This paper reports measurements of processes: e+e- -> gamma KsK+pi-, e+e- -> gamma K+K-pi0, e+e- -> gamma phi eta, and e+e- -> gamma phi pi0. The initial state radiated photon allows to cover the hadronic final state in the energy range from thresholds up to ~4.6 GeV. The overall size of the data sample analyzed is 232 fb-1, collected by the BaBar detector running at the PEP-II e+e- storage ring. From the Dalitz plot analysis of the KsK+pi- final state, moduli and relative phase of the isoscalar and the isovector components of the e+e- -> K K*(892) cross section are determined. Parameters of phi and rho recurrences are also measured, using a global fitting procedure which exploits the interconnection among amplitudes, moduli and phases of the e+e- -> KsK+pi-, K+K-pi0, phi eta final states. The cross section for the OZI-forbidden process e+e- -> phi pi0, and the J/psi branching fractions to KK*(892) and K+K-eta are also measured.
The cross section for E+ E- --> K0S K+ PI- + CC with statistical errors only.
The cross section for E+ E- --> K+ K- PI0 with statistical errors only.
The cross section for E+ E- --> PHI PI0 with statistical errors only.
Exclusive rho^+ rho^- production in two-photon collisions involving a single highly-virtual photon is studied with data collected at LEP at centre-of-mass energies 89 GeV < \sqrt{s} < 209 GeV with a total integrated luminosity of 854.7 pb^-1. The cross section of the process gamma gamma^* -> rho^+ rho^- is determined as a function of the photon virtuality, Q^2, and the two-photon centre-of-mass energy, W_gg, in the kinematic region: 1.2 GeV^2 < Q^2 < 30 GeV^2 and 1.1 GeV < W_gg < 3 GeV. The \rho^+\rho^- production cross section is found to be of the same magnitude as the cross section of the process gamma gamma^* -> rho^0 rho^0, measured in the same kinematic region by L3, and to have similar W_gg and Q^2 dependences.
Cross sections for the reaction E+ E- --> E+ E- RHO+ RHO-. The differentialcross sections are corrected to the centre of each bin.
Cross sections for the two photon production of RHO+ RHO-.
Differential cross section for the process E+ E- --> E+ E- (RHO+ PI- PI0 + RHO+ RHO- PI0 PI0) corrected to bin centre.
We study the processes $e^+ e^-\to 2(\pi^+\pi^-)\pi^0\gamma$, $2(\pi^+\pi^-)\eta\gamma$, $K^+ K^-\pi^+\pi^-\pi^0\gamma$ and $K^+ K^-\pi^+\pi^-\eta\gamma$ with the hard photon radiated from the initial state. About 20000, 4300, 5500 and 375 fully reconstructed events, respectively, are selected from 232 fb$^{-1}$ of BaBar data. The invariant mass of the hadronic final state defines the effective $e^+ e^-$ center-of-mass energy, so that the obtained cross sections from the threshold to about 5 GeV can be compared with corresponding direct \epem measurements, currently available only for the $\eta\pi^+\pi^-$ and $\omega\pi^+\pi^-$ submodes of the $e^+ e^-\to 2(\pi^+\pi^-)\pi^0$ channel. Studying the structure of these events, we find contributions from a number of intermediate states, and we extract their cross sections where possible. In particular, we isolate the contribution from $e^+ e^-\to\omega(782)\pi^+\pi^-$ and study the $\omega(1420)$ and $\omega(1650)$ resonances. In the charmonium region, we observe the $J/\psi$ in all these final states and several intermediate states, as well as the $\psi(2S)$ in some modes, and we measure the corresponding branching fractions.
Measured cross section for E+ E- --> 2(PI+ PI-) PI0 with statistical errorsonly.
Measured cross section for E+ E- --> ETA PI+ PI- with statistical errors only.
Measured cross section for E+ E- --> OMEGA PI+ PI- with statistical errors only.
The ep -> e'pi^+n reaction was studied in the first and second nucleon resonance regions in the 0.25 GeV^2 < Q^2 < 0.65 GeV^2 range using the CLAS detector at Thomas Jefferson National Accelerator Facility. For the first time the absolute cross sections were measured covering nearly the full angular range in the hadronic center-of-mass frame. The structure functions sigma_TL, sigma_TT and the linear combination sigma_T+epsilon*sigma_L were extracted by fitting the phi-dependence of the measured cross sections, and were compared to the MAID and Sato-Lee models.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.31 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.33 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.35 GeV.
The polarized longitudinal-transverse structure function $\sigma_{LT^\prime}$ measures the interference between real and imaginary amplitudes in pion electroproduction and can be used to probe the coupling between resonant and non-resonant processes. We report new measurements of $\sigma_{LT^\prime}$ in the $N(1440){1/2}^+$ (Roper) resonance region at $Q^2=0.40$ and 0.65 GeV$^2$ for both the $\pi^0 p$ and $\pi^+ n$ channels. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at a beam energy of 1.515 GeV. Complete angular distributions were obtained and are compared to recent phenomenological models. The $\sigma_{LT^\prime}(\pi^+ n)$ channel shows a large sensitivity to the Roper resonance multipoles $M_{1-}$ and $S_{1-}$ and provides new constraints on models of resonance formation.
Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.30 GeV.
Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.34 GeV.
Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.38 GeV.
We report results for the virtual photon asymmetry $A_1$ on the nucleon from new Jefferson Lab measurements. The experiment, which used the CEBAF Large Acceptance Spectrometer and longitudinally polarized proton ($^{15}$NH$_3$) and deuteron ($^{15}$ND$_3$) targets, collected data with a longitudinally polarized electron beam at energies between 1.6 GeV and 5.7 GeV. In the present paper, we concentrate on our results for $A_1(x,Q^2)$ and the related ratio $g_1/F_1(x,Q^2)$ in the resonance and the deep inelastic regions for our lowest and highest beam energies, covering a range in momentum transfer $Q^2$ from 0.05 to 5.0 GeV$^2$ and in final-state invariant mass $W$ up to about 3 GeV. Our data show detailed structure in the resonance region, which leads to a strong $Q^2$--dependence of $A_1(x,Q^2)$ for $W$ below 2 GeV. At higher $W$, a smooth approach to the scaling limit, established by earlier experiments, can be seen, but $A_1(x,Q^2)$ is not strictly $Q^2$--independent. We add significantly to the world data set at high $x$, up to $x = 0.6$. Our data exceed the SU(6)-symmetric quark model expectation for both the proton and the deuteron while being consistent with a negative $d$-quark polarization up to our highest $x$. This data setshould improve next-to-leading order (NLO) pQCD fits of the parton polarization distributions.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.3100 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.3300 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.3500 GeV.
We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.
No description provided.
No description provided.
No description provided.
We report a measurement of the $e^+e^- \to \pi^+\pi^-\pi^0$ cross section in the energy range from 0.62 to 3.50 GeV using an initial-state radiation technique. We use an $e^+e^-$ data sample corresponding to 191 $\text{fb}^{-1}$ of integrated luminosity, collected at a center-of-mass energy at or near the $\Upsilon{(4S)}$ resonance with the Belle II detector at the SuperKEKB collider. Signal yields are extracted by fitting the two-photon mass distribution in $e^+e^- \to \pi^+\pi^-\pi^0\gamma$ events, which involve a $\pi^0 \to \gamma\gamma$ decay and an energetic photon radiated from the initial state. Signal efficiency corrections with an accuracy of 1.6% are obtained from several control data samples. The uncertainty on the cross section at the $\omega$ and $\phi$ resonances is dominated by the systematic uncertainty of 2.2%. The resulting cross sections in the 0.62-1.80 GeV energy range yield $ a_\mu^{3\pi} = [48.91 \pm 0.23~(\mathrm{stat}) \pm 1.07~(\mathrm{syst})] \times 10^{-10} $ for the leading-order hadronic vacuum polarization contribution to the muon anomalous magnetic moment. This result differs by $2.5$ standard deviations from the most precise current determination.
Energy bin range ($\sqrt{s'}$), number of events after unfolding ($N_{\mathrm{unf}}$), corrected efficiency ($\varepsilon$), and cross section ($\sigma_{3\pi}$) for $e^{+}e^{-} \to \pi^{+} \pi^{-} \pi^{0}$ in energy range 1.05--3.50~GeV. The two uncertainties in the cross section are the statistical and systematic contributions. The statistical uncertainties for the unfolding and cross section are square roots of the diagonal components of the unfolding covariance matrix. The image shows Figure 23 in the PRD paper, and the points with error bars indicate the cross section in the table.
The statistic covariance matrix for the $e^+e^- \to \pi^+ \pi^- \pi^0$ cross section measurement at the Belle II. The 212 x 212 matrix of the energy ranges from 0.62 to 3.50 GeV. This covariance matrix, obtained by propagating the covariance matrix in the unfolding procedure, shows the total statistical uncertainties for the cross section results.
The systematic covariance matrix for the $e^+e^- \to \pi^+ \pi^- \pi^0$ cross section measurement at the Belle II. The 212 x 212 matrix of the energy ranges from 0.62 to 3.50 GeV. This covariance matrix includes all systematic uncertainty given in Table I. The total covariance matrix for the measured cross section can be obtained by adding statistical and systematic covariance matrices.
Exclusive electroproduction of pi0 mesons on protons in the backward hemisphere has been studied at Q**2 = 1.0 GeV**2 by detecting protons in the forward direction in coincidence with scattered electrons from the 4 GeV electron beam in Jefferson Lab's Hall A. The data span the range of the total (gamma* p) center-of-mass energy W from the pion production threshold to W = 2.0 GeV. The differential cross sections sigma_T+epsilon*sigma_L, sigma_TL, and sigma_TT were separated from the azimuthal distribution and are presented together with the MAID and SAID parametrizations.
Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.975.
Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.925.
Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.875.
The differential cross section for the process $\gamma \gamma \to \eta \pi^0$ has been measured in the kinematic range $0.84 \GeV < W < 4.0 \GeV$, $|\cos \theta^*|<0.8$, where $W$ and $\theta^*$ are the energy and $\pi^0$ (or $\eta$) scattering angle, respectively, in the $\gamma\gamma$ center-of-mass system. The results are based on a 223 fb$^{-1}$ data sample collected with the Belle detector at the KEKB $e^+ e^-$ collider. Clear peaks due to the $a_0(980)$ and $a_2(1320)$ are visible. The differential cross sections are fitted in the energy region $0.9 \GeV < W < 1.46 \GeV$ to obtain the parameters of the $a_0(980)$. Its mass, width and $\Gamma_{\gamma \gamma} \B (\eta \pi^0)$ are measured to be $982.3 ^{+0.6}_{-0.7} ^{+3.1}_{-4.7} \MeV/c^2$, $75.6 \pm 1.6 ^{+17.4}_{-10.0} \MeV$ and $128 ^{+3}_{-2} ^{+502}_{-43} \eV$, respectively. The energy and angular dependences above 3.1 GeV are compared with those measured in the $\pi^0 \pi^0$ channel. The integrated cross section over $|\cos \theta^*|<0.8$ has a $W^{-n}$ dependence with $n = 10.5 \pm 1.2 \pm 0.5$, which is slightly larger than that for $\pi^0 \pi^0$. The differential cross sections show a $\sin^{-4} \theta^*$ dependence similar to $\gamma \gamma \to \pi^0 \pi^0$. The measured cross section ratio, $\sigma(\eta \pi^0)/\sigma(\pi^0 \pi^0) = 0.48 \pm 0.05 \pm 0.04$, is consistent with a QCD-based prediction.
The total cross section integrated over ABS(COS(THETA*)) < 0.8.
The differential cross section as a function of angle for W = 1.29 GeV.
The differential cross section as a function of angle for W = 1.31 GeV.