Study of Dimuon Production in Photon-Photon Collisions and Measurement of QED Photon Structure Functions at LEP

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 19 (2001) 15-28, 2001.
Inspire Record 539642 DOI 10.17182/hepdata.49854

Muon pair production in the process e+e- -> e+e-mu+mu- is studied using the data taken at LEP1 (sqrt(s) \simeq m_Z) with the DELPHI detector during the years 1992-1995. The corresponding integrated luminosity is 138.5 pb^{-1}. The QED predictions have been tested over the whole Q^2 range accessible at LEP1 (from several GeV^2/c^4 to several hundred GeV^2/c^4) by comparing experimental distributions with distributions resulting from Monte Carlo simulations using various generators. Selected events are used to extract the leptonic photon structure function F_2^\gamma. Azimuthal correlations are used to obtain information on additional structure functions, F_A^\gamma and F_B^\gamma, which originate from interference terms of the scattering amplitudes. The measured ratios F_A^\gamma/F_2^\gamma and F_B^\gamma/F_2^\gamma are significantly different from zero and consistent with QED predictions.

0 data tables match query

Version 2
Dihadron azimuthal correlations in Au+Au collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 78 (2008) 014901, 2008.
Inspire Record 778396 DOI 10.17182/hepdata.96764

Azimuthal angle (Delta phi) correlations are presented for a broad range of transverse momentum (0.4 < pT < 10 GeV/c) and centrality (0-92%) selections for charged hadrons from di-jets in Au+Au collisions at sqrt(s_NN) = 200 GeV. With increasing pT, the away-side Delta phi distribution evolves from a broad and relatively flat shape to a concave shape, then to a convex shape. Comparisons to p+p data suggest that the away-side distribution can be divided into a partially suppressed head region centered at Delta phi ~ \pi, and an enhanced shoulder region centered at Delta phi ~ \pi \pm 1:1. The pT spectrum for the associated hadrons in the head region softens toward central collisions. The spectral slope for the shoulder region is independent of centrality and trigger pT . The properties of the near-side distributions are also modified relative to those in p + p collisions, reflected by the broadening of the jet shape in Delta phi and Delta eta, and an enhancement of the per-trigger yield. However, these modifications seem to be limited to pT < 4 GeV/c, above which both the dihadron pair shape and per-trigger yield become similar to p + p collisions. These observations suggest that both the away- and near-side distributions contain a jet fragmentation component which dominates for pT \ge 5GeV and a medium-induced component which is important for pT \le 4 GeV/c. We also quantify the role of jets at intermediate and low pT through the yield of jet-induced pairs in comparison to binary scaled p + p pair yield. The yield of jet-induced pairs is suppressed at high pair proxy energy (sum of the pT magnitudes of the two hadrons) and is enhanced at low pair proxy energy. The former is consistent with jet quenching/ the latter is consistent with the enhancement of soft hadron pairs due to transport of lost energy to lower pT.

4 data tables match query

RHS versus $p^b_T$ for p + p collisions for four trigger selections.

RHS versus $p^b_T$ for Au + Au collisions for four trigger selections.

RHS versus $p^b_T$ for p + p collisions for four trigger selections.

More…

Observation of $Z$ production in proton-lead collisions at LHCb

The LHCb collaboration Aaij, R. ; Adeva, B. ; Adinolfi, M. ; et al.
JHEP 09 (2014) 030, 2014.
Inspire Record 1300150 DOI 10.17182/hepdata.64260

The first observation of $Z$ boson production in proton-lead collisions at a centre-of-mass energy per proton-nucleon pair of $\sqrt{s_{NN}}=5~\text{TeV}$ is presented. The data sample corresponds to an integrated luminosity of $1.6~\text{nb}^{-1}$ collected with the LHCb detector. The $Z$ candidates are reconstructed from pairs of oppositely charged muons with pseudorapidities between 2.0 and 4.5 and transverse momenta above $20~\text{GeV}/c$. The invariant dimuon mass is restricted to the range $60-120~\text{GeV}/c^2$. The $Z$ production cross-section is measured to be \begin{eqnarray*} \sigma_{Z\to\mu^+\mu^-}(\text{fwd})&=&13.5^{+5.4}_{-4.0}\text{(stat.)}\pm1.2\text{(syst.)}~\text{nb} \end{eqnarray*} in the direction of the proton beam and \begin{eqnarray*} \sigma_{Z\to\mu^+\mu^-}(\text{bwd}) & =&10.7^{+8.4}_{-5.1}\text{(stat.)}\pm1.0\text{(syst.)}~\text{nb} \end{eqnarray*} in the direction of the lead beam, where the first uncertainty is statistical and the second systematic.

0 data tables match query

Version 2
J/psi Production in sqrt (s_NN)= 200 GeV Cu+Cu Collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, Christine Angela ; et al.
Phys.Rev.Lett. 101 (2008) 122301, 2008.
Inspire Record 776624 DOI 10.17182/hepdata.57327

Yields for J/psi production in Cu+Cu collisions at sqrt (s_NN)= 200 GeV have been measured by the PHENIX experiment over the rapidity range |y| < 2.2 at transverse momenta from 0 to beyond 5 GeV/c. The invariant yield is obtained as a function of rapidity, transverse momentum and collision centrality, and compared with results in p+p and Au+Au collisions at the same energy. The Cu+Cu data provide greatly improved precision over existing Au+Au data for J/psi production in collisions with small to intermediate numbers of participants, providing a key constraint that is needed for disentangling cold and hot nuclear matter effects.

0 data tables match query

Centrality categorization for $R_{p(d)+A}$ in high-energy collisions

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 90 (2014) 034902, 2014.
Inspire Record 1261055 DOI 10.17182/hepdata.142640

High-energy proton- and deuteron-nucleus collisions provide an excellent tool for studying a wide array of physics effects, including modifications of parton distribution functions in nuclei, gluon saturation, and color neutralization and hadronization in a nuclear environment, among others. All of these effects are expected to have a significant dependence on the size of the nuclear target and the impact parameter of the collision, also known as the collision centrality. In this article, we detail a method for determining centrality classes in p(d)+A collisions via cuts on the multiplicity at backward rapidity (i.e., the nucleus-going direction) and for determining systematic uncertainties in this procedure. For d+Au collisions at sqrt(s_NN) = 200 GeV we find that the connection to geometry is confirmed by measuring the fraction of events in which a neutron from the deuteron does not interact with the nucleus. As an application, we consider the nuclear modification factors R_{p(d)+A}, for which there is a potential bias in the measured centrality dependent yields due to auto-correlations between the process of interest and the backward rapidity multiplicity. We determine the bias correction factor within this framework. This method is further tested using the HIJING Monte Carlo generator. We find that for d+Au collisions at sqrt(s_NN)=200 GeV, these bias corrections are small and vary by less than 5% (10%) up to p_T = 10 (20) GeV. In contrast, for p+Pb collisions at sqrt(s_NN) = 5.02 TeV we find these bias factors are an order of magnitude larger and strongly p_T dependent, likely due to the larger effect of multi-parton interactions.

0 data tables match query

Prompt K_short production in pp collisions at sqrt(s)=0.9 TeV

The LHCb collaboration Aaij, R ; Abellan Beteta, C ; Adeva, B ; et al.
Phys.Lett.B 693 (2010) 69-80, 2010.
Inspire Record 865584 DOI 10.17182/hepdata.55676

The production of K_short mesons in pp collisions at a centre-of-mass energy of 0.9 TeV is studied with the LHCb detector at the Large Hadron Collider. The luminosity of the analysed sample is determined using a novel technique, involving measurements of the beam currents, sizes and positions, and is found to be 6.8 +/- 1.0 microbarn^-1. The differential prompt K_short production cross-section is measured as a function of the K_short transverse momentum and rapidity in the region 0 &lt; pT &lt; 1.6 GeV/c and 2.5 &lt; y &lt; 4.0. The data are found to be in reasonable agreement with previous measurements and generator expectations.

0 data tables match query

Search for heavy W boson in 1.8-TeV p anti-p collisions

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 358 (1995) 405-411, 1995.
Inspire Record 400396 DOI 10.17182/hepdata.42342

A search for a heavy charged gauge boson, W ′, using the decay channels W ′ → eν and W′ → τν → eνν ν is reported. The data used in the analysis were collected by the DØ experiment at the Fermilab Tevatron during the 1992-93 p p collider run from an integrated luminosity of 13.9 ± 0.8 pb −1 at s =1.8 TeV . Assuming that the neutrino from W ′ decay is stable and has a mass significantly less than m W ′ , an upper limit at the 95% confidence level is set on the cross section times branching ratio for p p → W′ → eν . A W ′ with the same couplings to quarks and leptons as the standard model W boson is excluded for m W ′ < 610 GeV/c 2 .

0 data tables match query

Measurement of Upsilon production in pp collisions at {\surd}s = 7 TeV

The LHCb collaboration Aaij, R. ; Abellan Beteta, C. ; Adeva, B. ; et al.
Eur.Phys.J.C 72 (2012) 2025, 2012.
Inspire Record 1091071 DOI 10.17182/hepdata.58651

The production of Upsilon(1S), Upsilon(2S) and Upsilon(3S) mesons in proton-proton collisions at the centre-of-mass energy of sqrt(s)=7 TeV is studied with the LHCb detector. The analysis is based on a data sample of 25 pb-1 collected at the Large Hadron Collider. The Upsilon mesons are reconstructed in the decay mode Upsilon -&gt; mu+ mu- and the signal yields are extracted from a fit to the mu+ mu- invariant mass distributions. The differential production cross-sections times dimuon branching fractions are measured as a function of the Upsilon transverse momentum pT and rapidity y, over the range pT &lt; 15 GeV/c and 2.0 &lt; y &lt; 4.5. The cross-sections times branching fractions, integrated over these kinematic ranges, are measured to be sigma(pp -&gt; Upsilon(1S) X) x B(Upsilon(1S)-&gt;mu+ mu-) = 2.29 {\pm} 0.01 {\pm} 0.10 -0.37 +0.19 nb, sigma(pp -&gt; Upsilon(2S) X) x B(Upsilon(2S)-&gt;mu+ mu-) = 0.562 {\pm} 0.007 {\pm} 0.023 -0.092 +0.048 nb, sigma(pp -&gt; Upsilon(3S) X) x B(Upsilon(3S)-&gt;mu+ mu-) = 0.283 {\pm} 0.005 {\pm} 0.012 -0.048 +0.025 nb, where the first uncertainty is statistical, the second systematic and the third is due to the unknown polarisation of the three Upsilon states.

0 data tables match query

Dielectron production in Au$+$Au collisions at $\sqrt{s_{NN}}$=200 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 93 (2016) 014904, 2016.
Inspire Record 1393530 DOI 10.17182/hepdata.143067

We present measurements of $e^+e^-$ production at midrapidity in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV. The invariant yield is studied within the PHENIX detector acceptance over a wide range of mass ($m_{ee} <$ 5 GeV/$c^2$) and pair transverse momentum ($p_T$ $<$ 5 GeV/$c$), for minimum bias and for five centrality classes. The \ee yield is compared to the expectations from known sources. In the low-mass region ($m_{ee}=0.30$--0.76 GeV/$c^2$) there is an enhancement that increases with centrality and is distributed over the entire pair \pt range measured. It is significantly smaller than previously reported by the PHENIX experiment and amounts to $2.3\pm0.4({\rm stat})\pm0.4({\rm syst})\pm0.2^{\rm model}$ or to $1.7\pm0.3({\rm stat})\pm0.3({\rm syst})\pm0.2^{\rm model}$ for minimum bias collisions when the open-heavy-flavor contribution is calculated with {\sc pythia} or {\sc mc@nlo}, respectively. The inclusive mass and $p_T$ distributions as well as the centrality dependence are well reproduced by model calculations where the enhancement mainly originates from the melting of the $\rho$ meson resonance as the system approaches chiral symmetry restoration. In the intermediate-mass region ($m_{ee}$ = 1.2--2.8 GeV/$c^2$), the data hint at a significant contribution in addition to the yield from the semileptonic decays of heavy-flavor mesons.

0 data tables match query

Direct photon production in d+Au collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.C 87 (2013) 054907, 2013.
Inspire Record 1126017 DOI 10.17182/hepdata.142660

Direct photons have been measured in sqrt(s_NN)=200 GeV d+Au collisions at midrapidity. A wide p_T range is covered by measurements of nearly-real virtual photons (1<p_T<6 GeV/c) and real photons (5<p_T<16 GeV/c). The invariant yield of the direct photons in d+Au collisions over the scaled p+p cross section is consistent with unity. Theoretical calculations assuming standard cold nuclear matter effects describe the data well for the entire p_T range. This indicates that the large enhancement of direct photons observed in Au+Au collisions for 1.0<p_T<2.5 GeV/c is due to a source other than the initial-state nuclear effects.

0 data tables match query