{\scriptscriptstyle\mathrm{NN}}}=5\,\mathrm{TeV}$

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Ackernley, Thomas ; et al.
Phys.Rev.Lett. 128 (2022) 142004, 2022.
Inspire Record 1913240 DOI 10.17182/hepdata.131597

The production of prompt charged particles in proton-lead collisions and in proton-proton collisions at the nucleon-nucleon centre-of-mass energy ${\sqrt{s_{\scriptscriptstyle\mathrm{NN}}}=5\,\mathrm{TeV}}$ is studied at LHCb as a function of pseudorapidity ($\eta$) and transverse momentum ($p_{\mathrm{T}}$) with respect to the proton beam direction. The nuclear modification factor for charged particles is determined as a function of $\eta$ between ${-4.8<\eta<-2.5}$ (backward region) and ${2.0<\eta<4.8}$ (forward region), and $p_{\mathrm{T}}$ between ${0.2<p_{\mathrm{T}}<8.0\,\mathrm{GeV}/c}$. The results show a suppression of charged particle production in proton-lead collisions relative to proton-proton collisions in the forward region and an enhancement in the backward region for $p_{\mathrm{T}}$ larger than $1.5\,\mathrm{GeV}/c$. This measurement constrains nuclear PDFs and saturation models at previously unexplored values of the parton momentum fraction down to $10^{-6}$.

3 data tables match query

Double-differential production cross-section for prompt charged particles in pp collisions at 5TeV with respect to pseudorapidity and transverse momentum. First uncertainty is statistical, the second is systematic and the third is from the luminosity. Luminosity uncertainty is fully correlated among the different kinematic ranges.

Double-differential production cross-section for prompt charged particles in pPb collisions at 5TeV with respect to pseudorapidity and transverse momentum in the forward region. The pseudorapidity is expressed in the nucleon-nucleon center-of-mass system. First uncertainty is statistical, the second is systematic and the third is from the luminosity. Luminosity uncertainty is fully correlated among the different kinematic ranges.

Double-differential production cross-section for prompt charged particles in pPb collisions at 5TeV with respect to pseudorapidity and transverse momentum in the backward region. The pseudorapidity is expressed in the nucleon-nucleon center-of-mass system. First uncertainty is statistical, the second is systematic and the third is from the luminosity. Luminosity uncertainty is fully correlated among the different kinematic ranges.


Azimuthal transverse single-spin asymmetries of inclusive jets and charged pions within jets from polarized-proton collisions at $\sqrt{s} = 500$ GeV

The STAR collaboration Adamczyk, Leszek ; Adams, Joseph ; Adkins, Kevin ; et al.
Phys.Rev.D 97 (2018) 032004, 2018.
Inspire Record 1618345 DOI 10.17182/hepdata.103056

We report the first measurements of transverse single-spin asymmetries for inclusive jet and jet + $\pi^{\pm}$ production at midrapidity from transversely polarized proton-proton collisions at $\sqrt{s} = 500$ GeV. The data were collected in 2011 with the STAR detector sampled from 23 pb$^{-1}$ integrated luminosity with an average beam polarization of 53%. Asymmetries are reported for jets with transverse momenta $6 < p_{T, jet} < 55$ GeV/c and pseudorapidity $|\eta| < 1$. Presented are measurements of the inclusive-jet azimuthal transverse single-spin asymmetry, sensitive to twist-3 initial-state quark-gluon correlators; the Collins asymmetry, sensitive to quark transversity coupled to the polarized Collins fragmentation function; and the first measurement of the "Collins-like" asymmetry, sensitive to linearly polarized gluons. Within the present statistical precision, inclusive-jet and Collins-like asymmetries are small, with the latter allowing the first experimental constraints on gluon linear polarization in a polarized proton. At higher values of jet transverse momenta, we observe the first non-zero Collins asymmetries in polarized-proton collisions, with a statistical significance of greater than $5\sigma$. The results span a range of x similar to results from SIDIS but at much higher $Q^{2}$. The Collins results enable tests of universality and factorization-breaking in the transverse momentum-dependent formulation of perturbative quantum chromodynamics.

20 data tables match query

Inclusive jet asymmetries $A_{UT}^{\sin(\theta_S)}$ as a function of particle-jet $p_T$.

Inclusive jet asymmetries $A_{UT}^{\sin(\theta_S)}$ as a function of particle-jet $p_T$.

Collins-like asymmetries as a function of particle-jet $p_T$.

More…

Charged Particle Correlations at $Y=0$ in $p p$ Collisions at the CERN ISR

Banner, M. ; Cheze, J.B. ; Kasha, H. ; et al.
Nucl.Phys.B 126 (1977) 61-86, 1977.
Inspire Record 5196 DOI 10.17182/hepdata.35283

Measurements of the double differential cross sections for ππ and pπ production in pp collisions at the CERN ISR are presented for 5 c.m. energies s = 22, 30, 44, 53, 62 GeV . Charge and transverse momentum correlations are also reported.

0 data tables match query

Analysis of the Energy Weighted Angular Correlations in Hadronic $e^+ e^-$ Annihilations at 22-{GeV} and 34-{GeV}

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Fenner, H. ; et al.
Z.Phys.C 14 (1982) 95, 1982.
Inspire Record 12010 DOI 10.17182/hepdata.16413

Measurements of energy weighted angular correlations in electron positron annihilations at c.m. energies of 22 GeV and 34 GeV are presented.

0 data tables match query

Version 2
Measurement of antiproton production in ${\rm p He}$ collisions at $\sqrt{s_{NN}}=110$ GeV

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Adeva, Bernardo ; et al.
Phys.Rev.Lett. 121 (2018) 222001, 2018.
Inspire Record 1688924 DOI 10.17182/hepdata.84584

The cross-section for prompt antiproton production in collisions of protons with an energy of $6.5$ TeV incident on helium nuclei at rest is measured with the LHCb experiment from a data set corresponding to an integrated luminosity of $0.5\,nb^{-1}$. The target is provided by injecting helium gas into the LHC beam line at the LHCb interaction point. The reported results, covering antiproton momenta between $12$ and $110\,\mathrm{GeV/}c$, represent the first direct determination of the antiproton production cross-section in ${\rm p He}$ collisions, and impact the interpretation of recent results on antiproton cosmic rays from space-borne experiments.

2 data tables match query

Double-differential cross-section in antiproton momentum and transverse momentum for antiproton production in collisions of 6.5 TeV protons on He nuclei at rest. The antiproton momentum is defined in the laboratory frame. Results are averaged over the given kinematic range of each bin. The uncertainty is split into an uncertainty delta_uncorr, uncorrelated among the kinematic bins, and an uncertainty delta_corr, fully correlated among the kinematic bins. For both uncertainties, the systematic uncertainty, dominant for most bins, and the statistical uncertainty, are added in quadrature. The average value within each bin is also reported for the antiproton momentum, the transverse momentum, and x-Feynman xF=2 p_Z*/SQRT(S), where p_Z* is the longitudinal antiproton momentum in the center-of-mass system and SQRT(S) the nucleon-nucleon center-of-mass energy. These average values are obtained from simulation (based on EPOS LHC), to avoid biases from reconstruction effects and given the good agreement with data observed for the simulated kinematic spectra.

Double-differential cross-section in antiproton momentum and transverse momentum for antiproton production in collisions of 6.5 TeV protons on He nuclei at rest. The antiproton momentum is defined in the laboratory frame. Results are averaged over the given kinematic range of each bin. The uncertainty is split into an uncertainty delta_uncorr, uncorrelated among the kinematic bins, and an uncertainty delta_corr, fully correlated among the kinematic bins. For both uncertainties, the systematic uncertainty, dominant for most bins, and the statistical uncertainty, are added in quadrature. The average value within each bin is also reported for the antiproton momentum, the transverse momentum, and x-Feynman xF=2 p_Z*/SQRT(S), where p_Z* is the longitudinal antiproton momentum in the center-of-mass system and SQRT(S) the nucleon-nucleon center-of-mass energy. These average values are obtained from simulation (based on EPOS LHC), to avoid biases from reconstruction effects and given the good agreement with data observed for the simulated kinematic spectra.


Measurement of inclusive charged-particle jet production in Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 102 (2020) 054913, 2020.
Inspire Record 1798665 DOI 10.17182/hepdata.95120

The STAR Collaboration at the Relativistic Heavy Ion Collider reports the first measurement of inclusive jet production in peripheral and central Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV. Jets are reconstructed with the anti-k$_{T}$ algorithm using charged tracks with pseudorapidity $|\eta|<1.0$ and transverse momentum $0.2<p_{T,jet}^{ch}<30$ GeV/$c$, with jet resolution parameter $R$=0.2, 0.3, and 0.4. The large background yield uncorrelated with the jet signal is observed to be dominated by statistical phase space, consistent with a previous coincidence measurement. This background is suppressed by requiring a high-transverse-momentum (high-$p_T$) leading hadron in accepted jet candidates. The bias imposed by this requirement is assessed, and the $p_T$ region in which the bias is small is identified. Inclusive charged-particle jet distributions are reported in peripheral and central Au+Au collisions for $5<p_{T,jet}^{ch}<25$ GeV/$c$ and $5<p_{T,jet}^{ch}<30$ GeV/$c$, respectively. The charged-particle jet inclusive yield is suppressed for central Au+Au collisions, compared to both the peripheral Au+Au yield from this measurement and to the $pp$ yield calculated using the PYTHIA event generator. The magnitude of the suppression is consistent with that of inclusive hadron production at high $p_T$, and that of semi-inclusive recoil jet yield when expressed in terms of energy loss due to medium-induced energy transport. Comparison of inclusive charged-particle jet yields for different values of $R$ exhibits no significant evidence for medium-induced broadening of the transverse jet profile for $R<0.4$ in central Au+Au collisions. The measured distributions are consistent with theoretical model calculations that incorporate jet quenching.

12 data tables match query

Corrected inclusive charged-particle jet distributions in Au+Au collisions at 200 GeV for R=0.2, 0.3, and 0.4 in central (0-10%) Au+Au collisions for pTlead,min = 5 GeV/c. The first uncertainty is statistical (symmetric), followed by shape uncertainty (asymmetric) and correlated uncertainty (asymmetric).

Corrected inclusive charged-particle jet distributions in Au+Au collisions at 200 GeV for R=0.2, 0.3, and 0.4 in peripheral (60-80%) Au+Au collisions for pTlead,min = 5 GeV/c. The first uncertainty is statistical (symmetric), followed by shape uncertainty (asymmetric) and correlated uncertainty (asymmetric).

Corrected inclusive charged-particle jet distributions in Au+Au collisions at 200 GeV for R=0.2, 0.3, and 0.4 in central (0-10%) Au+Au collisions for pTlead,min = 7 GeV/c. The first uncertainty is statistical (symmetric), followed by shape uncertainty (asymmetric) and correlated uncertainty (asymmetric).

More…

$J/\psi$ production cross section and its dependence on charged-particle multiplicity in $p+p$ collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Lett.B 786 (2018) 87-93, 2018.
Inspire Record 1672453 DOI 10.17182/hepdata.85057

We present a measurement of inclusive $J/\psi$ production at mid-rapidity ($|y|<1$) in $p+p$ collisions at a center-of-mass energy of $\sqrt{s}$ = 200 GeV with the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The differential production cross section for $J/\psi$ as a function of transverse momentum ($p_T$) for $0

3 data tables match query

Top$:$ J/$\psi$ cross section times branching ratio as a function of pT in p+p collisions at $\sqrt{s_{NN}}$ = 200 GeV. Solid circles are from this analysis for |y| < 1; open circles and blue squares are the published results for |y| < 1 from STAR; triangles are the published results for |y| < 0.35 from PHENIX. Bars and boxes are statistical and systematic uncertainties, respectively. The curves are CEM (green), NLO NRQCD A (orange) [4], CGC + NRQCD (blue) , and NLO NRQCD B (magenta) theoretical calculations, respectively. Bottom$:$ ratios of these results with respect to the central value from this analysis.

The corrected $n_{ch}$ distributions at mid-rapidity (|$\eta$| < 1) for MB events (open circles) and J/$\psi$ events with J/$\psi$ $p_{T}$ greater than 0 (purple circles), 1.5 (blue squares), and 4 GeV/c (red triangles) in p+p collisions at $\sqrt{s}$ = 200 GeV. The fit function is a negative binomial function. Bars and boxes are statistical and systematic uncertainties, respectively.

The multiplicity dependence of J/$\psi$ production in p+p collisions at $\sqrt{s}$ = 200 GeV. Purple circles, blue squares, and red triangles represent the results for J/$\psi$ with $p_{T}$ greater than 0, 1.5, and 4 GeV/c, respectively. Bars and open boxes are statistical and systematic uncertainties, respectively. The ALICE result is shown in the left panel. The purple, blue and red bands in the middle panel are generated from PYTHIA8 for J/$\psi$ with $p_{T}$ greater than 0, 1.5, and 4 GeV/c, respectively. The blue and red bands in the right panel are from EPOS3 model calculations for D$^{0}$ with 2 < $p_{T}$ < 4 and 4 < $p_{T}$ < 8 GeV/c, respectively, while the green curve is from the Percolation model for J/$\psi$ with $p_{T}$ > 0 GeV/c.


Longitudinal Double-Spin Asymmetries for $\pi^{0}$s in the Forward Direction for 510 GeV Polarized $pp$ Collisions

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 98 (2018) 032013, 2018.
Inspire Record 1674826 DOI 10.17182/hepdata.103058

The STAR Collaboration reports measurements of the longitudinal double-spin asymmetry, $A_{LL}$, for neutral pions produced at forward directions in polarized proton-proton collisions, at a center-of-mass energy of $510$ GeV. Results are given for transverse momenta in the range $2

2 data tables match query

Longitudinal Double-Spin Asymmetry, $A_{LL}$ vs $\pi^0$ transverse momentum in polarized pp collisions at $\sqrt{s}$ = 510 GeV. $\pm 6.7\%$ polarization scale uncertainty not shown.

Longitudinal Double-Spin Asymmetry, $A_{LL}$ vs $\pi^0$ transverse momentum in polarized pp collisions at $\sqrt{s}$ = 510 GeV. $\pm 6.7\%$ polarization scale uncertainty not shown.


Production of $J/\psi$ in 16-{GeV} and 22-{GeV} $\pi^-$ Cu Collisions

LeBritton, J. ; McCal, D. ; Melissinos, A.C. ; et al.
Phys.Lett.B 81 (1979) 401-404, 1979.
Inspire Record 7053 DOI 10.17182/hepdata.50278

We have measured the inclusive production of J ψ in 16 and 22 GeV π − copper collisions in a wide aperture magnetic spectrometer. The cross section per Cu nucleus for x > 0 corrected for branching ratio is 64 ± 38 nb at 16 GeV and 196 ± 38 nb at 22 GeV. As threshold is approached, the mean values of the Feynman x distribution increase and the cross section for J ψ production drops steeply. This can be understood in terms of the quark-fusion model where the antiquark content of the pion makes an increasingly significant contribution as M 2 s increases.

0 data tables match query

Collision Energy Dependence of $p_{\rm t}$ Correlations in Au+Au Collisions at RHIC

The STAR collaboration Adam, Jaroslav ; Adams, Joseph ; Agakishiev, Geydar ; et al.
Phys.Rev.C 99 (2019) 044918, 2019.
Inspire Record 1712047 DOI 10.17182/hepdata.105509

We present two-particle $p_{\rm t}$ correlations as a function of event centrality for Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV at the Relativistic Heavy Ion Collider using the STAR detector. These results are compared to previous measurements from CERES at the Super Proton Synchrotron and from ALICE at the Large Hadron Collider. The data are compared with UrQMD model calculations and with a model based on a Boltzmann-Langevin approach incorporating effects from thermalization. The relative dynamical correlations for Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV show a power law dependence on the number of participant nucleons and agree with the results for Pb+Pb collisions at $\sqrt{s_{\rm NN}} = 2.76~ {\rm TeV}$ from ALICE. As the collision energy is lowered from $\sqrt{s_{\rm NN}}$ = 200 GeV to 7.7 GeV, the centrality dependence of the relative dynamical correlations departs from the power law behavior observed at the higher collision energies. In central collisions, the relative dynamical correlations increase with collision energy up to $\sqrt{s_{\rm NN}}$ = 200 GeV in contrast to previous measurements that showed little dependence on the collision energy.

1 data table match query

'ratios of the measured data to the power law as a function of $N_{part}$'


Azimuthal anisotropy in Cu+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV

The STAR collaboration Adamczyk, Leszek ; Adams, Joseph ; Adkins, Kevin ; et al.
Phys.Rev.C 98 (2018) 014915, 2018.
Inspire Record 1641113 DOI 10.17182/hepdata.103057

The azimuthal anisotropic flow of identified and unidentified charged particles has been systematically studied in Cu+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV for harmonics $n=$ 1-4 in the pseudorapidity range $|\eta|<1$. The directed flow in Cu+Au collisions is compared with the rapidity-odd and, for the first time, the rapidity-even components of charged particle directed flow in Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200~GeV. The slope of the directed flow pseudorapidity dependence in Cu+Au collisions is found to be similar to that in Au+Au collisions, with the intercept shifted toward positive $\eta$ values, i.e., the Cu-going direction. The mean transverse momentum projected onto the spectator plane, $\langle p_x\rangle$, in Cu+Au collision also exhibits approximately linear dependence on $\eta$ with the intercept at about $\eta\approx-0.4$, closer to the rapidity of the Cu+Au system center-of-mass. The observed dependencies find natural explanation in a picture of the directed flow originating partly due the "tilted source" and partly due to the rapidity dependent asymmetry in the initial density distribution. Charge-dependence of the $\langle p_x\rangle$ was also observed in Cu+Au collisions, indicating an effect of the initial electric field created by charge difference of the spectator protons in two colliding nuclei. The rapidity-even component of directed flow in Au+Au collisions is close to that in Pb+Pb collisions at $\sqrt{s_{_{NN}}}$ = 2.76 TeV, indicating a similar magnitude of dipole-like fluctuations in the initial-state density distribution. Higher harmonic flow in Cu+Au collisions exhibits similar trends to those observed in Au+Au and Pb+Pb collisions and is qualitatively reproduced by a viscous hydrodynamic model and a multi-phase transport model. For all harmonics with $n\ge2$ we observe an approximate scaling of $v_n$ with the number of constituent quarks.

33 data tables match query

Directed flow $v_1(\eta)$ and $<p_x>(\eta)$ of charged particles measured with respect to the target and projectile spectator planes in 10%-40% centrality for Cu+Au collisions.

Directed flow $v_1(\eta)$ and $<p_x>(\eta)$ of charged particles measured with respect to the target and projectile spectator planes in 10%-40% centrality for Au+Au collisions.

Conventional and fluctuation components of directed flow $v_1(\eta)$ and momentum shift $<p_x>/<p_T>(\eta)$ of charged particles in 10%-40% centrality for Cu+Au and Au+Au collisions.

More…

Measurement of $\Upsilon$ production in $pp$ collisions at $\sqrt{s}$= 13 TeV

The LHCb collaboration Aaij, R. ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 07 (2018) 134, 2018.
Inspire Record 1670013 DOI 10.17182/hepdata.82210

The production cross-sections of $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ mesons in proton-proton collisions at $\sqrt{s}$= 13 TeV are measured with a data sample corresponding to an integrated luminosity of $277 \pm 11$ $\rm pb^{-1}$ recorded by the LHCb experiment in 2015. The $\Upsilon$ mesons are reconstructed in the decay mode $\Upsilon\to\mu^{+}\mu^{-}$. The differential production cross-sections times the dimuon branching fractions are measured as a function of the $\Upsilon$ transverse momentum, $p_{\rm T}$, and rapidity, $y$, over the range $0 < p_{\rm T}< 30$ GeV/c and $2.0 < y < 4.5$. The ratios of the cross-sections with respect to the LHCb measurement at $\sqrt{s}$= 8 TeV are also determined. The measurements are compared with theoretical predictions based on NRQCD.

0 data tables match query

Azimuthal anisotropy measurements of strange and multi-strange hadrons in U+U collisions at $\sqrt{s_{NN}} = 193$ GeV at RHIC

The STAR collaboration Abdallah, Mohamed ; Adam, Jaroslav ; Adamczyk, Leszek ; et al.
Phys.Rev.C 103 (2021) 064907, 2021.
Inspire Record 1852040 DOI 10.17182/hepdata.102643

We present systematic measurements of azimuthal anisotropy for strange and multistrange hadrons ($K^{0}_{s}$, $\Lambda$, $\Xi$, and $\Omega$) and $\phi$ mesons at midrapidity ($|y| <$ 1.0) in collisions of U + U nuclei at $\sqrt{s_{NN}} = 193$ GeV, recorded by the STAR detector at the Relativistic Heavy Ion Collider. Transverse momentum ($p_{\text{T}}$) dependence of flow coefficients ($v_{2}$, $v_{3}$, and $v_{4}$) is presented for minimum bias collisions and three different centrality intervals. Number of constituent quark scaling of the measured flow coefficients in U + U collisions is discussed. We also present the ratio of $v_{n}$ scaled by the participant eccentricity ($\varepsilon_{n}\left\lbrace 2 \right\rbrace$) to explore system size dependence and collectivity in U + U collisions. The magnitude of $v_{2}/\varepsilon_{2}$ is found to be smaller in U + U collisions than that in central Au + Au collisions contradicting naive eccentricity scaling. Furthermore, the ratios between various flow harmonics ($v_{3}/v_{2}^{3/2}$, $v_{4}/v_{2}^{4/2}$) are studied and compared with hydrodynamic and transport model calculations.

137 data tables match query

Event plane resolution as a function of centrality for $\psi_{2}$, $\psi_{3}$, and $\psi_{4}$ in U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV. The statistical uncertainties are smaller than the markers.

The $p_{\text{T}}$ dependence of $v_{n}$ coefficients at mid-rapidity ($|y| <$ 1) in minimum bias U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV. The error bars represent statistical uncertainties. The bands represent point-by-point systematic uncertainties.

The $p_{\text{T}}$ dependence of $v_{n}$ coefficients at mid-rapidity ($|y| <$ 1) in minimum bias U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV. The error bars represent statistical uncertainties. The bands represent point-by-point systematic uncertainties.

More…

Energy Dependence of Intermittency for Charged Hadrons in Au+Au Collisions at RHIC

The STAR collaboration Abdulhamid, Muhammad ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Lett.B 845 (2023) 138165, 2023.
Inspire Record 2626682 DOI 10.17182/hepdata.137849

Density fluctuations near the QCD critical point can be probed via an intermittency analysis in relativistic heavy-ion collisions. We report the first measurement of intermittency in Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7-200 GeV measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The scaled factorial moments of identified charged hadrons are analyzed at mid-rapidity and within the transverse momentum phase space. We observe a power-law behavior of scaled factorial moments in Au$+$Au collisions and a decrease in the extracted scaling exponent ($\nu$) from peripheral to central collisions. The $\nu$ is consistent with a constant for different collisions energies in the mid-central (10-40%) collisions. Moreover, the $\nu$ in the 0-5% most central Au$+$Au collisions exhibits a non-monotonic energy dependence that reaches a possible minimum around $\sqrt{s_\mathrm{_{NN}}}$ = 27 GeV. The physics implications on the QCD phase structure are discussed.

48 data tables match query

The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7 GeV.

The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 19.6 GeV.

The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 39 GeV.

More…

Measurement of the inelastic $pp$ cross-section at a centre-of-mass energy of 13 TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 06 (2018) 100, 2018.
Inspire Record 1665223 DOI 10.17182/hepdata.89782

The cross-section for inelastic proton-proton collisions at a centre-of-mass energy of 13\,TeV is measured with the LHCb detector. The fiducial cross-section for inelastic interactions producing at least one prompt long-lived charged particle with momentum $p>2$\,GeV/$c$ in the pseudorapidity range $2<\eta<5$ is determined to be $\sigma_{\rm acc}= 62.2 \pm 0.2 \pm 2.5$\,mb. The first uncertainty is the intrinsic systematic uncertainty of the measurement, the second is due to the uncertainty on the integrated luminosity. The statistical uncertainty is negligible. Extrapolation to full phase space yields the total inelastic proton-proton cross-section $\sigma_{\rm inel}= 75.4 \pm 3.0 \pm 4.5$\,mb, where the first uncertainty is experimental and the second due to the extrapolation. An updated value of the inelastic cross-section at a centre-of-mass energy of 7\,TeV is also reported.

3 data tables match query

The cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, yielding one or more prompt long-lived charged particles in the kinematic range $p > 2.0$ GeV/$c$ and $2.0 < \eta < 5.0$ (LHCb acceptance). The quoted uncertainty that is almost completely systematic in nature as the purely statistical uncertainty is found negligible. A particle is long-lived if its proper (mean) lifetime is larger than 30 ps, and it is prompt if it is produced directly in the $pp$ interaction or if none of its ancestors is long-lived.

The total cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, extrapolated from Monte Carlo in similar way to measurement at $\sqrt{s}=7$ TeV.

Update of the total cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 7$ TeV due to improved calibration of the luminosity scale.


Measurement of inclusive $J/\psi$ suppression in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV through the dimuon channel at STAR

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Lett.B 797 (2019) 134917, 2019.
Inspire Record 1737650 DOI 10.17182/hepdata.91135

$J/\psi$ suppression has long been considered a sensitive signature of the formation of the Quark-Gluon Plasma (QGP) in relativistic heavy-ion collisions. In this letter, we present the first measurement of inclusive $J/\psi$ production at mid-rapidity through the dimuon decay channel in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV with the STAR experiment. These measurements became possible after the installation of the Muon Telescope Detector was completed in 2014. The $J/\psi$ yields are measured in a wide transverse momentum ($p_{\rm{T}}$) range of 0.15 GeV/$c$ to 12 GeV/$c$ from central to peripheral collisions. They extend the kinematic reach of previous measurements at RHIC with improved precision. In the 0-10% most central collisions, the $J/\psi$ yield is suppressed by a factor of approximately 3 for $p_{\rm{T}}>5$ GeV/$c$ relative to that in p+p collisions scaled by the number of binary nucleon-nucleon collisions. The $J/\psi$ nuclear modification factor displays little dependence on $p_{\rm{T}}$ in all centrality bins. Model calculations can qualitatively describe the data, providing further evidence for the color-screening effect experienced by $J/\psi$ mesons in the QGP.

19 data tables match query

Invariant yield of inclusive J/PSI(1S) times branching ratio to the dimuon decay in 0-80% Au+Au collisions at 200 GeV

Invariant yield of inclusive J/PSI(1S) times branching ratio to the dimuon decay in 0-20% Au+Au collisions at 200 GeV

Invariant yield of inclusive J/PSI(1S) times branching ratio to the dimuon decay in 20-40% Au+Au collisions at 200 GeV

More…

Measurement of flow harmonics correlations with mean transverse momentum in lead-lead and proton-lead collisions at $\sqrt{s_{NN}}=5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 985, 2019.
Inspire Record 1743581 DOI 10.17182/hepdata.93057

To assess the properties of the quark-gluon plasma formed in heavy-ion collisions, the ATLAS experiment at the LHC measures a correlation between the mean transverse momentum and the magnitudes of the flow harmonics. The analysis uses data samples of lead-lead and proton-lead collisions obtained at the centre-of-mass energy per nucleon pair of 5.02 TeV, corresponding to total integrated luminosities of $22 ~\mu b^{-1}$ and $28~nb^{-1}$, respectively. The measurement is performed using a modified Pearson correlation coefficient with the charged-particle tracks on an event-by-event basis. The modified Pearson correlation coefficients for the $2^{nd}$-, 3$^{rd}$-, and 4$^{th}$-order harmonics are measured as a function of event centrality quantified as the number of charged particles or the number of nucleons participating in the collision. The measurements are performed for several intervals of the charged-particle transverse momentum. The correlation coefficients for all studied harmonics exhibit a strong centrality evolution in the lead-lead collisions, which only weakly depends on the charged-particle momentum range. In the proton-lead collisions, the modified Pearson correlation coefficient measured for the second harmonics shows only weak centrality dependence. The data is qualitatively described by the predictions based on the hydrodynamical model.

51 data tables match query

The $c_{k}$ for the 0.5-2 GeV $p_{T}$ range as a function of event multiplicity $N_{ch}$ in Pb+Pb collisions.

The $c_{k}$ for the 0.5-5 GeV $p_{T}$ range as a function of event multiplicity $N_{ch}$ in Pb+Pb collisions.

The $c_{k}$ for the 1-2 GeV $p_{T}$ range as a function of event multiplicity $N_{ch}$ in Pb+Pb collisions.

More…

Beam energy dependence of (anti-)deuteron production in Au+Au collisions at RHIC

The STAR collaboration Adam, Jaroslav ; Adams, Joseph ; Agakishiev, Geydar ; et al.
Phys.Rev.C 99 (2019) 064905, 2019.
Inspire Record 1727273 DOI 10.17182/hepdata.105510

We report the energy dependence of mid-rapidity (anti-)deuteron production in Au+Au collisions at $\sqrt{s_\text{NN}} =\ $7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV, measured by the STAR experiment at RHIC. The yield of deuterons is found to be well described by the thermal model. The collision energy, centrality, and transverse momentum dependence of the coalescence parameter $B_2$ are discussed. We find that the values of $B_2$ for anti-deuterons are systematically lower than those for deuterons, indicating that the correlation volume of anti-baryons is larger than that of baryons at $\sqrt{s_\text{NN}}$ from 19.6 to 39 GeV. In addition, values of $B_2$ are found to vary with collision energy and show a broad minimum around $\sqrt{s_\text{NN}}=\ $20 to 40 GeV, which might imply a change of the equation of state of the medium in these collisions.

103 data tables match query

'transverse momentum spectra for deuterons in Au+Au collisions'

'transverse momentum spectra for deuterons in Au+Au collisions'

'transverse momentum spectra for deuterons in Au+Au collisions'

More…

Study of $\Upsilon$ production in $p$Pb collisions at $\sqrt{s_{NN}}=8.16$ TeV

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Adeva, Bernardo ; et al.
JHEP 11 (2018) 194, 2018.
Inspire Record 1699106 DOI 10.17182/hepdata.93070

The production of $\Upsilon (nS)$ mesons ($n=1,2,3$) in $p$Pb and Pb$p$ collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{NN}}=8.16$ TeV is measured by the LHCb experiment, using a data sample corresponding to an integrated luminosity of 31.8 nb$^{-1}$. The $\Upsilon (nS)$ mesons are reconstructed through their decays into two opposite-sign muons. The measurements comprise the differential production cross-sections of the $\Upsilon (1S)$ and $\Upsilon (2S)$ states, their forward-to-backward ratios and nuclear modification factors, performed as a function of the transverse momentum $p_{\mathrm{T}}$ and rapidity in the nucleon-nucleon centre-of-mass frame $y^*$ of the $\Upsilon (nS)$ states, in the kinematic range $p_{\rm{T}}<25$ GeV/$c$ and $1.5<y^*<4.0$ ($-5.0<y^*<-2.5$) for $p$Pb (Pb$p$) collisions. In addition, production cross-sections for $\Upsilon (3S)$ are measured integrated over phase space and the production ratios between all three $\Upsilon (nS)$ states are determined. The measurements are compared to theoretical predictions and suppressions for quarkonium in $p$Pb collisions are observed.

0 data tables match query

Bulk Properties of the System Formed in Au+Au Collisions at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 101 (2020) 024905, 2020.
Inspire Record 1748776 DOI 10.17182/hepdata.103857

We report systematic measurements of bulk properties of the system created in Au+Au collisions at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV recorded by the STAR detector at the Relativistic Heavy Ion Collider (RHIC).The transverse momentum spectra of $\pi^{\pm}$, $K^{\pm}$ and $p(\bar{p})$ are studied at mid-rapidity ($|y| < 0.1$) for nine centrality intervals. The centrality, transverse momentum ($p_T$),and pseudorapidity ($\eta$) dependence of inclusive charged particle elliptic flow ($v_2$), and rapidity-odd charged particles directed flow ($v_{1}$) results near mid-rapidity are also presented. These measurements are compared with the published results from Au+Au collisions at other energies, and from Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 2.76 TeV. The results at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV show similar behavior as established at other energies and fit well in the energy dependence trend. These results are important as the 14.5 GeV energy fills the gap in $\mu_B$, which is of the order of 100 MeV,between $\sqrt{s_{\mathrm{NN}}}$ =11.5 and 19.6 GeV. Comparisons of the data with UrQMD and AMPT models show poor agreement in general.

41 data tables match query

The $p_{T}$ spectra of proton measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicated in the legend

The $p_{T}$ spectra of antiproton measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicatedin the legend

The $p_{T}$ spectra of $\pi^{+}$ measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicatedin the legend

More…

Version 2
Collision energy dependence of second-order off-diagonal and diagonal cumulants of net-charge, net-proton and net-kaon multiplicity distributions in Au+Au collisions

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 100 (2019) 014902, 2019.
Inspire Record 1724809 DOI 10.17182/hepdata.105908

We report the first measurements of a complete second-order cumulant matrix of net-charge, net-proton, and net-kaon multiplicity distributions for the first phase of the beam energy scan program at RHIC. This includes the centrality and, for the first time, the pseudorapidity window dependence of both diagonal and off-diagonal cumulants in Au+Au collisions at \sNN~= 7.7-200 GeV. Within the available acceptance of $|\eta|<0.5$, the cumulants grow linearly with the pseudorapidity window. Relative to the corresponding measurements in peripheral collisions, the ratio of off-diagonal over diagonal cumulants in central collisions indicates an excess correlation between net-charge and net-kaon, as well as between net-charge and net-proton. The strength of such excess correlation increases with the collision energy. The correlation between net-proton and net-kaon multiplicity distributions is observed to be negative at \sNN~= 200 GeV and change to positive at the lowest collision energy. Model calculations based on non-thermal (UrQMD) and thermal (HRG) production of hadrons cannot explain the data. These measurements will help map the QCD phase diagram, constrain hadron resonance gas model calculations, and provide new insights on the energy dependence of baryon-strangeness correlations. An erratum has been added to address the issue of self-correlation in the previously considered efficiency correction for off-diagonal cumulant measurement. Previously considered unidentified (net-)charge correlation results ($\sigma^{11}_{Q,p}$ and $\sigma^{11}_{Q,k})$ are now replaced with identified (net-)charge correlation ($\sigma^{11}_{Q^{PID},p}$ and $\sigma^{11}_{Q^{PID},k}$)

22 data tables match query

The dependence of efficiency corrected second-order diagonal and off-diagonal cumulants on the width of the η-window. The filled and open circles represent 0-5% and 70-80% central collisions respectively. The shaded band represents the systematic uncertainty. The statistical uncertainties are within the marker size and solid lines are UrQMD calculations.

The dependence of efficiency corrected second-order diagonal and off-diagonal cumulants on the width of the η-window. The filled and open circles represent 0-5% and 70-80% central collisions respectively. The shaded band represents the systematic uncertainty. The statistical uncertainties are within the marker size and solid lines are UrQMD calculations.

Centrality dependence of efficiency corrected second-order diagonal cumulants of net-proton, net-kaon and net-pion (top to bottom) of the multiplicity distributions for Au+Au collisions at GeV (left to right) within kinematic range of |η| < 0.5 and 0.4 < pT < 1.6 GeV/c. The boxes represent the systematic error. The statistical error bars are within the marker size. The dashed lines represent scaling predicted by central limit theorem and the solid lines are UrQMD calculations.

More…

Neutron-Proton Charge-Exchange Scattering from 22-GeV/c to 65-GeV/c

Babaev, A. ; Brachman, E. ; Eliseev, G. ; et al.
Nucl.Phys.B 110 (1976) 189-204, 1976.
Inspire Record 100178 DOI 10.17182/hepdata.35776

The differential cross sections for neutron-proton elastic charge-exchange scattering have been measured with a two-arm technique for incident neutron momenta between 22 and 65 GeV/ c and for values of the momentum transfer squared between 0.002 and 0.8 (GeV/ c ) 2 . The sharp forward peak observed previously at lower energies is also present at momenta up to 65 GeV/ c ; however the s dependence of the cross section is slowing down.

0 data tables match query

Measurement of the sixth-order cumulant of net-proton multiplicity distributions in Au+Au collisions at $\sqrt{s_{NN}}=$ 27, 54.4, and 200 GeV at RHIC

The STAR collaboration Abdallah, Mohamed ; Adam, Jaroslav ; Adamczyk, Leszek ; et al.
Phys.Rev.Lett. 127 (2021) 262301, 2021.
Inspire Record 1866196 DOI 10.17182/hepdata.105720

According to first-principle lattice QCD calculations, the transition from quark-gluon plasma to hadronic matter is a smooth crossover in the region μB ≤ T c. In this range the ratio, C6=C2, of net-baryon distributions are predicted to be negative. In this Letter, we report the first measurement of the midrapidity net-proton C6=C2 from 27, 54.4, and 200 GeV Au þ Au collisions at the Relativistic Heavy Ion Collider (RHIC). The dependence on collision centrality and kinematic acceptance in (p T , y) are analyzed. While for 27 and 54.4 GeV collisions the C6=C2 values are close to zero within uncertainties, it is observed that for 200 GeV collisions, the C6=C2 ratio becomes progressively negative from peripheral to central collisions. Transport model calculations without critical dynamics predict mostly positive values except for the most central collisions within uncertainties. These observations seem to favor a smooth crossover in the high-energy nuclear collisions at top RHIC energy.

51 data tables match query

Event by event net-proton multiplicity, $\Delta N_{p}$, distributions for Au+Au collisions at √sNN = 27, 54.4, and 200 GeV in 0-10% and 30-40% centralities at midrapidity (|y| < 0.5) for the transverse momentum range of 0.4 < $p_{T}$ (GeV/c) < 2.0. These distributions are normalized by the corresponding numbers of events and are not corrected for detector efficiencies. Statistical uncertainties are shown as vertical lines. The dashed lines show the Skellam distributions for each collision energy and centrality. The bottom panel shows the ratio of the data to the Skellam expectations.

Event by event net-proton multiplicity, $\Delta N_{p}$, distributions for Au+Au collisions at √sNN = 27, 54.4, and 200 GeV in 0-10% and 30-40% centralities at midrapidity (|y| < 0.5) for the transverse momentum range of 0.4 < $p_{T}$ (GeV/c) < 2.0. These distributions are normalized by the corresponding numbers of events and are not corrected for detector efficiencies. Statistical uncertainties are shown as vertical lines. The dashed lines show the Skellam distributions for each collision energy and centrality. The bottom panel shows the ratio of the data to the Skellam expectations.

Event by event net-proton multiplicity, $\Delta N_{p}$, distributions for Au+Au collisions at √sNN = 27, 54.4, and 200 GeV in 0-10% and 30-40% centralities at midrapidity (|y| < 0.5) for the transverse momentum range of 0.4 < $p_{T}$ (GeV/c) < 2.0. These distributions are normalized by the corresponding numbers of events and are not corrected for detector efficiencies. Statistical uncertainties are shown as vertical lines. The dashed lines show the Skellam distributions for each collision energy and centrality. The bottom panel shows the ratio of the data to the Skellam expectations.

More…

Measurement of isolated-photon pair production in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 01 (2013) 086, 2013.
Inspire Record 1199269 DOI 10.17182/hepdata.62320

The ATLAS experiment at the LHC has measured the production cross section of events with two isolated photons in the final state, in proton-proton collisions at sqrt(s) = 7 TeV. The full data set collected in 2011, corresponding to an integrated luminosity of 4.9 fb-1, is used. The amount of background, from hadronic jets and isolated electrons, is estimated with data-driven techniques and subtracted. The total cross section, for two isolated photons with transverse energies above 25 GeV and 22 GeV respectively, in the acceptance of the electromagnetic calorimeter (|eta|<1.37 and 1.52<|eta|<2.37) and with an angular separation Delta R>0.4, is 44.0 (+3.2) (-4.2) pb. The differential cross sections as a function of the di-photon invariant mass, transverse momentum, azimuthal separation, and cosine of the polar angle of the largest transverse energy photon in the Collins--Soper di-photon rest frame are also measured. The results are compared to the prediction of leading-order parton-shower and next-to-leading-order and next-to-next-to-leading-order parton-level generators.

0 data tables match query

Version 3
Centrality and transverse momentum dependence of $D^0$-meson production at mid-rapidity in Au+Au collisions at ${\sqrt{s_{\rm NN}} = \rm{200\,GeV}}$

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 99 (2019) 034908, 2019.
Inspire Record 1711377 DOI 10.17182/hepdata.95750

We report a new measurement of $D^0$-meson production at mid-rapidity ($|y|$\,$<$\,1) in Au+Au collisions at ${\sqrt{s_{\rm NN}} = \rm{200\,GeV}}$ utilizing the Heavy Flavor Tracker, a high resolution silicon detector at the STAR experiment. Invariant yields of $D^0$-mesons with transverse momentum $p_{T}$ $\lesssim 9$\,GeV/$c$ are reported in various centrality bins (0--10\%, 10--20\%, 20--40\%, 40--60\% and 60--80\%). Blast-Wave thermal models are used to fit the $D^0$-meson $p_{T}$ spectra to study $D^0$ hadron kinetic freeze-out properties. The average radial flow velocity extracted from the fit is considerably smaller than that of light hadrons ($\pi,K$ and $p$), but comparable to that of hadrons containing multiple strange quarks ($\phi,\Xi^-$), indicating that $D^0$ mesons kinetically decouple from the system earlier than light hadrons. The calculated $D^0$ nuclear modification factors re-affirm that charm quarks suffer large amount of energy loss in the medium, similar to those of light quarks for $p_{T}$\,$>$\,4\,GeV/$c$ in central 0--10\% Au+Au collisions. At low $p_{T}$, the nuclear modification factors show a characteristic structure qualitatively consistent with the expectation from model predictions that charm quarks gain sizable collective motion during the medium evolution. The improved measurements are expected to offer new constraints to model calculations and help gain further insights into the hot and dense medium created in these collisions.

7 data tables match query

$D^0$ (in terms of (D0 +D0)/2)) invariant yield at mid-rapidity ($|y| < 1$) vs transverse momentum for different centrality classes. Error bars indicate statistical uncertainties and brackets depict systematic uncertainties. Global systematic uncertainties in B.R. are not plotted. Solid and dashed lines depict Levy function fits.

$D^0$ (in terms of (D0 +D0)/2)) spectra in pp collisions. Note, the $\sigma_{NSD}$ = 30 $m$b for p+p was used in the calculations.

Integrated $D^0$ cross section per nucleon-nucleon collision at mid-rapidity for $p_T >0$ (a) and $p_T >4$ GeV/c (b) as a function of centrality $N_{part}$. The statistical and systematic uncertainties are shown as error bars and brackets on the data points. The green boxes on the data points depict the overall normalization uncertainties in p+p and Au+Au data respectively.

More…

Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 719 (2013) 220-241, 2013.
Inspire Record 1126965 DOI 10.17182/hepdata.59270

Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at $\sqrt{s_{NN}}$ = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |$\eta$| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-$k_t$ algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," $R_{cp}$. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. $R_{cp}$ varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.

1 data table match query

The Rcp values as a function of R for the three centrality ranges 0 - 10 %, 10 - 20 % and 20 - 30 % for the jet PT range 44.21 - 50.94 GeV.


Measurement of $D_s^{\pm}$ production asymmetry in $pp$ collisions at $\sqrt{s} =7$ and 8 TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 08 (2018) 008, 2018.
Inspire Record 1674916 DOI 10.17182/hepdata.82715

The inclusive $D_s^{\pm}$ production asymmetry is measured in $pp$ collisions collected by the LHCb experiment at centre-of-mass energies of $\sqrt{s} =7$ and 8 TeV. Promptly produced $D_s^{\pm}$ mesons are used, which decay as $D_s^{\pm}\to\phi\pi^{\pm}$, with $\phi\to K^+K^-$. The measurement is performed in bins of transverse momentum, $p_{\rm T}$, and rapidity, $y$, covering the range $2.5

0 data tables match query

Measurement of the $\eta_c(1S)$ production cross-section in $pp$ collisions at $\sqrt{s} = 13$ TeV

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Ackernley, Thomas ; et al.
Eur.Phys.J.C 80 (2020) 191, 2020.
Inspire Record 1763898 DOI 10.17182/hepdata.90457

Using a data sample corresponding to an integrated luminosity of $2.0\,fb^{-1}$, collected by the LHCb experiment, the production of the $\eta_c(1S)$ state in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=13 \text{ TeV}$ is studied in the rapidity range ${2.0 < y < 4.5}$ and in the transverse momentum range ${6.5 < p_{T} < 14.0\text{ GeV}}$. The cross-section for prompt production of $\eta_c(1S)$ mesons relative to that of the $J/\psi$ meson is measured using the ${p\bar{p}}$ decay mode and is found to be ${\sigma_{\eta_c(1S)}/\sigma_{J/\psi} = 1.69 \pm 0.15 \pm 0.10 \pm 0.18}$. The quoted uncertainties are, in order, statistical, systematic and due to uncertainties on the branching fractions of the ${J/\psi\to p \bar{p}}$ and ${\eta_c\to p \bar{p}}$ decays. The prompt $\eta_c(1S)$ production cross-section is determined to be ${\sigma_{\eta_c(1S)} = 1.26 \pm 0.11\pm 0.08 \pm 0.14 \,\mu b}$, where the last uncertainty includes that on the ${J/\psi}$ meson cross-section. The ratio of the branching fractions of $b$-hadron decays to the $\eta_c(1S)$ and ${J/\psi}$ states is measured to be ${\mathcal{B}_{b\to\eta_c X}/\mathcal{B}_{b\to J/\psi X} = 0.48 \pm 0.03 \pm 0.03 \pm 0.05}$, where the last uncertainty is due to those on the branching fractions of the ${J/\psi \to p \bar{p}}$ and ${\eta_c\to p \bar{p}}$ decays. The difference between the ${J/\psi}$ and $\eta_c(1S)$ masses is also determined to be ${113.0 \pm 0.7 \pm 0.1\text{ MeV}}$, which is the most precise single measurement of this quantity to date.

0 data tables match query

Version 2
Search for exclusive Higgs and $Z$ boson decays to $\omega\gamma$ and Higgs boson decays to $K^{*}\gamma$ with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Lett.B 847 (2023) 138292, 2023.
Inspire Record 2626041 DOI 10.17182/hepdata.136515

Searches for the exclusive decays of the Higgs boson to an $\omega$ meson and a photon or a $K^{*}$ meson and a photon can probe flavour-conserving and flavour-violating Higgs boson couplings to light quarks, respectively. Searches for these decays, along with the analogous $Z$ boson decay to an $\omega$ meson and a photon, are performed with a $pp$ collision data sample corresponding to integrated luminosities of up to 134 fb$^{-1}$ collected at $\sqrt{s}=13$ TeV with the ATLAS detector at the CERN Large Hadron Collider. The obtained 95% confidence-level upper limits on the respective branching fractions are ${\cal B}(H\rightarrow\omega\gamma)< 5.5\times 10^{-4}$, ${\cal B}(H\rightarrow K^{*}\gamma)< 2.2\times10^{-4}$ and ${\cal B}(Z\rightarrow \omega\gamma)<3.9\times 10^{-6}$. The limits for $H\rightarrow \omega\gamma$ and $Z\rightarrow \omega\gamma$ are 370 times and 140 times the Standard Model expected values, respectively. The result for $Z\rightarrow \omega\gamma$ corresponds to a two-orders-of-magnitude improvement over the limit obtained by the DELPHI experiment at LEP.

2 data tables match query

Numbers of observed and expected background events for the $m_{\mathcal{M}\gamma}$ ranges of interest. Each expected background and the corresponding uncertainty of its mean is obtained from a background-only fit to the data; the uncertainty does not take into account statistical fluctuations in each mass range. Expected $Z$ and Higgs boson signal contributions, with their corresponding total systematic uncertainty, are shown for reference branching fractions of $10^{-6}$ and $10^{-4}$, respectively.

Expected and observed branching fraction limits at the 95% CL for $H/Z\rightarrow \omega\gamma$ and $H\rightarrow K^{*}\gamma$.


Searches for exclusive Higgs boson decays into $D^*\gamma$ and $Z$ boson decays into $D^0\gamma$ and $K^0_s\gamma$ in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2024-037, 2024.
Inspire Record 2763131 DOI 10.17182/hepdata.147194

Searches for the exclusive decays of the Higgs boson into $D^*\gamma$ and of the $Z$ boson into $D^0\gamma$ and $K^0_s\gamma$ can probe flavour-violating Higgs and $Z$ boson couplings to light quarks. Searches for these decays are performed with a $pp$ collision data sample corresponding to an integrated luminosity of $136.3$ fb$^{-1}$ collected at $\sqrt{s}=13$ TeV between 2016-2018 with the ATLAS detector at the CERN Large Hadron Collider. In the $D^*\gamma$ and $D^0\gamma$ channels, the observed (expected) 95$\%$ confidence-level upper limits on the respective branching fractions are ${\cal B}(H\rightarrow D^*\gamma)< 1.0 (1.2)\times 10^{-3}$, ${\cal B}(Z\rightarrow D^0\gamma)< 4.0 (3.4)\times 10^{-6}$, while the corresponding results in the $K^0_s\gamma$ channel are ${\cal B}(Z\rightarrow K^0_s\gamma)< 3.1 (3.0)\times 10^{-6}$.

2 data tables match query

Numbers of observed and expected background events for the $m_{\mathcal{M}\gamma}$ ranges of interest. Each expected background and the corresponding uncertainty is obtained by integrating the total pdf after a background-only fit to the data, where the uncertainty does not take into account statistical fluctuations in each mass range. Expected Higgs and $Z$ boson signal contributions, with their corresponding total systematic uncertainty, are shown for reference branching fractions of $10^{-3}$ and $10^{-6}$, respectively. Entries are marked with a dash when there is no signal of that type in the specified range.

Observed and expected (with the corresponding $\pm1\sigma$ intervals) 95% CL upper limits on the branching fractions for $H\rightarrow D^*\gamma$, $Z\rightarrow D^0\gamma$ and $Z\rightarrow K^0_s\gamma$. Standard Model production of the Higgs boson is assumed. The corresponding upper limits on the production cross-section times branching fraction $\sigma\times\mathcal{B}$ are also shown.


CROSS-SECTIONS OF CHANNELS WITH ONE NEUTRAL PARTICLE IN 32-GeV K- p INTERACTIONS

Levitsky, M.S. ; Moiseev, A.M. ; Silinskaya, S.G. ; et al.
IFVE-80-22, 1979.
Inspire Record 147181 DOI 10.17182/hepdata.41627

None

1 data table match query

MISPRINT CORRECTED DATA PRESENTED BY D.I.PATALAKHA.


Measurement of cold nuclear matter effects for inclusive $J/\psi$ in $p$+Au collisions at $\sqrt{s_{_{\mathrm{NN}}}}$ = 200 GeV

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Lett.B 825 (2022) 136865, 2022.
Inspire Record 1946829 DOI 10.17182/hepdata.114371

Measurement by the STAR experiment at RHIC of the cold nuclear matter (CNM) effects experienced by inclusive $J/\psi$ at mid-rapidity in 0-100%$p$+Au collisions at $\sqrt{s_{_{\mathrm{NN}}}}$ = 200 GeV is presented. Such effects are quantified utilizing the nuclear modification factor, $R_{p\mathrm{Au}}$, obtained by taking a ratio of $J/\psi$ yield in $p$+Au collisions to that in $p$+$p$ collisions scaled by the number of binary nucleon-nucleon collisions. The differential $J/\psi$ yield in both $p$+$p$ and $p$+Au collisions is measured through the dimuon decay channel, taking advantage of the trigger capability provided by the Muon Telescope Detector in the RHIC 2015 run. Consequently, the $J/\psi$$R_{p\mathrm{Au}}$ is derived within the transverse momentum ($p_{\mathrm{T}}$) range of 0 to 10 GeV/$c$. A suppression of approximately 30% is observed for $p_{\mathrm{T}}<2$ GeV/$c$, while $J/\psi$ $R_{p\mathrm{Au}}$ becomes compatible with unity for $p_{\mathrm{T}}$ greater than 3 GeV/$c$, indicating the $J/\psi$ yield is minimally affected by the CNM effects at high $p_{\mathrm{T}}$. Comparison to a similar measurement from 0-20% central Au+Au collisions reveals that the observed strong $J/\psi$ suppression above 3 Gev/$c$ is mostly due to the hot medium effects, providing strong evidence for the formation of the quark-gluon plasma in these collisions. Several model calculations show qualitative agreement with the measured $J/\psi$ $R_{p\mathrm{Au}}$, while their agreement with the $J/\psi$ yields in $p$+$p$ and $p$+Au collisions is worse.

3 data tables match query

Inclusive J/psi cross section times branching ratio of the dimuon decay channel in p+p collisions at 200 GeV. Global uncertainty of 12.5% not shown.

Inclusive J/psi cross section times branching ratio of the dimuon decay channel in p+Au collisions at 200 GeV. Global uncertainty of 1.5% not shown.

R_pAu of inclusive J/psi in p+Au collisions at 200 GeV. Global uncertainty of 13.9% not shown.


Measurement of away-side broadening with self-subtraction of flow in Au+Au collisions at $\sqrt{s_{_\mathrm{NN}}}=200$ GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Chin.Phys.C 44 (2020) 104001, 2020.
Inspire Record 1740989 DOI 10.17182/hepdata.95119

High transverse momentum ($p_T$) particle production is suppressed due to parton (jet) energy loss in the hot dense medium created in relativistic heavy-ion collisions. Redistribution of energy at low-to-modest $p_T$ has been elusive to measure because of large anisotropic backgrounds. We report a data-driven method for background evaluation and subtraction, exploiting the away-side pseudorapidity gaps, to measure the jetlike correlation shape in Au+Au collisions at $\sqrt{s_{_\mathrm{NN}}}=200$ GeV with the STAR experiment. The correlation shapes, for trigger particle $p_T>3$ GeV/$c$ and various associated particle $p_T$ ranges within $0.5<p_T<10$ GeV/$c$, are consistent with Gaussians and their widths are found to increase with centrality. The results indicate jet broadening in the medium created in central heavy-ion collisions.

6 data tables match query

Distributions of the recoil momentum within 0.5<\eta<1 (Px|_{0.5}^{1}) from high-pT trigger particles of 3<pT_Trig<10 GeV/c in 50-80% peripheral collisions

Distributions of the recoil momentum within 0.5<\eta<1 (Px|_{0.5}^{1}) from high-pT trigger particles of 3<pT_Trig<10 GeV/c in 0-10% central collisions

Dihadron azimuthal correlations in close-region and far-region for 3<pT_Trig<10 GeV/c and 1<pT_Assoc<2 GeV/c in 10-30% Au+Au collisions at \sNN=200 GeV

More…

Measurement of forward top pair production in the dilepton channel in $pp$ collisions at $\sqrt{s}=13$ TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 08 (2018) 174, 2018.
Inspire Record 1662483 DOI 10.17182/hepdata.97367

Forward top quark pair production is studied in $pp$ collisions in the $\mu eb$ final state using a data sample corresponding to an integrated luminosity of 1.93 fb$^{-1}$ collected with the LHCb experiment at a centre-of-mass energy of 13 TeV. The cross-section is measured in a fiducial region where both leptons have a transverse momentum greater than 20 GeV and a pseudorapidity between 2.0 and 4.5. The quadrature sum of the azimuthal separation and the difference in pseudorapidities, denoted $\Delta R$, between the two leptons must be larger than 0.1. The $b$-jet axis is required to be separated from both leptons by a $\Delta R$ of 0.5, and to have a transverse momentum in excess of 20 GeV and a pseudorapidity between 2.2 and 4.2. The cross-section is measured to be $$\sigma_{t\bar{t}}= 126\pm19\,(\mathrm{stat})\pm16\,(\mathrm{syst})\pm5\,(\mathrm{lumi})\,\,\mathrm{ fb}$$ where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measurement is compatible with the Standard Model prediction.

0 data tables match query

Measurement of the $W^{\pm}Z$ boson pair-production cross section in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS Detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 762 (2016) 1-22, 2016.
Inspire Record 1469071 DOI 10.17182/hepdata.76493

The production of $W^{\pm}Z$ events in proton--proton collisions at a centre-of-mass energy of 13 TeV is measured with the ATLAS detector at the LHC. The collected data correspond to an integrated luminosity of 3.2 fb$^{-1}$. The $W^{\pm}Z$ candidates are reconstructed using leptonic decays of the gauge bosons into electrons or muons. The measured inclusive cross section in the detector fiducial region for leptonic decay modes is $\sigma_{W^\pm Z \rightarrow \ell^{'} \nu \ell \ell}^{\textrm{fid.}} = 63.2 \pm 3.2$ (stat.) $\pm 2.6$ (sys.) $\pm 1.5$ (lumi.) fb. In comparison, the next-to-leading-order Standard Model prediction is $53.4^{+3.6}_{-2.8}$ fb. The extrapolation of the measurement from the fiducial to the total phase space yields $\sigma_{W^{\pm}Z}^{\textrm{tot.}} = 50.6 \pm 2.6$ (stat.) $\pm 2.0$ (sys.) $\pm 0.9$ (th.) $\pm 1.2$ (lumi.) pb, in agreement with a recent next-to-next-to-leading-order calculation of $48.2^{+1.1}_{-1.0}$ pb. The cross section as a function of jet multiplicity is also measured, together with the charge-dependent $W^+Z$ and $W^-Z$ cross sections and their ratio.

11 data tables match query

The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

More…

Prompt and non-prompt J$/\psi$ production at midrapidity in Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
JHEP 02 (2024) 066, 2024.
Inspire Record 2692201 DOI 10.17182/hepdata.146723

The transverse momentum ($p_{\rm T}$) and centrality dependence of the nuclear modification factor $R_{\rm AA}$ of prompt and non-prompt J$/\psi$, the latter originating from the weak decays of beauty hadrons, have been measured by the ALICE collaboration in Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV. The measurements are carried out through the ${\rm e}^{+}{\rm e}^{-}$ decay channel at midrapidity ($|y| < 0.9$) in the transverse momentum region $1.5 < p_{\rm T} < 10$ GeV/$c$. Both prompt and non-prompt J$/\psi$ measurements indicate a significant suppression for $p_{\rm T} >$ 5 GeV/$c$, which becomes stronger with increasing collision centrality. The results are consistent with similar LHC measurements in the overlapping $p_{\rm T}$ intervals, and cover the kinematic region down to $p_{\rm T}$ = 1.5 GeV/$c$ at midrapidity, not accessible by other LHC experiments. The suppression of prompt J$/\psi$ in central and semicentral collisions exhibits a decreasing trend towards lower transverse momentum, described within uncertainties by models implementing J$/\psi$ production from recombination of c and $\overline{\rm c}$ quarks produced independently in different partonic scatterings. At high transverse momentum, transport models including quarkonium dissociation are able to describe the suppression for prompt J$/\psi$. For non-prompt J$/\psi$, the suppression predicted by models including both collisional and radiative processes for the computation of the beauty-quark energy loss inside the quark$-$gluon plasma is consistent with measurements within uncertainties.

16 data tables match query

Non-prompt J/$\psi$ fraction as a function of transverse momentum in Pb-Pb at 5.02 TeV, centrality 0-10%

Non-prompt J/$\psi$ fraction as a function of transverse momentum in Pb-Pb at 5.02 TeV, centrality 10-30%

Non-prompt J/$\psi$ fraction as a function of transverse momentum in Pb-Pb at 5.02 TeV, centrality 30-50%

More…

Version 2
Measurement of prompt charged-particle production in proton-proton collisions at a centre-of-mass energy of 13 TeV

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Ackernley, Thomas ; et al.
JHEP 01 (2022) 166, 2022.
Inspire Record 1889335 DOI 10.17182/hepdata.136099

The differential cross-section of prompt inclusive production of long-lived charged particles in proton-proton collisions is measured using a data sample recorded by the LHCb experiment at a centre-of-mass energy of ${\sqrt{s} = 13\,\mathrm{TeV}}$. The data sample, collected with an unbiased trigger, corresponds to an integrated luminosity of ${5.4\,\mathrm{nb}^{-1}}$. The differential cross-section is measured as a function of transverse momentum and pseudorapidity in the ranges ${p_\mathrm{T} \in [0.08, 10)\,\mathrm{GeV}\,c^{-1}}$ and ${\eta \in [2.0, 4.8)}$ and is determined separately for positively and negatively charged particles. The results are compared with predictions from various hadronic-interaction models.

0 data tables match query

Measurement of inclusive jet charged-particle fragmentation functions in Pb+Pb collisions at sqrt(s_NN) = 2.76 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 739 (2014) 320-342, 2014.
Inspire Record 1300152 DOI 10.17182/hepdata.64272

Measurements of charged-particle fragmentation functions of jets produced in ultra-relativistic nuclear collisions can provide insight into the modification of parton showers in the hot, dense medium created in the collisions. ATLAS has measured jets in $\sqrt{s_{NN}} = 2.76$ TeV Pb+Pb collisions at the LHC using a data set recorded in 2011 with an integrated luminosity of 0.14 nb$^{-1}$. Jets were reconstructed using the anti-$k_{t}$ algorithm with distance parameter values $R$ = 0.2, 0.3, and 0.4. Distributions of charged-particle transverse momentum and longitudinal momentum fraction are reported for seven bins in collision centrality for $R=0.4$ jets with $p_{{T}}^{\mathrm{jet}}> 100$ GeV. Commensurate minimum $p_{\mathrm{T}}$ values are used for the other radii. Ratios of fragment distributions in each centrality bin to those measured in the most peripheral bin are presented. These ratios show a reduction of fragment yield in central collisions relative to peripheral collisions at intermediate $z$ values, $0.04 \lesssim z \lesssim 0.2$ and an enhancement in fragment yield for $z \lesssim 0.04$. A smaller, less significant enhancement is observed at large $z$ and large $p_{\mathrm{T}}$ in central collisions.

1 data table match query

D(z) distribution for R=0.2 jets.


Beam-energy dependence of identified two-particle angular correlations in Au+Au collisions at RHIC

The STAR collaboration Adam, Jaroslav ; Adams, Joseph ; Agakishiev, Geydar ; et al.
Phys.Rev.C 101 (2020) 014916, 2020.
Inspire Record 1740846 DOI 10.17182/hepdata.105909

The two-particle angular correlation functions, $R_2$, of pions, kaons, and protons in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV were measured by the STAR experiment at RHIC. These correlations were measured for both like-sign and unlike-sign charge combinations and versus the centrality. The correlations of pions and kaons show the expected near-side ({\it i.e.}, at small relative angles) peak resulting from short-range mechanisms. The amplitudes of these short-range correlations decrease with increasing beam energy. However, the proton correlation functions exhibit strong anticorrelations in the near-side region. This behavior is observed for the first time in an A+A collision system. The observed anticorrelation is $p_{T}$-independent and decreases with increasing beam energy and centrality. The experimental results are also compared to the Monte Carlo models UrQMD, Hijing, and AMPT.

44 data tables match query

Angular correlation function R2(∆y,∆φ) of like-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 7.7 GeV

Angular correlation function R2(∆y,∆φ) of like-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 11.5 GeV

Angular correlation function R2(∆y,∆φ) of like-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 14.5 GeV

More…

First observation of the directed flow of $D^{0}$ and $\overline{D^0}$ in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.Lett. 123 (2019) 162301, 2019.
Inspire Record 1733225 DOI 10.17182/hepdata.105914

We report the first measurement of rapidity-odd directed flow ($v_{1}$) for $D^{0}$ and $\overline{D^{0}}$ mesons at mid-rapidity ($|y| < 0.8$) in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200\,GeV using the STAR detector at the Relativistic Heavy Ion Collider. In 10--80\% Au+Au collisions, the slope of the $v_{1}$ rapidity dependence ($dv_{1}/dy$), averaged over $D^{0}$ and $\overline{D^{0}}$ mesons, is -0.080 $\pm$ 0.017 (stat.) $\pm$ 0.016 (syst.) for transverse momentum $p_{\rm T}$ above 1.5~GeV/$c$. The absolute value of $D^0$-meson $dv_1/dy$ is about 25 times larger than that for charged kaons, with 3.4$\sigma$ significance. These data give a unique insight into the initial tilt of the produced matter, and offer constraints on the geometric and transport parameters of the hot QCD medium created in relativistic heavy-ion collisions.

3 data tables match query

Directed flow $v_1$ as a function of rapidity for $D^0$ and $\bar{D^0}$ mesons at $p_T>1.5$ GeV/c for 10–80% centrality Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

Directed flow $\langle v_1 \rangle$ for the combined samples of $D^0$ and $\bar{D^0}$ mesons at $p_T>1.5$ GeV/c for 10–80% centrality Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

Difference in $v_1(y)$ $(\Delta v_1)$ between $D^0$ and $\bar{D^0}$ mesons at $p_T>1.5$ GeV/c for 10–80% centrality Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.


Tomography of Ultra-relativistic Nuclei with Polarized Photon-gluon Collisions

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Sci.Adv. 9 (2023) eabq3903, 2023.
Inspire Record 2062296 DOI 10.17182/hepdata.132921

A linearly polarized photon can be quantized from the Lorentz-boosted electromagnetic field of a nucleus traveling at ultra-relativistic speed. When two relativistic heavy nuclei pass one another at a distance of a few nuclear radii, the photon from one nucleus may interact through a virtual quark-antiquark pair with gluons from the other nucleus forming a short-lived vector meson (e.g. ${\rho^0}$). In this experiment, the polarization was utilized in diffractive photoproduction to observe a unique spin interference pattern in the angular distribution of ${\rho^0\rightarrow\pi^+\pi^-}$ decays. The observed interference is a result of an overlap of two wave functions at a distance an order of magnitude larger than the ${\rho^0}$ travel distance within its lifetime. The strong-interaction nuclear radii were extracted from these diffractive interactions, and found to be $6.53\pm 0.06$ fm ($^{197} {\rm Au }$) and $7.29\pm 0.08$ fm ($^{238} {\rm U}$), larger than the nuclear charge radii. The observable is demonstrated to be sensitive to the nuclear geometry and quantum interference of non-identical particles.

9 data tables match query

The invariant mass distribution of pi+pi- pairs collected from Au+Au and U+U collisions.

Two-dimensional $\rho^0$ momentum distribution from Au+Au collisions.

Two-dimensional $\rho^0$ momentum distribution from Au+Au collisions.

More…

Measurement of the centrality and pseudorapidity dependence of the integrated elliptic flow in lead-lead collisions at sqrt(s_NN)=2.76 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 74 (2014) 2982, 2014.
Inspire Record 1296260 DOI 10.17182/hepdata.66180

The integrated elliptic flow of charged particles produced in Pb+Pb collisions at sqrt(s_NN)=2.76 TeV has been measured with the ATLAS detector using data collected at the Large Hadron Collider. The anisotropy parameter, v_2, was measured in the pseudorapidity range |eta| <= 2.5 with the event-plane method. In order to include tracks with very low transverse momentum pT, thus reducing the uncertainty in v_2 integrated over pT, a 1 mu b-1 data sample without a magnetic field in the tracking detectors is used. The centrality dependence of the integrated v_2 is compared to other measurements obtained with higher pT thresholds. A weak pseudorapidity dependence of the integrated elliptic flow is observed for central collisions, and a small decrease when moving away from mid-rapidity is observed only in peripheral collisions. The integrated v2 transformed to the rest frame of one of the colliding nuclei is compared to the lower-energy RHIC data.

1 data table match query

Elliptic flow $v_{2}$ integrated over transverse momentum $p_{T}>p_{T,0}$ as a function of $p_{T,0}$ for 60-70% centrality interval, obtained with different charged-particle reconstruction methods: the tracklet (TKT) method with $p_{T,0}=0.07$ GeV, the pixel track (PXT) method with $p_{T,0} \geq 0.1$ GeV and the ID track (IDT) method with $p_{T,0}=0.5$ GeV. Error bars indicate statistical and systematic uncertainties added in quadrature.


Charged hadron multiplicity fluctuations in Au+Au and Cu+Cu collisions from sqrt(s_NN) = 22.5 to 200 GeV

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.C 78 (2008) 044902, 2008.
Inspire Record 785509 DOI 10.17182/hepdata.143616

A comprehensive survey of event-by-event fluctuations of charged hadron multiplicity in relativistic heavy ions is presented. The survey covers Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV, and Cu+Cu collisions sqrt(s_NN) = 22.5, 62.4, and 200 GeV. Fluctuations are measured as a function of collision centrality, transverse momentum range, and charge sign. After correcting for non-dynamical fluctuations due to fluctuations in the collision geometry within a centrality bin, the remaining dynamical fluctuations expressed as the variance normalized by the mean tend to decrease with increasing centrality. The dynamical fluctuations are consistent with or below the expectation from a superposition of participant nucleon-nucleon collisions based upon p+p data, indicating that this dataset does not exhibit evidence of critical behavior in terms of the compressibility of the system. An analysis of Negative Binomial Distribution fits to the multiplicity distributions demonstrates that the heavy ion data exhibit weak clustering properties.

69 data tables match query

The uncorrected multiplicity distributions of charged hadrons with 0.2 < $p_T$ < 2.0 GeV/$c$ for 200 GeV Au+Au collisions.

The uncorrected multiplicity distributions of charged hadrons with 0.2 < $p_T$ < 2.0 GeV/$c$ for 200 GeV Au+Au collisions.

The uncorrected multiplicity distributions of charged hadrons with 0.2 < $p_T$ < 2.0 GeV/$c$ for 200 GeV Au+Au collisions.

More…

Low-$p_T$ $e^{+}e^{-}$ pair production in Au$+$Au collisions at $\sqrt{s_{NN}}$ = 200 GeV and U$+$U collisions at $\sqrt{s_{NN}}$ = 193 GeV at STAR

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.Lett. 121 (2018) 132301, 2018.
Inspire Record 1676541 DOI 10.17182/hepdata.84821

We report first measurements of $e^{+}e^{-}$ pair production in the mass region 0.4 $

36 data tables match query

The centrality dependence of e+e− invariant mass spectra within the STAR acceptance from Au+Au collisions and U+U collisions for pair pT < 0.15 GeV/c. The vertical bars on data points depict the statistical uncertainties, while the systematic uncertainties are shown as gray boxes. The hadronic cocktail yields from U+U collisions are ∼5%–12% higher than those from Au+Au collisions in given centrality bins; thus only cocktails for Au+Au collisions are shown here as solid lines, with shaded bands representing the systematic uncertainties for clarity.

The centrality dependence of e+e− invariant mass spectra within the STAR acceptance from Au+Au collisions and U+U collisions for pair pT < 0.15 GeV/c. The vertical bars on data points depict the statistical uncertainties, while the systematic uncertainties are shown as gray boxes. The hadronic cocktail yields from U+U collisions are ∼5%–12% higher than those from Au+Au collisions in given centrality bins; thus only cocktails for Au+Au collisions are shown here as solid lines, with shaded bands representing the systematic uncertainties for clarity.

The centrality dependence of e+e− invariant mass spectra within the STAR acceptance from Au+Au collisions and U+U collisions for pair pT < 0.15 GeV/c. The vertical bars on data points depict the statistical uncertainties, while the systematic uncertainties are shown as gray boxes. The hadronic cocktail yields from U+U collisions are ∼5%–12% higher than those from Au+Au collisions in given centrality bins; thus only cocktails for Au+Au collisions are shown here as solid lines, with shaded bands representing the systematic uncertainties for clarity.

More…

Search for narrow trijet resonances in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-EXO-22-008, 2023.
Inspire Record 2713513 DOI 10.17182/hepdata.144165

The first search for narrow resonances decaying to three well-separated hadronic jets is presented. The search uses proton-proton collision data corresponding to an integrated luminosity of 138 fb$^{-1}$ at $\sqrt{s}$ = 13 TeV, collected at the CERN LHC. No significant deviations from the background predictions are observed between 1.75-9.00 TeV. The results provide the first mass limits on a right-handed boson Z$_{\mathrm{R}}$ decaying to three gluons, an excited quark decaying via a vector boson to three quarks, as well as updated limits on a Kaluza-Klein gluon decaying via a radion to three gluons.

35 data tables match query

Observed and expected (background-only fitted) invariant mass spectra of trijet events. Data spectra from three years are fitted separately and the sum is shown in the figure. The fitting function used is ${ d N}/{ d m} = p_{0}(1-x)^{p_{1}}/x^{\sum_{i=2}^{3} p_{i}\log^{i-2}(x)}$. The fitted parameters are $p_{1} = 7.350, p_{2} = 6.926, p_{3} = 0.388$ for 2016, $p_{1} = 8.308, p_{2} = 5.931, p_{3} = 0.167$ for 2017 and $p_{1} = 8.770, p_{2} = 5.617, p_{3} = 0.106$ for 2018. $p_{0}$ is the normalization parameter and its exact value is irrelevant.

Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to ggg) \mathcal{A}$ for a 3-body decay trijet resonance with $\Gamma_{X}\sim 3\% m_{X}$. The acceptance $\mathcal{A}$ is defined as $\mathcal{A} = N$(events with $m_{X}^{GEN} > 85\% m_{X}^{input}$) / $N$(events generated in the full phase space defined by the CMS default generator settings). Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions assuming SM-like couplings are depicted with the red curve.

Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to ggg) \mathcal{A}$ for a 3-body decay trijet resonance with $\Gamma_{X}\sim 0.01\% m_{X}$. The acceptance $\mathcal{A}$ is defined as $\mathcal{A} = N$(events with $m_{X}^{GEN} > 85\% m_{X}^{input}$) / $N$(events generated in the full phase space defined by the CMS default generator settings). Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions are depicted with the red curve.

More…

Evidence for tWZ production in proton-proton collisions at $\sqrt{s}$ = 13 TeV in multilepton final states

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-TOP-22-008, 2023.
Inspire Record 2738533 DOI 10.17182/hepdata.138419

The first evidence for the standard model production of a top quark in association with a W boson and a Z boson is reported. The measurement is performed in multilepton final states, where the Z boson is reconstructed via its decays to electron or muon pairs and the W boson decays either to leptons or hadrons. The analysed data were recorded by the CMS experiment at the CERN LHC in 2016-2018 in proton-proton collisions at $\sqrt{s}$ = 13 TeV, and correspond to an integrated luminosity of 138 fb$^{-1}$. The measured cross section is 354 $\pm$ 54 (stat) $\pm$ 95 (syst) fb, and corresponds to a statistical significance of 3.4 standard deviations.

11 data tables match query

Expected yields for signal and background processes and observed number of events in the signal and control regions

Postfit b jet multiplicity distribution in the $\text{SR}_\text{4l}$

Postfit score of the tWZ output node from the multiclass classifier in $\text{SR}_\text{3l,3j}$ for events with exactly 1 b jet

More…

Observation of the $\Lambda_\text{b}^0$$\to$ J/$\psi\Xi^-$K$^+$ decay

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-BPH-22-002, 2024.
Inspire Record 2752469 DOI 10.17182/hepdata.145642

Using proton-proton collision data corresponding to an integrated luminosity of 140 fb$^{-1}$ collected by the CMS experiment at $\sqrt{s}$ = 13 TeV, the $\Lambda_\text{b}^0$$\to$ J/$\psi\Xi^-$K$^+$ decay is observed for the first time, with a statistical significance exceeding 5 standard deviations. The relative branching fraction, with respect to the $\Lambda_\text{b}^0$$\to$$\psi$(2S)$\Lambda$ decay, is measured to be $\mathcal{B}$($\Lambda_\text{b}^0$$\to$ J/$\psi\Xi^-$K$^+$)/$\mathcal{B}$( $\Lambda_\text{b}^0$$\to$$\psi$(2S)$\Lambda$) = [3.38 $\pm$ 1.02 $\pm$ 0.61 $\pm$ 0.03]%, where the first uncertainty is statistical, the second is systematic, and the third is related to the uncertainties in $\mathcal{B}$($\psi$(2S) $\to$ J/$\psi\pi^+\pi^-$) and $\mathcal{B}$($\Xi^-$ $\to$ $\Lambda\pi^-$).

1 data table match query

The measured branching fraction ratio


Version 2
Inclusive and differential cross section measurements of $\mathrm{t\bar{t}b\bar{b}}$ production in the lepton+jets channel at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-TOP-22-009, 2023.
Inspire Record 2703254 DOI 10.17182/hepdata.138416

Measurements of inclusive and normalized differential cross sections of the associated production of top quark-antiquark and bottom quark-antiquark pairs, ttbb, are presented. The results are based on data from proton-proton collisions collected by the CMS detector at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The cross sections are measured in the lepton+jets decay channel of the top quark pair, using events containing exactly one isolated electron or muon and at least five jets. Measurements are made in four fiducial phase space regions, targeting different aspects of the ttbb process. Distributions are unfolded to the particle level through maximum likelihood fits, and compared with predictions from several event generators. The inclusive cross section measurements of this process in the fiducial phase space regions are the most precise to date. In most cases, the measured inclusive cross sections exceed the predictions with the chosen generator settings. The only exception is when using a particular choice of dynamic renormalization scale, $\mu_\mathrm{R}=\frac{1}{2} \prod_{i=\mathrm{t, \bar{t}, b, \bar{b}}} m_{\mathrm{T},i}^{1/4}$, where $m_{\mathrm{T},i}^2=m_i^2+p^2_{\mathrm{T},i}$ are the transverse masses of top and bottom quarks. The differential cross sections show varying degrees of compatibility with the theoretical predictions, and none of the tested generators with the chosen settings simultaneously describe all the measured distributions.

114 data tables match query

Fiducial cross sections from the measurements of all observables, compared to predictions from different ttbb simulation approaches. For each of the normalized differential measurements the fiducial cross section in the respective phase space is also determined. In the paper only one representative observable is quoted for each fiducial phase space, while here the measured cross section with the uncertainties from the fit to the respective observable is summarized.

Compatibility of normalized differential cross section measurements with modeling predictions. The compatibility is quantified with z scores for each of the theoretical predictions, given the unfolded normalized differential cross sections and their covariances. A lower value indicates a better agreement between prediction and measurement. A value of z = 2 indicates a p-value of 5%. In the calculation of the z score only the measurement uncertainties and the statistical uncertainties of the modeling predictions are taken into account

Normalized differential cross section of $|\eta(\mathrm{b}^{\mathrm{add.}}_{1})|$ in $\geq 6$ jets: $\geq 4 \mathrm{b}$ phase space.

More…