Showing 10 of 68 results
None
No description provided.
We study the processes $e^+ e^-\to K_S^0 K_L^0 \gamma$, $K_S^0 K_L^0 \pi^+\pi^-\gamma$, $K_S^0 K_S^0 \pi^+\pi^-\gamma$, and $K_S^0 K_S^0 K^+K^-\gamma$, where the photon is radiated from the initial state, providing cross section measurements for the hadronic states over a continuum of center-of-mass energies. The results are based on 469 fb$^{-1}$ of data collected with the BaBar detector at SLAC. We observe the $\phi(1020)$ resonance in the $K_S^0 K_L^0$ final state and measure the product of its electronic width and branching fraction with about 3% uncertainty. We present a measurement of the $e^+ e^-\to K_S^0 K_L^0 $ cross section in the energy range from 1.06 to 2.2 GeV and observe the production of a resonance at 1.67 GeV. We present the first measurements of the $e^+ e^-\to K_S^0 K_L^0 \pi^+\pi^-$, $K_S^0 K_S^0 \pi^+\pi^-$, and $K_S^0 K_S^0 K^+K^-$ cross sections, and study the intermediate resonance structures. We obtain the first observations of \jpsi decay to the $K_S^0 K_L^0 \pi^+\pi^-$, $K_S^0 K_S^0 \pi^+\pi^-$, and $K_S^0 K_S^0 K^+K^-$ final states.
Cross section measurement for PHI(1020).
Mass measurement for PHI(1020).
Measurement of the PHI(1020) width.
The product of the electronic width of the PHI(1020) and its branching fraction to KS KL.
Cross section measurement for PHI(1680).
Mass measurement for PHI(1680).
Measurement of the PHI(1680) width.
The product of the electronic width of the PHI(1680) and its branching fraction to KS KL.
The measured E+ E- --> KS KL cross section as a function of the centre-of-mass energy.
The measured E+ E- --> KS KL PI+ PI- cross section as a function of the centre-of-mass energy.
The measured E+ E- --> KS KS PI+ PI- cross section as a function of the centre-of-mass energy.
The measured E+ E- --> KS KS K+ K- cross section as a function of the centre-of-mass energy.
The product WIDTH(E+ E- --> J/PSI) * BR(J/PSI --> KS KL PI+ PI-) and the J/PSI branching fraction.
The product WIDTH(E+ E- --> J/PSI) * BR(J/PSI --> KS KS PI+ PI-) and the J/PSI branching fraction.
The product WIDTH(E+ E- --> J/PSI) * BR(J/PSI --> KS KS K+ K-) and the J/PSI branching fraction.
The product WIDTH(E+ E- --> J/PSI) * BR(J/PSI --> K*(892) KS PI) * BR(K*(892) --> KS PI) and the J/PSI branching fraction.
The product WIDTH(E+ E- --> J/PSI) * BR(J/PSI --> K2*(1430) KS PI) * BR(K2*(1430) --> KS PI) and the J/PSI branching fraction.
The product WIDTH(E+ E- --> J/PSI) * BR(J/PSI --> K*(892)+ K*(892)-) * (BR(K*(892) --> KS PI))**2 and the 90% C.L. J/PSI branching fraction.
The product WIDTH(E+ E- --> J/PSI) * BR(J/PSI --> K2*(1430) K*(892)) * BR(K2*(1430) --> KS PI) * BR(K*(892) --> KS PI) and the 90% C.L. J/PSI branching fraction.
The product WIDTH(E+ E- --> J/PSI) * BR(J/PSI --> KS KS PHI(1020)) * BR(PHI --> K+ K-) and the J/PSI branching fraction.
The product WIDTH(E+ E- --> J/PSI) * BR(J/PSI --> F2PRIME(1525) PHI(1020)) * BR(PHI --> K+ K-} * BR(F2PRIME(1525) --> KS KS) and the J/PSI branching fraction.
The product WIDTH(E+ E- --> J/PSI) * BR(J/PSI --> F2PRIME(1525) K+ K-) * BR(F2PRIME(1525) --> KS KS) and the J/PSI branching fraction.
We study the processes e+e- --> K+ K- pi+pi-gamma, K+ K- pi0pi0gamma, and K+ K- K+ K-gamma, where the photon is radiated from the initial state. About 84000, 8000, and 4200 fully reconstructed events, respectively, are selected from 454 fb-1 of BaBar data. The invariant mass of the hadronic final state defines the \epem center-of-mass energy, so that the K+ K- pi+pi- data can be compared with direct measurements of the e+e- --> K+ K- pi+pi- reaction. No direct measurements exist for the e+e- --> K+ K-pi0pi0 or e+e- --> K+ K-K+ K- reactions, and we present an update of our previous result with doubled statistics. Studying the structure of these events, we find contributions from a number of intermediate states, and extract their cross sections. In particular, we perform a more detailed study of the e+e- --> phi(1020)pipigamma reaction, and confirm the presence of the Y(2175) resonance in the phi(1020) f0(980) and K+K-f0(980) modes. In the charmonium region, we observe the J/psi in all three final states and in several intermediate states, as well as the psi(2S) in some modes, and measure the corresponding product of branching fraction and electron width.
The cross section for the reaction E+ E- --> K+ K- PI+ PI- measured with ISR data. Statistical errors only.
Cross section measurements for the reaction E+ E- --> K*(892)0 K- PI+. Statistical errors only.
Cross section measurements for the reaction E+ E- --> PHI PI+ PI-. Statistical errors only.
Cross section measurements for the reaction E+ E- --> PHI F0(980). Statistical errors only.
Cross section measurements for the reaction E+ E- --> PHI F0(600). Statistical errors only.
Cross section measurements for the reaction E+ E- --> K+ K- PI0 PI0. Statistical errors only.
Cross section measurements for the reaction E+ E- --> PHI F0(980). Statistical errors only.
Cross section measurements for the reaction E+ E- --> K+ K- K+ K-. Statistical errors only.
We present measurements of the differential cross section and Lambda recoil polarization for the gamma p to K+ Lambda reaction made using the CLAS detector at Jefferson Lab. These measurements cover the center-of-mass energy range from 1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles. Independent analyses were performed using the K+ p pi- and K+ p (missing pi -) final-state topologies/ results from these analyses were found to exhibit good agreement. These differential cross section measurements show excellent agreement with previous CLAS and LEPS results and offer increased precision and a 300 MeV increase in energy coverage. The recoil polarization data agree well with previous results and offer a large increase in precision and a 500 MeV extension in energy range. The increased center-of-mass energy range that these data represent will allow for independent study of non-resonant K+ Lambda photoproduction mechanisms at all production angles.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.62-1.63 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.63-1.64 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.64-1.65 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.65-1.66 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.66-1.67 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.67-1.68 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.68-1.69 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.69-1.7 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.7-1.71 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.71-1.72 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.72-1.73 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.73-1.74 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.74-1.75 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.75-1.76 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.76-1.77 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.77-1.78 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.78-1.79 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.79-1.8 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.8-1.81 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.81-1.82 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.82-1.83 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.83-1.84 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.84-1.85 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.85-1.86 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.86-1.87 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.87-1.88 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.88-1.89 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.89-1.9 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.9-1.91 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.91-1.92 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.92-1.93 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.93-1.94 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.94-1.95 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.96-1.97 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.97-1.98 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.98-1.99 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.99-2 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2-2.01 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.01-2.02 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.02-2.03 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.03-2.04 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.04-2.05 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.05-2.06 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.06-2.07 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.07-2.08 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.08-2.09 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.09-2.1 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.1-2.11 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.11-2.12 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.12-2.13 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.13-2.14 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.14-2.15 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.15-2.16 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.16-2.17 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.17-2.18 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.18-2.19 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.19-2.2 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.2-2.21 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.21-2.22 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.22-2.23 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.23-2.24 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.24-2.25 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.25-2.26 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.26-2.27 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.27-2.28 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.28-2.29 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.29-2.3 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.3-2.31 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.31-2.32 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.32-2.33 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.33-2.34 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.34-2.35 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.35-2.36 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.36-2.37 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.37-2.38 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.38-2.39 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.39-2.4 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.4-2.41 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.41-2.42 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.42-2.43 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.43-2.44 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.44-2.45 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.45-2.46 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.46-2.47 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.47-2.48 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.48-2.49 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.49-2.5 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.5-2.51 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.51-2.52 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.52-2.53 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.53-2.54 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.54-2.55 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.55-2.56 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.56-2.57 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.57-2.58 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.58-2.59 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.59-2.6 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.6-2.61 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.61-2.62 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.62-2.63 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.63-2.64 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.64-2.65 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.65-2.66 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.66-2.67 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.67-2.68 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.68-2.69 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.69-2.7 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.7-2.71 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.71-2.72 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.72-2.73 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.75-2.76 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.76-2.77 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.77-2.78 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.78-2.79 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.79-2.8 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.8-2.81 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.81-2.82 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.82-2.83 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.83-2.84 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.62-1.63 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.63-1.64 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.64-1.65 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.65-1.66 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.66-1.67 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.67-1.68 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.68-1.69 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.69-1.7 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.7-1.71 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.71-1.72 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.72-1.73 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.73-1.74 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.74-1.75 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.75-1.76 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.76-1.77 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.77-1.78 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.78-1.79 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.79-1.8 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.8-1.81 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.81-1.82 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.82-1.83 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.83-1.84 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.84-1.85 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.85-1.86 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.86-1.87 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.87-1.88 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.88-1.89 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.89-1.9 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.9-1.91 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.91-1.92 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.92-1.93 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.93-1.94 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.94-1.95 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.95-1.96 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.96-1.97 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.97-1.98 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.98-1.99 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.99-2 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2-2.01 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.01-2.02 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.02-2.03 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.03-2.04 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.04-2.05 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.05-2.06 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.06-2.07 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.07-2.08 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.08-2.09 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.09-2.1 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.1-2.11 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.11-2.12 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.12-2.13 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.13-2.14 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.14-2.15 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.15-2.16 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.16-2.17 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.17-2.18 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.18-2.19 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.19-2.2 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.2-2.21 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.21-2.22 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.22-2.23 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.23-2.24 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.24-2.25 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.25-2.26 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.26-2.27 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.27-2.28 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.28-2.29 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.29-2.3 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.3-2.31 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.31-2.32 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.32-2.33 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.33-2.34 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.34-2.35 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.35-2.36 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.36-2.37 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.37-2.38 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.38-2.39 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.39-2.4 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.4-2.41 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.41-2.42 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.42-2.43 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.43-2.44 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.44-2.45 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.45-2.46 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.46-2.47 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.47-2.48 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.48-2.49 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.49-2.5 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.5-2.51 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.51-2.52 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.52-2.53 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.53-2.54 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.54-2.55 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.55-2.56 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.56-2.57 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.57-2.58 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.58-2.59 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.59-2.6 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.6-2.61 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.61-2.62 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.62-2.63 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.63-2.64 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.64-2.65 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.65-2.66 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.66-2.67 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.67-2.68 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.68-2.69 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.69-2.7 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.7-2.71 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.71-2.72 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.72-2.73 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.73-2.74 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.74-2.75 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.75-2.76 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.76-2.77 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.77-2.78 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.78-2.79 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.79-2.8 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.8-2.81 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.81-2.82 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.82-2.83 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.83-2.84 GeV.
The kaon electroproduction reaction 1H(e,e'K+)Lambda was studied as a function of the virtual-photon four-momentum, Q2, total energy, W, and momentum transfer, t, for different values of the virtual- photon polarization parameter. Data were taken at electron beam energies ranging from 3.40 to 5.75 GeV. The center of mass cross section was determined for 21 kinematics corresponding to Q2 of 1.90 and 2.35 GeV2 and the longitudinal, sigmaL, and transverse, sigmaT, cross sections were separated using the Rosenbluth technique at fixed W and t. The separated cross sections reveal a flat energy dependence at forward kaon angles not satisfactorily described by existing electroproduction models. Influence of the kaon pole on the cross sections was investigated by adopting an off-shell form factor in the Regge model which better describes the observed energy dependence of sigmaT and sigmaL.
Measured values of the separated cross section at Q**2 = 2.35 GeV**2 and W = 1.85 GeV.. Errors contain both statistics and systematics.
Measured values of the separated cross section at Q**2 = 1.90 GeV**2.. Errors contain both statistics and systematics.
Measured values of the separated cross section at Q**2 = 2.35 GeV**2.. Errors contain both statistics and systematics.
Unseparated cross section for Q**2 = 1.90 GeV**2 and W = 1.91 GeV.. Errors contain both statistical only.
Unseparated cross section for Q**2 = 1.90 GeV**2 and W = 1.94 GeV.. Errors contain both statistical only.
Unseparated cross section for Q**2 = 1.90 GeV**2 and W = 2.00 GeV.. Errors contain both statistical only.
Unseparated cross section for Q**2 = 1.90 GeV**2 and W = 2.14 GeV.. Errors contain both statistical only.
Unseparated cross section for Q**2 = 2.35 GeV**2 and W = 1.80 GeV.. Errors contain both statistical only.
Unseparated cross section for Q**2 = 2.35 GeV**2 and W = 1.85 GeV.. Errors contain both statistical only.
Unseparated cross section for Q**2 = 2.35 GeV**2 and W = 1.98 GeV.. Errors contain both statistical only.
Unseparated cross section for Q**2 = 2.35 GeV**2 and W = 2.08 GeV.. Errors contain both statistical only.
This paper reports measurements of processes: e+e- -> gamma KsK+pi-, e+e- -> gamma K+K-pi0, e+e- -> gamma phi eta, and e+e- -> gamma phi pi0. The initial state radiated photon allows to cover the hadronic final state in the energy range from thresholds up to ~4.6 GeV. The overall size of the data sample analyzed is 232 fb-1, collected by the BaBar detector running at the PEP-II e+e- storage ring. From the Dalitz plot analysis of the KsK+pi- final state, moduli and relative phase of the isoscalar and the isovector components of the e+e- -> K K*(892) cross section are determined. Parameters of phi and rho recurrences are also measured, using a global fitting procedure which exploits the interconnection among amplitudes, moduli and phases of the e+e- -> KsK+pi-, K+K-pi0, phi eta final states. The cross section for the OZI-forbidden process e+e- -> phi pi0, and the J/psi branching fractions to KK*(892) and K+K-eta are also measured.
The cross section for E+ E- --> K0S K+ PI- + CC with statistical errors only.
The cross section for E+ E- --> K+ K- PI0 with statistical errors only.
The cross section for E+ E- --> PHI PI0 with statistical errors only.
The cross section for E+ E- --> ETA K+ K- excluding the contribution from PHI --> K+ K- with statistical errors only.
The cross section for E+ E- --> PHI ETA with statistical errors only.
Isoscalar (I=0) component of the cross section for E+ E- --> K*(892) K with statistical errors only.
Isovector (I=1) component of the cross section for E+ E- --> K*(892) K with statistical errors only.
Isoscalar (I=0) component of the cross section for E+ E- --> K2*(1430) K with statistical errors only.
Isovector (I=1) component of the cross section for E+ E- --> K2*(1430) K with statistical errors only.
We study the processes $e^+ e^-\to 2(\pi^+\pi^-)\pi^0\gamma$, $2(\pi^+\pi^-)\eta\gamma$, $K^+ K^-\pi^+\pi^-\pi^0\gamma$ and $K^+ K^-\pi^+\pi^-\eta\gamma$ with the hard photon radiated from the initial state. About 20000, 4300, 5500 and 375 fully reconstructed events, respectively, are selected from 232 fb$^{-1}$ of BaBar data. The invariant mass of the hadronic final state defines the effective $e^+ e^-$ center-of-mass energy, so that the obtained cross sections from the threshold to about 5 GeV can be compared with corresponding direct \epem measurements, currently available only for the $\eta\pi^+\pi^-$ and $\omega\pi^+\pi^-$ submodes of the $e^+ e^-\to 2(\pi^+\pi^-)\pi^0$ channel. Studying the structure of these events, we find contributions from a number of intermediate states, and we extract their cross sections where possible. In particular, we isolate the contribution from $e^+ e^-\to\omega(782)\pi^+\pi^-$ and study the $\omega(1420)$ and $\omega(1650)$ resonances. In the charmonium region, we observe the $J/\psi$ in all these final states and several intermediate states, as well as the $\psi(2S)$ in some modes, and we measure the corresponding branching fractions.
Measured cross section for E+ E- --> 2(PI+ PI-) PI0 with statistical errorsonly.
Measured cross section for E+ E- --> ETA PI+ PI- with statistical errors only.
Measured cross section for E+ E- --> OMEGA PI+ PI- with statistical errors only.
Measured cross section for E+ E- --> OMEGA F0(975) with statistical errors only.
Measured cross section for E+ E- --> 2(PI+ PI-) ETA with statistical errorsonly.
Measured cross section for E+ E- --> ETAPRIME PI+ PI- with statistical errors only.
Measured cross section for E+ E- --> F1(1285) PI+ PI- with statistical errors only.
Measured cross section for E+ E- --> K+ K- PI+ PI- PI0 with statistical errors only.
Measured cross section for E+ E- --> PHI ETA with statistical errors only.
Measured cross section for E+ E- --> OMEGA K+ K- with statistical errors only.
Measured cross section for E+ E- --> K+ K- PI+ PI- ETA with statistical errors only.
Cross sections for the $\gamma p \to K^+ \Lambda$ have been measured at backward angles using linearly polarized photons in the range 1.50 to 2.37 GeV. In addition, the beam asymmetry for this reaction has been measured for the first time at backward angles. The $\Lambda$ was detected at forward angles in the LEPS spectrometer via its decay to $p\pi^-$ and the K^+ was inferred using the technique of missing mass. These measurements, corresponding to kaons at far backward angles in the center-of-mass frame, complement similar CLAS data at other angles. Comparison with theoretical models shows that the reactions in these kinematics provide further opportunities to investigate the reaction mechanisms of hadron dynamics.
Differential cross sections as a function of the Mandelstam variable U for photon beam energy 1.5 to 1.8 GeV.
Differential cross sections as a function of the Mandelstam variable U for photon beam energy 1.8 to 2.1 GeV.
Differential cross sections as a function of the Mandelstam variable U for photon beam energy 2.1 to 2.4 GeV.
Differential cross sections in two COS(THETA(LAMBDA)) ranges.. Data read from plots.
Beam asymmetry as a function of the photon beam energy in two COS(THETA(LAMBDA)) ranges.
We study the processes $e^+ e^-\to K^+ K^- \pi^+\pi^-\gamma$, $K^+K^-\pi^0\pi^0\gamma$ and $K^+ K^- K^+ K^-\gamma$, where the photon is radiated from the initial state. About 34600, 4400 and 2300 fully reconstructed events, respectively, are selected from 232 \invfb of \babar data. The invariant mass of the hadronic final state defines the effective \epem center-of-mass energy, so that the $K^+ K^- \pi^+\pi^-\gamma$ data can be compared with direct measurements of the $e^+ e^-\to K^+K^- \pipi$ reaction/ no direct measurements exist for the $e^+ e^-\to K^+ K^- \pi^0\pi^0$ or $\epem\to K^+ K^- K^+ K^-$ reactions. Studying the structure of these events, we find contributions from a number of intermediate states, and we extract their cross sections where possible. In particular, we isolate the contribution from $e^+ e^-\to\phi(1020) f_{0}(980)$ and study its structure near threshold. In the charmonium region, we observe the $J/\psi$ in all three final states and several intermediate states, as well as the $\psi(2S)$ in some modes, and measure the corresponding branching fractions. We see no signal for the Y(4260) and obtain an upper limit of $\BR_{Y(4260)\to\phi\pi^+\pi^-}\cdot\Gamma^{Y}_{ee}<0.4 \ev$ at 90% C.L.
Measurement of the E+ E- --> K+ K- PI+ PI- cross section. Statistical errors only.
Measurement of the E+ E- --> K(892)0 K PI cross section. Statistical errors only.
Measurement of the E+ E- --> PHI PI+ PI- cross section. Statistical errors only.
Measurement of the E+ E- --> PHI F(980)0 cross section.
Measurement of the E+ E- --> K+ K- PI0 PI0 cross section. Statistical errors only.
Measurement of the E+ E- --> PHI F0 cross section for the F0 --> PI0 PI0 final state. Statistical errors only.
Measurement of the E+ E- --> K+ K- K+ K- cross section. Statistical errors only.
We report measurements of the exclusive electroproduction of $K^+\Lambda$ and $K^+\Sigma^0$ final states from a proton target using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The separated structure functions $\sigma_T$, $\sigma_L$, $\sigma_{TT}$, and $\sigma_{LT}$ were extracted from the $\Phi$- and $\epsilon$-dependent differential cross sections taken with electron beam energies of 2.567, 4.056, and 4.247 GeV. This analysis represents the first $\sigma_L/\sigma_T$ separation with the CLAS detector, and the first measurement of the kaon electroproduction structure functions away from parallel kinematics. The data span a broad range of momentum transfers from $0.5\leq Q^2\leq 2.8$ GeV$^2$ and invariant energy from $1.6\leq W\leq 2.4$ GeV, while spanning nearly the full center-of-mass angular range of the kaon. The separated structure functions reveal clear differences between the production dynamics for the $\Lambda$ and $\Sigma^0$ hyperons. These results provide an unprecedented data sample with which to constrain current and future models for the associated production of strangeness, which will allow for a better understanding of the underlying resonant and non-resonant contributions to hyperon production.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.2 to 2.3 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.3 to 2.4 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.2 to 2.3 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.3 to 2.4 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.2 to 2.3 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.3 to 2.4 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 4 GeV for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.1 to 2.2 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV extracted using the Rosenbluth separation technique fit method.. E98M29 E98M30 E98M31.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV extracted using the Rosenbluth separation technique fit method.. E98M29 E98M30 E98M31.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV extracted using the Rosenbluth separation technique fit method.. E98M29 E98M30 E98M31.
Cross sections for the K+ LAMBDA data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV extracted using the Rosenbluth separation technique fit method.. E98M29 E98M30 E98M31.
Cross sections for the K+ SIGMA0 data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ SIGMA0 data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ SIGMA0 data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV extracted using the simultaneous EPSILON-PHI fit method.
Cross sections for the K+ SIGMA0 data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV extracted using the Rosenbluth separation technique fit method.. E99M29 E99M30 E99M31.
Cross sections for the K+ SIGMA0 data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV extracted using the Rosenbluth separation technique fit method.. E99M29 E99M30 E99M31.
Cross sections for the K+ SIGMA0 data for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV extracted using the Rosenbluth separation technique fit method.. E99M29 E99M30 E99M31.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross ssection as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.80 to 1.85 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.85 to 1.90 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.90 to 1.95 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.95 to 2.00 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.70 to 1.75 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.75 to 1.80 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.80 to 1.85 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.85 to 1.90 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.90 to 1.95 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.95 to 2.00 GeVand the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeVand the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeVand the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeVand the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeVand the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeVand the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.5 to 0.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) range 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.8 to -0.4.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.4 to -0.1.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.2 to 0.5.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) range 0.5 to 0.8.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.9 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4,. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5,. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 0.8 to 1.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges -0.8 to -0.4. -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.3 to 1.8 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges 0.2 to 0.5. 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 1.8 to 2.3 GeV**2 and W range 2.3 to 2.4 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.6 to 1.7 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.7 to 1.8 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.8 to 1.9 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 1.9 to 2.0 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.0 to 2.1 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.1 to 2.2 GeV and the COS(THETA) ranges 0.2 to 0.5, 0.5 to 0.8 and 0.8 to 1.0.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges -0.8 to -0.4, -0.4 to -0.1 and -0.1 to 0.2.
Differential cross section as a function of PHI for the Q**2 range 2.3 to 2.8 GeV**2 and W range 2.2 to 2.3 GeV and the COS(THETA) ranges 0.2 to 0.5, and.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status Email Forum Twitter GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.