The production of isolated photons in deep-inelastic scattering $ep\to e \gamma X$ is measured with the H1 detector at HERA. The measurement is performed in the kinematic range of negative four-momentum transfer squared $4<Q^2<150 $~GeV$^2$ and a mass of the hadronic system $W_X>50$ GeV. The analysis is based on a total integrated luminosity of 227~pb$^{-1}$. The production cross section of isolatedphotons with a transverse energy in the range $3 < E_T^\gamma < 10$ GeV and pseudorapidity range $-1.2 < \eta^\gamma < 1.8$ is measured as a function of $E_T^\gamma$, $\eta^\gamma$ and $Q^2$. Isolated photon cross sections are also measured for events with no jets or at least one hadronic jet. The measurements are compared with predictions from Monte Carlo generators modelling the photon radiation from the quark and the electron lines, as well as with calculations at leading and next to leading order in the strong coupling. The predictions significantly underestimate the measured cross sections.
Measured inclusive isolated photon cross section.
Measured total cross section for isolated photons plus no-jets and 1-jet.
Differential cross section as a function of the photon ET.
Three- and four-jet production is measured in deep-inelastic $ep$ scattering at low $x$ and $Q^2$ with the H1 detector using an integrated luminosity of $44{.}2 {\rm pb}^{-1}$. Several phase space regions are selected for the three-jet analysis in order to study the underlying parton dynamics from global topologies to the more restrictive regions of forward jets close to the proton direction. The measurements of cross sections for events with at least three jets are compared to fixed order QCD predictions of ${\mathcal{O}}(\alpha_{\rm s}^2)$ and ${\mathcal{O}}(\alpha_{\rm s}^3) $ and with Monte Carlo simulation programs where higher order effects are approximated by parton showers. A good overall description is provided by the ${\mathcal{O}}(\alpha_{\rm s}^3) $ calculation. Too few events are predicted at the lowest $x \sim 10^{-4}$, especially for topologies with two forward jets. This hints to large contributions at low $x$ from initial state radiation of gluons close to the proton direction and unordered in transverse momentum. The Monte Carlo program in which gluon radiation is generated by the colour dipole model gives a good description of both the three- and the four-jet data in absolute normalisation and shape.
Differential cross section as a function of the minimum number of jet for events with at least 3-jets.
Differential cross section as a function of X for events with at least 3-jets.
Differential cross section for events with at least 3-jets as a function of the pseudorapidity of each jet.
This paper reports measurements of processes: e+e- -> gamma KsK+pi-, e+e- -> gamma K+K-pi0, e+e- -> gamma phi eta, and e+e- -> gamma phi pi0. The initial state radiated photon allows to cover the hadronic final state in the energy range from thresholds up to ~4.6 GeV. The overall size of the data sample analyzed is 232 fb-1, collected by the BaBar detector running at the PEP-II e+e- storage ring. From the Dalitz plot analysis of the KsK+pi- final state, moduli and relative phase of the isoscalar and the isovector components of the e+e- -> K K*(892) cross section are determined. Parameters of phi and rho recurrences are also measured, using a global fitting procedure which exploits the interconnection among amplitudes, moduli and phases of the e+e- -> KsK+pi-, K+K-pi0, phi eta final states. The cross section for the OZI-forbidden process e+e- -> phi pi0, and the J/psi branching fractions to KK*(892) and K+K-eta are also measured.
The cross section for E+ E- --> K0S K+ PI- + CC with statistical errors only.
The cross section for E+ E- --> K+ K- PI0 with statistical errors only.
The cross section for E+ E- --> PHI PI0 with statistical errors only.
A measurement of elastic deeply virtual Compton scattering gamma* p -> gamma p using e-p collision data recorded with the H1 detector at HERA is presented. The analysed data sample corresponds to an integrated luminosity of 145 pb^-1. The cross section is measured as a function of the virtuality Q^2 of the exchanged photon and the centre-of-mass energy W of the gamma*p system in the kinematic domain 6.5 < Q^2 < 80 GeV^2, 30 < W < 140 GeV and |t| < 1 GeV^2, where t denotes the squared momentum transfer at the proton vertex. The cross section is determined differentially in t for different Q^2 and W values and exponential t-slope parameters are derived. The measurements are compared to a NLO QCD calculation based on generalised parton distributions. In the context of the dipole approach, the geometric scaling property of the DVCS cross section is studied for different values of t.
The DVCS cross section as a function of Q**2 for W = 82 GeV.
The DVCS cross section as a function of W for Q**2 = 8 GeV**2.
The DVCS cross section as a function of W for 3 Q**2 values.
We study the processes $e^+ e^-\to 2(\pi^+\pi^-)\pi^0\gamma$, $2(\pi^+\pi^-)\eta\gamma$, $K^+ K^-\pi^+\pi^-\pi^0\gamma$ and $K^+ K^-\pi^+\pi^-\eta\gamma$ with the hard photon radiated from the initial state. About 20000, 4300, 5500 and 375 fully reconstructed events, respectively, are selected from 232 fb$^{-1}$ of BaBar data. The invariant mass of the hadronic final state defines the effective $e^+ e^-$ center-of-mass energy, so that the obtained cross sections from the threshold to about 5 GeV can be compared with corresponding direct \epem measurements, currently available only for the $\eta\pi^+\pi^-$ and $\omega\pi^+\pi^-$ submodes of the $e^+ e^-\to 2(\pi^+\pi^-)\pi^0$ channel. Studying the structure of these events, we find contributions from a number of intermediate states, and we extract their cross sections where possible. In particular, we isolate the contribution from $e^+ e^-\to\omega(782)\pi^+\pi^-$ and study the $\omega(1420)$ and $\omega(1650)$ resonances. In the charmonium region, we observe the $J/\psi$ in all these final states and several intermediate states, as well as the $\psi(2S)$ in some modes, and we measure the corresponding branching fractions.
Measured cross section for E+ E- --> 2(PI+ PI-) PI0 with statistical errorsonly.
Measured cross section for E+ E- --> ETA PI+ PI- with statistical errors only.
Measured cross section for E+ E- --> OMEGA PI+ PI- with statistical errors only.
Inclusive beauty-quark production in two-photon collisions has been measured at LEP using an integrated luminosity of 698 pb-1 collected by the ALEPH detector with sqrt(s) between 130 and 209 GeV. The b quarks were identified using lifetime information. The cross section is found to be sigma(e+ e- --> e+ e- b \bar{b} X) = (5.4 +/- 0.8 (stat) +/- 0.8 (syst)) pb which is consistent with Next-to-Leading Order QCD.
Cross section for the process E+ E- --> E+ E- BQUARK BQUARKBAR X.
We study the processes $e^+ e^-\to K^+ K^- \pi^+\pi^-\gamma$, $K^+K^-\pi^0\pi^0\gamma$ and $K^+ K^- K^+ K^-\gamma$, where the photon is radiated from the initial state. About 34600, 4400 and 2300 fully reconstructed events, respectively, are selected from 232 \invfb of \babar data. The invariant mass of the hadronic final state defines the effective \epem center-of-mass energy, so that the $K^+ K^- \pi^+\pi^-\gamma$ data can be compared with direct measurements of the $e^+ e^-\to K^+K^- \pipi$ reaction/ no direct measurements exist for the $e^+ e^-\to K^+ K^- \pi^0\pi^0$ or $\epem\to K^+ K^- K^+ K^-$ reactions. Studying the structure of these events, we find contributions from a number of intermediate states, and we extract their cross sections where possible. In particular, we isolate the contribution from $e^+ e^-\to\phi(1020) f_{0}(980)$ and study its structure near threshold. In the charmonium region, we observe the $J/\psi$ in all three final states and several intermediate states, as well as the $\psi(2S)$ in some modes, and measure the corresponding branching fractions. We see no signal for the Y(4260) and obtain an upper limit of $\BR_{Y(4260)\to\phi\pi^+\pi^-}\cdot\Gamma^{Y}_{ee}<0.4 \ev$ at 90% C.L.
Measurement of the E+ E- --> K+ K- PI+ PI- cross section. Statistical errors only.
Measurement of the E+ E- --> K(892)0 K PI cross section. Statistical errors only.
Measurement of the E+ E- --> PHI PI+ PI- cross section. Statistical errors only.
We report the observation of $\e^+e^-\to \phi\eta$ near $\sqrt{s}$ = 10.58 GeV with 6.5 $\sigma$ significance in the $K^+K^-\gamma\gamma$ final state in a data sample of 224 $fb^{-1}$ collected by the BaBar experiment at the PEP-II $e^+e^-$ storage rings. We measure the restricted radiation-corrected cross section to be $\sigma(\e^+e^- \to \phi \eta) =$$2.1\pm 0.4 (\mathrm{stat})\pm 0.1(\mathrm{syst}) \mathrm{fb}$ within the range $|\cos\theta^*| < 0.8$, where $\theta^*$ is the center-of-mass polar angle of the $\phi$ meson. The $\phi$ meson is required to be in the invariant mass range of 1.008 $< m_{\phi} <$ 1.035 \gevcc. The radiation-corrected cross section in the full $\cos\theta^*$ range is extrapolated to be $2.9\pm 0.5 (\mathrm{stat})\pm 0.1(\mathrm{syst}) \mathrm{fb}$.
Radiation corrected cross section in the limited cos(theta) range and extrapolated to the full range assuming a 1+ cos(theta)**2 dependence.
We present a measurement of the cross section of the process $e^+e^-\to\pi^+pi^-\psi(2S)$ from threshold up to 8 GeV center-of-mass energy using events containing initial-state radiation, produced at the PEP-II $e^+e^-$ storage rings. The study is based on 298 fb$^{-1}$ of data recorded with the BaBar detector. A structure is observed in the cross-section not far above threshold, near 4.32 GeV. We also investigate the compatibility of this structure with the Y(4260) previously reported by this experiment.
The measured c.m. energy dependence of the cross section with statistical errors only.. Bins with no recorded data are shown as a 'dash'.
We present measurements of the total production rates and momentum distributions of the charmed baryon $\Lambda_c^+$ in $e^+e^- \to$ hadrons at a center-of-mass energy of 10.54 GeV and in $\Upsilon(4S)$ decays. In hadronic events at 10.54 GeV, charmed hadrons are almost exclusively leading particles in $e^+e^- \to c\bar{c}$ events, allowing direct studies of $c$-quark fragmentation. We measure a momentum distribution for $\Lambda_c^+$ baryons that differs significantly from those measured previously for charmed mesons. Comparing with a number of models, we find none that can describe the distribution completely. We measure an average scaled momentum of $\left< x_p \right> = 0.574\pm$0.009 and a total rate of $N_{\Lambda c}^{q\bar{q}} = 0.057\pm$0.002(exp.)$\pm$0.015(BF) $\Lambda_c^+$ per hadronic event, where the experimental error is much smaller than that due to the branching fraction into the reconstructed decay mode, $pK^-\pi^+$. In $\Upsilon (4S)$ decays we measure a total rate of $N_{\Lambda c}^{\Upsilon} = 0.091\pm$0.006(exp.)$\pm$0.024(BF) per $\Upsilon(4S)$ decay, and find a much softer momentum distribution than expected from B decays into a $\Lambda_c^+$ plus an antinucleon and one to three pions.
LAMBDA/C+ differential production rate per hadronic event for the continuum at cm energy 10.54 GeV.
The integrated number of LAMBDA/C+'s per hadronic event for the continuum at cm energy 10.54 GeV.
LAMBDA/C+ differential production rate per UPSILON(4S) decay at cm energy 10.58 GeV.