Date

First measurement of the forward-backward asymmetry in bottom-quark pair production at high mass

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.D 92 (2015) 032006, 2015.
Inspire Record 1364882 DOI 10.17182/hepdata.73682

We measure the particle-level forward-backward production asymmetry in $b\bar{b}$ pairs with masses $m(b\bar{b})$ larger than 150 GeV/$c^2$, using events with hadronic jets and employing jet charge to distinguish $b$ from $\bar{b}$. The measurement uses 9.5/fb of ppbar collisions at a center of mass energy of 1.96 TeV recorded by the CDF II detector. The asymmetry as a function of $m(b\bar{b})$ is consistent with zero, as well as with the predictions of the standard model. The measurement disfavors a simple model including an axigluon with a mass of 200 GeV/$c^2$ whereas a model containing a heavier 345 GeV/$c^2$ axigluon is not excluded.

1 data table match query

Values of maximum a posteriori signal asymmetry as a function of $b\bar{b}$ mass. The error bars represent the 68% credible intervals.


Measurement of the charge asymmetry in highly boosted top-quark pair production in $\sqrt{s} =$ 8 TeV $pp$ collision data collected by the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 756 (2016) 52-71, 2016.
Inspire Record 1410588 DOI 10.17182/hepdata.77021

In the $pp \rightarrow t\bar{t}$ process the angular distributions of top and anti-top quarks are expected to present a subtle difference, which could be enhanced by processes not included in the Standard Model. This Letter presents a measurement of the charge asymmetry in events where the top-quark pair is produced with a large invariant mass. The analysis is performed on 20.3 fb$^{-1}$ of $pp$ collision data at $\sqrt{s} =$ 8 TeV collected by the ATLAS experiment at the LHC, using reconstruction techniques specifically designed for the decay topology of highly boosted top quarks. The charge asymmetry in a fiducial region with large invariant mass of the top-quark pair ($m_{t\bar{t}} > $ 0.75 TeV) and an absolute rapidity difference of the top and anti-top quark candidates within $-$2 $ < |y_t| - |y_{\bar{t}}| <$ 2 is measured to be 4.2 $\pm$ 3.2%, in agreement with the Standard Model prediction at next-to-leading order. A differential measurement in three $t\bar{t}$ mass bins is also presented.

1 data table match query

The measured charge asymmetry after the unfolding to parton level in four intervals of the invariant mass of the $t\bar{t}$ system. The phase space is limited to $|(\Delta |y|)|<$ 2. The uncertainties correspond to the sum in quadrature of statistical and systematic uncertainties (for the data) or to the theory uncertainty (for the SM prediction).


Measurement of the forward-backward asymmetry of $\Lambda$ and $\bar{\Lambda}$ production in $p \bar{p}$ collisions

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 93 (2016) 032002, 2016.
Inspire Record 1404885 DOI 10.17182/hepdata.76972

We study $\Lambda$ and $\bar{\Lambda}$ production asymmetries in $p \bar{p} \rightarrow \Lambda (\bar{\Lambda}) X$, $p \bar{p} \rightarrow J/\psi \Lambda (\bar{\Lambda}) X$, and $p \bar{p} \rightarrow \mu^\pm \Lambda (\bar{\Lambda}) X$ events recorded by the D0 detector at the Fermilab Tevatron collider at $\sqrt{s} = 1.96$ TeV. We find an excess of $\Lambda$'s ($\bar{\Lambda}$'s) produced in the proton (antiproton) direction. This forward-backward asymmetry is measured as a function of rapidity. We confirm that the $\bar{\Lambda}/\Lambda$ production ratio, measured by several experiments with various targets and a wide range of energies, is a universal function of "rapidity loss", i.e., the rapidity difference of the beam proton and the lambda.

2 data tables match query

Forward-backward asymmetry $A_{FB}$ of $\Lambda$ and $\bar{\Lambda}$ with $p_T > 2.0$ GeV in minimum bias events $p \bar{p} \rightarrow \Lambda (\bar{\Lambda}) X$, events $p \bar{p} \rightarrow J/\psi \Lambda (\bar{\Lambda}) X$, and events $p \bar{p} \rightarrow \mu^\pm \Lambda (\bar{\Lambda}) X$.

Forward-backward asymmetry $A_{FB}$ of $\Lambda$ and $\bar{\Lambda}$ in bins of $p_T$ in events $p \bar{p} \rightarrow \mu^\pm \Lambda (\bar{\Lambda}) X$.


Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in $pp$ collision data at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 87, 2016.
Inspire Record 1392455 DOI 10.17182/hepdata.75528

This paper reports inclusive and differential measurements of the $t\bar{t}$ charge asymmetry $A_{\textrm{C}}$ in 20.3 fb$^{-1}$ of $\sqrt{s} = 8$ TeV $pp$ collisions recorded by the ATLAS experiment at the Large Hadron Collider at CERN. Three differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the $t\bar{t}$ system. The $t\bar{t}$ pairs are selected in the single-lepton channels ($e$ or $\mu$) with at least four jets, and a likelihood fit is used to reconstruct the $t\bar{t}$ event kinematics. A Bayesian unfolding procedure is performed to infer the asymmetry at parton level from the observed data distribution. The inclusive $t\bar{t}$ charge asymmetry is measured to be $A_{\textrm{C}} = 0.009 \pm 0.005$ (stat.$+$syst.). The inclusive and differential measurements are compatible with the values predicted by the Standard Model.

7 data tables match query

The inclusive $t\bar{t}$ production charge asymmetry, $A_C$, with statistical and systematic uncertainties combined.

Measured charge asymmetry, $A_C$, values for the electron and muon channels combined after unfolding as a function of the $t\bar{t}$ invariant mass, $m_{t\bar{t}}$. The quoted uncertainties include statistical and systematic components after the marginalisation.

Measured charge asymmetry, $A_C$, values for the electron and muon channels combined after unfolding as a function of the $t\bar{t}$ velocity along the z-axis, $\beta_{z,t\bar{t}}$. The quoted uncertainties include statistical and systematic components after the marginalisation.

More…

Measurement of the forward-backward asymmetry of top-quark and antiquark pairs using the full CDF Run II data set

The CDF collaboration Aaltonen, Timo Antero ; Amerio, Silvia ; Amidei, Dante E ; et al.
Phys.Rev.D 93 (2016) 112005, 2016.
Inspire Record 1424841 DOI 10.17182/hepdata.77054

We measure the forward--backward asymmetry of the production of top quark and antiquark pairs in proton-antiproton collisions at center-of-mass energy $\sqrt{s} = 1.96~\mathrm{TeV}$ using the full data set collected by the Collider Detector at Fermilab (CDF) in Tevatron Run II corresponding to an integrated luminosity of $9.1~\rm{fb}^{-1}$. The asymmetry is characterized by the rapidity difference between top quarks and antiquarks ($\Delta y$), and measured in the final state with two charged leptons (electrons and muons). The inclusive asymmetry, corrected to the entire phase space at parton level, is measured to be $A_{\text{FB}}^{t\bar{t}} = 0.12 \pm 0.13$, consistent with the expectations from the standard-model (SM) and previous CDF results in the final state with a single charged lepton. The combination of the CDF measurements of the inclusive $A_{\text{FB}}^{t\bar{t}}$ in both final states yields $A_{\text{FB}}^{t\bar{t}}=0.160\pm0.045$, which is consistent with the SM predictions. We also measure the differential asymmetry as a function of $\Delta y$. A linear fit to $A_{\text{FB}}^{t\bar{t}}(|\Delta y|)$, assuming zero asymmetry at $\Delta y=0$, yields a slope of $\alpha=0.14\pm0.15$, consistent with the SM prediction and the previous CDF determination in the final state with a single charged lepton. The combined slope of $A_{\text{FB}}^{t\bar{t}}(|\Delta y|)$ in the two final states is $\alpha=0.227\pm0.057$, which is $2.0\sigma$ larger than the SM prediction.

2 data tables match query

Bin centroids and the differential $A_{\rm{FB}}^{t\bar{t}}$ in the $A_{\rm{FB}}^{t\bar{t}}$ vs. $|\Delta y|$ measurement in the lepton+jets final state.

Bin centroids and the differential $A_{\rm{FB}}^{t\bar{t}}$ in the $A_{\rm{FB}}^{t\bar{t}}$ vs. $|\Delta y|$ measurement in the dilepton final state.


Measurement of the forward-backward asymmetry of electron and muon pair-production in $pp$ collisions at $\sqrt{s}$ = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2015) 049, 2015.
Inspire Record 1351916 DOI 10.17182/hepdata.76996

This paper presents measurements from the ATLAS experiment of the forward-backward asymmetry in the reaction $pp\rightarrow Z/\gamma^{*}\rightarrow l^{+}l^{-}$, with $l$ being electrons or muons, and the extraction of the effective weak mixing angle. The results are based on the full set of data collected in 2011 in $pp$ collisions at the LHC at $\sqrt{s}$ = 7 TeV, corresponding to an integrated luminosity of 4.8 fb$^{-1}$. The measured asymmetry values are found to be in agreement with the corresponding Standard Model predictions. The combination of the muon and electron channels yields a value of the effective weak mixing angle of $0.2308 \pm 0.0005 \mathrm{(stat.)} \pm 0.0006 \mathrm{(syst.)} \pm 0.0009\mathrm{(PDF)}$, where the first uncertainty corresponds to data statistics,the second to systematic effects and the third to knowledge of the parton density functions. This result agrees with the current world average from the Particle Data Group fit.

4 data tables match query

Summary of central values and total systematical uncertainties for the $A_{FB}$ values unfolded for mass bin migration and dilution effects in the CC electron channel, CF electron channel and muon channel.

Summary of central values and total systematical uncertainties for the unfolded $A_{FB}$ values which takes into account mass bin migration only in CC electron channel for Born and Dressed leptons. Dressed leptons are constructed by adding 4-vectors of the bare lepton and all real photons coming from the boson/lepton decay within a $\Delta R<$0.1.

Summary of central values and total systematical uncertainties for the unfolded $A_{FB}$ values which takes into account mass bin migration only in CF electron channel for Born and Dressed leptons. Dressed leptons are constructed by adding 4-vectors of the bare lepton and all real photons coming from the boson/lepton decay within a $\Delta R<$0.1.

More…

A MEASUREMENT OF e+ e- ---> b anti-b FORWARD - BACKWARD CHARGE ASYMMETRY BETWEEN s**(1/2) = 52-GeV AND 57-GeV

The AMY collaboration Sagawa, H. ; Lim, J. ; Abe, K. ; et al.
Phys.Rev.Lett. 63 (1989) 2341, 1989.
Inspire Record 279824 DOI 10.17182/hepdata.19996

Using 123 multihadronic inclusive muon-production e+e− annihilation events at an average c.m. energy of 55.2 GeV, we extracted the forward-backward charge asymmetry of the e+e−→bb¯ process and the R ratio for bb¯ production. We used an analysis method in which the behavior of the c quark and lighter quarks is assumed, with only that of the b quark left indeterminate. The results, Ab=-0.72±0.28(stat)±0.13(syst) and Rb=0.57±0.16±0.10, are consistent with the standard model.

1 data table match query

Asymmetry in BOTTOM quark production.


Precise measurement of the e+ e- ---> mu+ mu- reaction at s**(1/2) = 57.77-GeV

The VENUS collaboration Miura, M. ; Odaka, S. ; Arima, T. ; et al.
Phys.Rev.D 57 (1998) 5345-5362, 1998.
Inspire Record 452097 DOI 10.17182/hepdata.27142

The reaction e+e−→μ+μ− has been measured at s=57.77GeV, based on 289.6±2.6 pb−1 data collected with the VENUS detector at TRISTAN. The production cross section is measured in bins of the production angle within an angular acceptance of |cosθ|<~0.75, according to a model-independent definition. The result is consistent with the prediction of the standard electroweak theory. Although a trend in measurements at lower energies that the total cross section tends to be smaller than the prediction remains, the discrepancy is not significant. The model-independent result is converted to the differential cross section in the effective-Born scheme by unfolding photon-radiation effects. This result can be extrapolated to quantities for the full solid angle as σtotEB=30.05±0.59 pb and AFBEB=−0.350±0.017, by imposing an ordinary assumption on the production-angle dependence. The converted results are used to set constraints on extensions of the standard theory. S-matrix parametrization, and possible contributions from contact interactions and heavy neutral-scalar exchanges are examined.

1 data table match query

Total cross section and forward backward asymmetry results in the effective-Born scheme.


Forward cross-sections for production of D+, D0, D/s, D*+ and Lambda/c in 250-GeV pi+-, K+-, and p nucleon interactions.

The E769 collaboration Alves, G.A. ; Amato, S. ; Anjos, J.C. ; et al.
Phys.Rev.Lett. 77 (1996) 2388-2391, 1996.
Inspire Record 418771 DOI 10.17182/hepdata.42294

We measure forward cross sections for production of D+, D0, Ds, D*+, and Λc in collisions of π±, K±, and p on a nuclear target. Production induced by different beam particles is found to be the same within statistics. Strange and baryonic final states are seen to contribute appreciably to the total charm cross section, which our measurements indicate is larger than but consistent with QCD predictions. The energy dependence mapped out by these and previous measurements is consistent with theory. Leading-particle asymmetry measurements for K and p-induced charm production are also presented.

1 data table match query

Leading particle asymmetries defined as (SIG(LEADING)- SIG(NONLEADING))/(SIG(LEADING)+SIG(NONLEADING)).


Polarization of Charmed $\Lambda(c$)+ Baryons Produced in Neutron - Carbon Interactions

The BIS-2 collaboration Aleev, A.N. ; Arefev, V.A. ; Balandin, V.P. ; et al.
Yad.Fiz. 43 (1986) 619-623, 1986.
Inspire Record 209855 DOI 10.17182/hepdata.39660

None

2 data tables match query

No description provided.

No description provided.