Measurement of the inclusive and fiducial $t\bar{t}$ production cross-sections in the lepton+jets channel in $pp$ collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 487, 2018.
Inspire Record 1644099 DOI 10.17182/hepdata.81945

The inclusive and fiducial $t\bar{t}$ production cross-sections are measured in the lepton+jets channel using 20.2 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of 8 TeV recorded with the ATLAS detector at the LHC. Major systematic uncertainties due to the modelling of the jet energy scale and $b$-tagging efficiency are constrained by separating selected events into three disjoint regions. In order to reduce systematic uncertainties in the most important background, the W+jets process is modelled using Z+jets events in a data-driven approach. The inclusive $t\bar{t}$ cross-section is measured with a precision of 5.7% to be $\sigma_{\text{inc}}(t\bar{t})$ = 248.3 $\pm$ 0.7 (stat.) $\pm$ 13.4 (syst.) $\pm$ 4.7 (lumi.) pb, assuming a top-quark mass of 172.5 GeV. The result is in agreement with the Standard Model prediction. The cross-section is also measured in a phase space close to that of the selected data. The fiducial cross-section is $\sigma_{\text{fid}}(t\bar{t})$ = 48.8 $\pm$ 0.1 (stat.) $\pm$ 2.0 (syst.) $\pm$ 0.9 (lumi.) pb with a precision of 4.5%.

2 data tables

The measured inclusive cross section. The first systematic uncertainty (sys_1) is the combined systematic uncertainty excluding luminosity, the second (sys_2) is the luminosity

The measured fiducial cross section. The first systematic uncertainty (sys_1) is the combined systematic uncertainty excluding luminosity, the second (sys_2) is the luminosity


Version 2
Measurements of top-quark pair differential cross-sections in the lepton+jets channel in $pp$ collisions at $\sqrt{s}=8$ TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 538, 2016.
Inspire Record 1404878 DOI 10.17182/hepdata.84154

Measurements of normalized differential cross-sections of top-quark pair production are presented as a function of the top-quark, $t\bar{t}$ system and event-level kinematic observables in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=8$ TeV}. The observables have been chosen to emphasize the $t\bar{t}$ production process and to be sensitive to effects of initial- and final-state radiation, to the different parton distribution functions, and to non-resonant processes and higher-order corrections. The dataset corresponds to an integrated luminosity of 20.3 fb$^{-1}$, recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider. Events are selected in the lepton+jets channel, requiring exactly one charged lepton and at least four jets with at least two of the jets tagged as originating from a $b$-quark. The measured spectra are corrected for detector effects and are compared to several Monte Carlo simulations. The results are in fair agreement with the predictions over a wide kinematic range. Nevertheless, most generators predict a harder top-quark transverse momentum distribution at high values than what is observed in the data. Predictions beyond NLO accuracy improve the agreement with data at high top-quark transverse momenta. Using the current settings and parton distribution functions, the rapidity distributions are not well modelled by any generator under consideration. However, the level of agreement is improved when more recent sets of parton distribution functions are used.

236 data tables

Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.

Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.

Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.

More…

Measurements of the charge asymmetry in top-quark pair production in the dilepton final state at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 94 (2016) 032006, 2016.
Inspire Record 1449082 DOI 10.17182/hepdata.77033

Measurements of the top--antitop quark pair production charge asymmetry in the dilepton channel, characterized by two high-${p}_{\rm{T}}$ leptons (electrons or muons), are presented using data corresponding to an integrated luminosity of $20.3$ $\textrm{fb}^{-1}$ from $pp$ collisions at a center-of-mass energy of $\sqrt{s} = 8$ TeV collected with the ATLAS detector at the Large Hadron Collider at CERN. Inclusive and differential measurements as a function of the invariant mass, transverse momentum, and longitudinal boost of the $t\bar{t}$ system are performed both in the full phase space and in a fiducial phase space closely matching the detector acceptance. Two observables are studied: $A^{\ell\ell}_{\textrm{C}}$ based on the selected leptons and $A^{t\bar{t}}_{\textrm{C}}$ based on the reconstructed $t\bar{t}$ final state. The inclusive asymmetries are measured in the full phase space to be $A^{\ell\ell}_{\textrm{C}} = 0.008 \pm 0.006$ and $A^{t\bar{t}}_{\textrm{C}} = 0.021 \pm 0.016$, which are in agreement with the Standard Model predictions of $A^{\ell\ell}_{\textrm{C}} = 0.0064 \pm 0.0003 $ and $A^{t\bar{t}}_{\textrm{C}} = 0.0111 \pm 0.0004$.

10 data tables

Unfolded distribution for the inclusive $\Delta|\eta|$ observable in the fiducial volume.

Unfolded distribution for the inclusive $\Delta|y|$ observable in the fiducial volume.

The leptonic inclusive asymmetry in the fiducial volume.

More…

Search for anomalous Wtb couplings and flavour-changing neutral currents in t-channel single top quark production in pp collisions at sqrt(s) = 7 and 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 02 (2017) 028, 2017.
Inspire Record 1491379 DOI 10.17182/hepdata.77022

Single top quark events produced in the t channel are used to set limits on anomalous Wtb couplings and to search for top quark flavour-changing neutral current (FCNC) interactions. The data taken with the CMS detector at the LHC in proton-proton collisions at sqrt(s) = 7 and 8 TeV correspond to integrated luminosities of 5.0 and 19.7 inverse femtobarns, respectively. The analysis is performed using events with one muon and two or three jets. A Bayesian neural network technique is used to discriminate between the signal and backgrounds, which are observed to be consistent with the standard model prediction. The 95% confidence level (CL) exclusion limits on anomalous right-handed vector, and left- and right-handed tensor Wtb couplings are measured to be |f[V]^R| < 0.16, |f[T]^L| < 0.057, and -0.049 < f[T]^R < 0.048, respectively. For the FCNC couplings kappa[tug] and kappa[tcg], the 95% CL upper limits on coupling strengths are |kappa[tug]|/Lambda < 4.1E-3 TeV-1 and |kappa[tcg]|/Lambda < 1.8E-2 TeV-1, where Lambda is the scale for new physics, and correspond to upper limits on the branching fractions of 2.0E-5 and 4.1E-4 for the decays t to ug and t to cg, respectively.

5 data tables

Predicted and observed event yields before and after multijet BNN selection for $\sqrt{s}=7$ and $8$ TeV.

List of input variables for the Bayesian neural networks used in the analysis. Numbers in the cells indicate whether the variable was used in a network in 7 TeV analysis, 8 TeV one, or in both of them.

One-dimensional exclusion limits on anomalous $Wtb$ couplings, evaluated in different two- and three-dimensional scenarios in the analyses conducted at $\sqrt{s}=7$ and $8$ TeV.).

More…

Measurement of the charge asymmetry in highly boosted top-quark pair production in $\sqrt{s} =$ 8 TeV $pp$ collision data collected by the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 756 (2016) 52-71, 2016.
Inspire Record 1410588 DOI 10.17182/hepdata.77021

In the $pp \rightarrow t\bar{t}$ process the angular distributions of top and anti-top quarks are expected to present a subtle difference, which could be enhanced by processes not included in the Standard Model. This Letter presents a measurement of the charge asymmetry in events where the top-quark pair is produced with a large invariant mass. The analysis is performed on 20.3 fb$^{-1}$ of $pp$ collision data at $\sqrt{s} =$ 8 TeV collected by the ATLAS experiment at the LHC, using reconstruction techniques specifically designed for the decay topology of highly boosted top quarks. The charge asymmetry in a fiducial region with large invariant mass of the top-quark pair ($m_{t\bar{t}} > $ 0.75 TeV) and an absolute rapidity difference of the top and anti-top quark candidates within $-$2 $ < |y_t| - |y_{\bar{t}}| <$ 2 is measured to be 4.2 $\pm$ 3.2%, in agreement with the Standard Model prediction at next-to-leading order. A differential measurement in three $t\bar{t}$ mass bins is also presented.

1 data table

The measured charge asymmetry after the unfolding to parton level in four intervals of the invariant mass of the $t\bar{t}$ system. The phase space is limited to $|(\Delta |y|)|<$ 2. The uncertainties correspond to the sum in quadrature of statistical and systematic uncertainties (for the data) or to the theory uncertainty (for the SM prediction).


Measurement of the mass of the top quark in decays with a J/psi meson in pp collisions at 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 12 (2016) 123, 2016.
Inspire Record 1480862 DOI 10.17182/hepdata.75539

A first measurement of the top quark mass using the decay channel t to (W to l nu) (b to J/psi + X to mu+ mu- + X) is presented. The analysis uses events selected from the proton-proton collisions recorded with the CMS detector at the LHC at a center-of-mass energy of 8 TeV. The data correspond to an integrated luminosity of 19.7 inverse femtobarns, with 666 t t-bar and single top quark candidate events containing a reconstructed J/psi candidate decaying into an oppositely-charged muon pair. The mass of the (J/psi + l) system, where l is an electron or a muon from W boson decay, is used to extract a top quark mass of 173.5 +/- 3.0 (stat) +/- 0.9 (syst) GeV.

2 data tables

Number of selected events from simulations and observed in data. The uncertainties are statistical.

Summary of the impact of systematic uncertainties on the top quark mass according to the contributions from each source.


Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in $pp$ collision data at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 87, 2016.
Inspire Record 1392455 DOI 10.17182/hepdata.75528

This paper reports inclusive and differential measurements of the $t\bar{t}$ charge asymmetry $A_{\textrm{C}}$ in 20.3 fb$^{-1}$ of $\sqrt{s} = 8$ TeV $pp$ collisions recorded by the ATLAS experiment at the Large Hadron Collider at CERN. Three differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the $t\bar{t}$ system. The $t\bar{t}$ pairs are selected in the single-lepton channels ($e$ or $\mu$) with at least four jets, and a likelihood fit is used to reconstruct the $t\bar{t}$ event kinematics. A Bayesian unfolding procedure is performed to infer the asymmetry at parton level from the observed data distribution. The inclusive $t\bar{t}$ charge asymmetry is measured to be $A_{\textrm{C}} = 0.009 \pm 0.005$ (stat.$+$syst.). The inclusive and differential measurements are compatible with the values predicted by the Standard Model.

7 data tables

The inclusive $t\bar{t}$ production charge asymmetry, $A_C$, with statistical and systematic uncertainties combined.

Measured charge asymmetry, $A_C$, values for the electron and muon channels combined after unfolding as a function of the $t\bar{t}$ invariant mass, $m_{t\bar{t}}$. The quoted uncertainties include statistical and systematic components after the marginalisation.

Measured charge asymmetry, $A_C$, values for the electron and muon channels combined after unfolding as a function of the $t\bar{t}$ velocity along the z-axis, $\beta_{z,t\bar{t}}$. The quoted uncertainties include statistical and systematic components after the marginalisation.

More…

Measurement of top quark pair differential cross-sections in the dilepton channel in $pp$ collisions at $\sqrt{s}$ = 7 and 8 TeV with ATLAS

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 94 (2016) 092003, 2016.
Inspire Record 1477814 DOI 10.17182/hepdata.75323

Measurements of normalized differential cross-sections of top quark pair ($t\bar t$) production are presented as a function of the mass, the transverse momentum and the rapidity of the $t\bar t$ system in proton-proton collisions at center-of-mass energies of $\sqrt{s}$ = 7 TeV and 8 TeV. The dataset corresponds to an integrated luminosity of 4.6 fb$^{-1}$ at 7 TeV and 20.2 fb$^{-1}$ at 8 TeV, recorded with the ATLAS detector at the Large Hadron Collider. Events with top quark pair signatures are selected in the dilepton final state, requiring exactly two charged leptons and at least two jets with at least one of the jets identified as likely to contain a $b$-hadron. The measured distributions are corrected for detector effects and selection efficiency to cross-sections at the parton level. The differential cross-sections are compared with different Monte Carlo generators and theoretical calculations of $t\bar t$ production. The results are consistent with the majority of predictions in a wide kinematic range.

36 data tables

Parton-level normalized $t\bar t$ differential cross-sections for $t\bar t$ system mass $m_{t\bar t}$ at $\sqrt{s}$ = 7 TeV. The cross-sections in the last bins include events (if any) beyond of the bin edges. The uncertainties quoted in the second column represent the statistical and systematic uncertainties added in quadrature.

Parton-level normalized $t\bar t$ differential cross-sections for the $t\bar t$ system transverse momentum $p_{T, t\bar t}$ at $\sqrt{s}$ = 7 TeV. The cross-sections in the last bins include events (if any) beyond of the bin edges. The uncertainties quoted in the second column represent the statistical and systematic uncertainties added in quadrature.

Parton-level normalized $t\bar t$ differential cross-sections for the $t\bar t$ system absolute rapidity $|y_{t\bar t}|$ at $\sqrt{s}$ = 7 TeV. The cross-sections in the last bins include events (if any) beyond of the bin edges. The uncertainties quoted in the second column represent the statistical and systematic uncertainties added in quadrature.

More…

Measurement of the W boson helicity fractions in the decays of top quark pairs to lepton+jets final states produced in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 762 (2016) 512-534, 2016.
Inspire Record 1466294 DOI 10.17182/hepdata.74337

The W boson helicity fractions from top quark decays in t t-bar events are measured using data from proton-proton collisions at a centre-of-mass energy of 8 TeV. The data were collected in 2012 with the CMS detector at the LHC, corresponding to an integrated luminosity of 19.8 inverse femtobarns. Events are reconstructed with either one muon or one electron, along with four jets in the final state, with two of the jets being identified as originating from b quarks. The measured helicity fractions from both channels are combined, yielding F[0] = 0.681 +/- 0.012 (stat) +/- 0.023 (syst), F[L] = 0.323 +/- 0.008 (stat) +/- 0.014 (syst), and F[R] = -0.004 +/- 0.005 (stat) +/- 0.014 (syst) for the longitudinal, left-, and right-handed components of the helicity, respectively. These measurements of the W boson helicity fractions are the most accurate to date and they agree with the predictions from the standard model.

3 data tables

Measurement of the W longitudinal (F0), left- (FL) and righ- (FR) components of the boson helicity fractions from electron+jets final states in top quark pair decays. The helicity fractions F0 and FL are measured simultaneously and are strongly anti-correlated, with statistical correlation coefficient -0.950.

Measurement of the W longitudinal (F0), left- (FL) and righ- (FR) components of the boson helicity fractions from muon+jets final states in top quark pair decays. The helicity fractions F0 and FL are measured simultaneously and are strongly anti-correlated, with statistical correlation coefficient -0.957.

Measurement of the W longitudinal (F0), left- (FL) and righ- (FR) components of the boson helicity fractions from lepton+jets final states in top quark pair decays. The helicity fractions F0 and FL are measured simultaneously and are strongly anti-correlated, with statistical correlation coefficient -0.959, and total correlation, considering both statistical and systematic uncertainties, of -0.87.


Measurement of the differential cross sections for top quark pair production as a function of kinematic event variables in pp collisions at sqrt(s) = 7 and 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 94 (2016) 052006, 2016.
Inspire Record 1473674 DOI 10.17182/hepdata.74124

Measurements are reported of the normalized differential cross sections for top quark pair production with respect to four kinematic event variables: the missing transverse energy; the scalar sum of the jet transverse momentum (pT); the scalar sum of the pT of all objects in the event; and the pT of leptonically decaying W bosons from top quark decays. The data sample, collected using the CMS detector at the LHC, consists of 5.0 inverse femtobarns of proton-proton collisions at sqrt(s) = 7 TeV and 19.7 inverse femtobarns at sqrt(s) = 8 TeV. Top quark pair events containing one electron or muon are selected. The results are presented after correcting for detector effects to allow direct comparison with theoretical predictions. No significant deviations from the predictions of several standard model event simulation generators are observed.

16 data tables

Normalized $t\bar{t}$ differential cross section measurements with respect to the $E^{miss}_{T}$ variable at a center-of-mass energy of 7 TeV (combination of electron and muon channels).

Normalized $t\bar{t}$ differential cross section measurements with respect to the $H_T$ variable at a center-of-mass energy of 7 TeV (combination of electron and muon channels).

Normalized $t\bar{t}$ differential cross section measurements with respect to the $S_T$ variable at a center-of-mass energy of 7 TeV (combination of electron and muon channels).

More…

Search for pair production of third-generation scalar leptoquarks and top squarks in proton-proton collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 739 (2014) 229-249, 2014.
Inspire Record 1309874 DOI 10.17182/hepdata.66933

A search for pair production of third-generation scalar leptoquarks and supersymmetric top quark partners, top squarks, in final states involving tau leptons and bottom quarks is presented. The search uses events from a data sample of proton-proton collisions corresponding to an integrated luminosity of 19.7 inverse femtobarns, collected with the CMS detector at the LHC with sqrt(s) = 8 TeV. The number of observed events is found to be in agreement with the expected standard model background. Third-generation scalar leptoquarks with masses below 740 GeV are excluded at 95% confidence level, assuming a 100% branching fraction for the leptoquark decay to a tau lepton and a bottom quark. In addition, this mass limit applies directly to top squarks decaying via an R-parity violating coupling lambda'[333]. The search also considers a similar signature from top squarks undergoing a chargino-mediated decay involving the R-parity violating coupling lambda'[3jk]. Each top squark decays to a tau lepton, a bottom quark, and two light quarks. Top squarks in this model with masses below 580 GeV are excluded at 95% confidence level. The constraint on the leptoquark mass is the most stringent to date, and this is the first search for top squarks decaying via lambda'[3jk].

9 data tables

The estimated backgrounds, observed event yields, and expected number of signal events for the leptoquark search. For the simulation-based entries, the statistical and systematic uncertainties are shown separately, in that order.

The estimated backgrounds, observed event yields, and expected number of signal events for the top squark search. For the simulation-based entries, the statistical and systematic uncertainties are shown separately, in that order.

Selection efficiencies in % for the signal in the leptoquark search, estimated from the simulation.

More…

Measurement of the top quark mass using charged particles in collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 93 (2016) 092006, 2016.
Inspire Record 1430902 DOI 10.17182/hepdata.72898

A novel technique for measuring the mass of the top quark that uses only the kinematic properties of its charged decay products is presented. Top quark pair events with final states with one or two charged leptons and hadronic jets are selected from the data set of 8 TeV proton-proton collisions, corresponding to an integrated luminosity of 19.7 inverse femtobarns. By reconstructing secondary vertices inside the selected jets and computing the invariant mass of the system formed by the secondary vertex and an isolated lepton, an observable is constructed that is sensitive to the top quark mass that is expected to be robust against the energy scale of hadronic jets. The main theoretical systematic uncertainties, concerning the modeling of the fragmentation and hadronization of b quarks and the reconstruction of secondary vertices from the decays of b hadrons, are studied. A top quark mass of 173.68 +/- 0.20 (stat) +1.58 -0.97 (syst) GeV is measured. The overall systematic uncertainty is dominated by the uncertainty in the b quark fragmentation and the modeling of kinematic properties of the top quark.

3 data tables

Combined measurement of the top quark mass.

Number of observed events and expected purity of top quark production ($t\bar{t}$ and single top quarks) for the five channels investigated in this analysis.

Summary of the systematic uncertainties in the final measurement. In cases where there are two variations of one source of uncertainty, the first and second numbers correspond, respectively, to the down and up variations. The total uncertainties are taken as the separate quadratic sum of all positive and negative shifts. For the contributions marked with a (*), the shift of the single variation including its sign is given, but the uncertainty is counted symmetrically in both up and down directions for the total uncertainty calculation.


Measurement of the top quark mass using proton-proton data at ${\sqrt{(s)}}$ = 7 and 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 93 (2016) 072004, 2016.
Inspire Record 1393269 DOI 10.17182/hepdata.71988

A new set of measurements of the top quark mass are presented, based on the proton-proton data recorded by the CMS experiment at the LHC at sqrt(s) = 8 TeV corresponding to a luminosity of 19.7 inverse femtobarns. The top quark mass is measured using the lepton + jets, all-jets and dilepton decay channels, giving values of 172.35 +/- 0.16 (stat) +/- 0.48 (syst) GeV, 172.32 +/- 0.25 (stat) +/- 0.59 (syst) GeV, and 172.82 +/- 0.19 (stat) +/- 1.22 (syst) GeV, respectively. When combined with the published CMS results at sqrt(s) = 7 TeV, they provide a top quark mass measurement of 172.44 +/- 0.13 (stat) +/- 0.47 (syst) GeV. The top quark mass is also studied as a function of the event kinematical properties in the lepton + jets decay channel. No indications of a kinematic bias are observed and the collision data are consistent with a range of predictions from current theoretical models of t t-bar production.

9 data tables

Measurement of $m_{t}$ as a function of the transverse momentum of the hadronically decaying top quark.

Measurement of $m_{t}$ as a function of the invariant mass of the tt¯ system.

Measurement of $m_{t}$ as a function of the transverse momentum of the tt¯ system.

More…

Measurement of Top Quark Polarisation in T-Channel Single Top Quark Production

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 04 (2016) 073, 2016.
Inspire Record 1403169 DOI 10.17182/hepdata.38092

A first measurement of the top quark spin asymmetry, sensitive to the top quark polarisation, in t-channel single top quark production is presented. It is based on a sample of pp collisions at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 inverse-femtobarns. A high-purity sample of t-channel single top quark events with an isolated muon is selected. Signal and background components are estimated using a fit to data. A differential cross section measurement, corrected for detector effects, of an angular observable sensitive to the top quark polarisation is performed. The differential distribution is used to extract a top quark spin asymmetry of 0.26 +/- 0.03 (stat) +/- 0.10 (syst), which is compatible with a p-value of 4.6% with the standard model prediction of 0.44.

4 data tables

The normalized differential cross section as a function of unfolded $\cos\theta_{\mu}^{*}$ for top quark.

The normalized differential cross section as a function of unfolded $\cos\theta_{\mu}^{*}$ for top antiquark.

The normalized differential cross section as a function of unfolded $\cos\theta_{\mu}^{*}$ for top quark and antiquark.

More…

Measurement of the differential cross section for top quark pair production in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 75 (2015) 542, 2015.
Inspire Record 1370682 DOI 10.17182/hepdata.68516

The normalized differential cross section for top quark pair (tt-bar) production is measured in pp collisions at a centre-of-mass energy of 8 TeV at the CERN LHC using the CMS detector in data corresponding to an integrated luminosity of 19.7 inverse femtobarns. The measurements are performed in the lepton + jets (e/mu + jets) and in the dilepton (e+e-, mu+mu-, and e+-mu-+) decay channels. The tt-bar cross section is measured as a function of the kinematic properties of the charged leptons, the jets associated to b quarks, the top quarks, and the tt-bar system. The data are compared with several predictions from perturbative quantum chromodynamics up to approximate next-to-next-to-leading-order precision. No significant deviations are observed relative to the standard model predictions.

50 data tables

Normalized differential tt cross section (from l+jets channel) as a function of the transverse momentum pt of the lepton. The results are presented at particle level in the fiducial phase space. The statistical and systematic uncertainties are added in quadrature to yield the total uncertainty.

Normalized differential tt cross section (from l+jets channel) as a function of the pseudo-rapidity of the lepton. The results are presented at particle level in the fiducial phase space. The statistical and systematic uncertainties are added in quadrature to yield the total uncertainty.

Normalized differential tt cross section (from l+jets channel) as a function of the transverse momentum pt(b-jet) of the b-jet. The results are presented at particle level in the fiducial phase space. The statistical and systematic uncertainties are added in quadrature to yield the total uncertainty.

More…

Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in $\sqrt{s}$ = 8 TeV proton-proton collisions using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 93 (2016) 032009, 2016.
Inspire Record 1397637 DOI 10.17182/hepdata.18108

The differential cross-section for pair production of top quarks with high transverse momentum is measured in 20.3 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 8 TeV. The measurement is performed for $t\bar{t}$ events in the lepton+jets channel. The cross-section is reported as a function of the hadronically decaying top quark transverse momentum for values above 300 GeV. The hadronically decaying top quark is reconstructed as an anti-$k_t$ jet with radius parameter $R=1.0$ and identified with jet substructure techniques. The observed yield is corrected for detector effects to obtain a cross-section at particle level in a fiducial region close to the event selection. A parton-level cross-section extrapolated to the full phase space is also reported for top quarks with transverse momentum above 300 GeV. The predictions of a majority of next-to-leading-order and leading-order matrix-element Monte Carlo generators are found to agree with the measured cross-sections.

10 data tables

Fiducial particle-level differential cross-section, with statistical and systematic uncertainties, as a function of the top-jet candidate p_T.

Parton-level differential cross-section, with statistical and systematic uncertainties, as a function of the hadronically decaying top quark p_T.

The individual systematic uncertainties calculated as a percentage of the particle-level differential cross-section $d\sigma_{tt} / d p_{T,ptcl}$ in each bin. Variations on the two sides ("UP" and "DOWN") are separately quoted with their respective signs. Uncertainties smaller than 0.1% are neglected.

More…

Measurements of t t-bar spin correlations and top quark polarization using dilepton final states in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, V. ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 93 (2016) 052007, 2016.
Inspire Record 1413748 DOI 10.17182/hepdata.70879

Measurements of the top quark-antiquark (t t-bar) spin correlations and the top quark polarization are presented for t t-bar pairs produced in pp collisions at sqrt(s) = 8 TeV. The data correspond to an integrated luminosity of 19.5 inverse femtobarns collected with the CMS detector at the LHC. The measurements are performed using events with two oppositely charged leptons (electrons or muons) and two or more jets, where at least one of the jets is identified as originating from a bottom quark. The spin correlations and polarization are measured from the angular distributions of the two selected leptons, both inclusively and differentially, with respect to the invariant mass, rapidity, and transverse momentum of the t t-bar system. The measurements are unfolded to the parton level and found to be in agreement with predictions of the standard model. A search for new physics in the form of anomalous top quark chromo moments is performed. No evidence of new physics is observed, and exclusion limits on the real part of the chromo-magnetic dipole moment and the imaginary part of the chromo-electric dipole moment are evaluated.

106 data tables

Inclusive values of the asymmetry variables.

Values of the 12 bins of the normalized differential cross section as a function of $\left|\Delta \phi_{\ell^+\ell^-}\right|$.

Statistical covariance matrix for the 12 bins of the normalized differential cross section as a function of $\left|\Delta \phi_{\ell^+\ell^-}\right|$.

More…

Search for a Standard Model Higgs Boson Produced in Association with a Top-Quark Pair and Decaying to Bottom Quarks Using a Matrix Element Method

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 75 (2015) 251, 2015.
Inspire Record 1343506 DOI 10.17182/hepdata.68402

A search for a standard model Higgs boson produced in association with a top-quark pair and decaying to bottom quarks is presented. Events with hadronic jets and one or two oppositely charged leptons are selected from a data sample corresponding to an integrated luminosity of 19.5 inverse femtobarns collected by the CMS experiment at the LHC in pp collisions at a centre-of-mass energy of 8 TeV. In order to separate the signal from the larger t t-bar + jets background, this analysis uses a matrix element method that assigns a probability density value to each reconstructed event under signal or background hypotheses. The ratio between the two values is used in a maximum likelihood fit to extract the signal yield. The results are presented in terms of the measured signal strength modifier, mu, relative to the standard model prediction for a Higgs boson mass of 125 GeV. The observed (expected) exclusion limit at a 95% confidence level is mu < 4.2 (3.3), corresponding to a best fit value mu-hat = 1.2 +1.6 -1.5.

1 data table

The best-fit values of the signal strength modifier obtained from the single lepton (SL) and dilepton (DL) channels alone,and from their combination (COMBINED). The observed 95% CL upper limit (UL) on mu are given in the third column, and are compared to the median expected limits for both the signal-plus-background and for the background-only hypotheses. For the latter, the 1sigma and 2sigma CL intervals are also given.


Search for direct scalar top pair production in final states with two tau leptons in $pp$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 81, 2016.
Inspire Record 1393662 DOI 10.17182/hepdata.69768

A search for direct pair production of the supersymmetric partner of the top quark, decaying via a scalar tau to a nearly massless gravitino, has been performed using 20 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=8$ TeV. The data were collected by the ATLAS experiment at the LHC in 2012. Top squark candidates are searched for in events with either two hadronically decaying tau leptons, one hadronically decaying tau and one light lepton, or two light leptons. No significant excess over the Standard Model expectation is found. Exclusion limits at 95% confidence level are set as a function of the top squark and scalar tau masses. Depending on the scalar tau mass, ranging from the 87 GeV LEP limit to the top squark mass, lower limits between 490 GeV and 650 GeV are placed on the top squark mass within the model considered.

11 data tables

Distribution of $m_{\rm T}^{\rm sum}(\tau_{\mathrm{had}},\tau_{\mathrm{had}})$ for the events passing all the hadron-hadron signal region requirements, except that on the variable itself. The SM background process have been normalised using a fit to the data observed in CRs.

Distribution of $m_{{\rm T}2}(\tau_{\mathrm{had}},\tau_{\mathrm{had}})$ for the events passing all the hadron-hadron signal region requirements, except that on the variable itself. The SM background process have been normalised using a fit to the data observed in CRs.

Distribution of $m_{{\rm T}2}(b \ell, b \tau_{\mathrm{had}})$ for events passing all the lepton-hadron LM signal region requirements, except that on the variable itself. The SM background process have been normalised using a fit to the data observed in CRs.

More…

Measurement of the charge asymmetry in top quark pair production in pp collisions at sqrt(s) = 8 TeV using a template method

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 93 (2016) 034014, 2016.
Inspire Record 1388178 DOI 10.17182/hepdata.69208

The charge asymmetry in the production of top quark and antiquark pairs is measured in proton-proton collisions at a center-of-mass energy of 8 TeV. The data, corresponding to an integrated luminosity of 19.6 inverse femtobarns, were collected by the CMS experiment at the LHC. Events with a single isolated electron or muon, and four or more jets, at least one of which is likely to have originated from hadronization of a bottom quark, are selected. A template technique is used to measure the asymmetry in the distribution of differences in the top quark and antiquark absolute rapidities. The measured asymmetry is A[c,y] = [0.33 +/- 0.26 (stat) +/- 0.33 (syst)]%, which is the most precise result to date. The results are compared to calculations based on the standard model and on several beyond-the-standard-model scenarios.

1 data table

The measured $t\bar{t}$ production asymmetry $A_c^y$.


Observation of top quark pairs produced in association with a vector boson in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 01 (2016) 096, 2016.
Inspire Record 1396140 DOI 10.17182/hepdata.69486

Measurements of the cross sections for top quark pairs produced in association with a W or Z boson are presented, using 8 TeV pp collision data corresponding to an integrated luminosity of 19.5 inverse femtobarns, collected by the CMS experiment at the LHC. Final states are selected in which the associated W boson decays to a charged lepton and a neutrino or the Z boson decays to two charged leptons. Signal events are identified by matching reconstructed objects in the detector to specific final state particles from ttW or ttZ decays. The ttW cross section is measured to be 382 +117 -102 fb with a significance of 4.8 standard deviations from the background-only hypothesis. The ttZ cross section is measured to be 242 +65 -55 fb with a significance of 6.4 standard deviations from the background-only hypothesis. These measurements are used to set bounds on five anomalous dimension-six operators that would affect the ttW and ttZ cross sections.

6 data tables

Expected yields after the final fit, compared to the observed data for OS t$\bar{\mathrm{t}}$Z final states. Here ``hf'' and ``lf'' stand for heavy and light flavors, respectively.

Expected yields after the final fit, compared to the observed data for SS t$\bar{\mathrm{t}}$W final states. The multiboson process includes WWW, WWZ, and W$^{\pm}$W$^{\pm}$; t$\mathrm{\bar{t}}$+X includes t$\mathrm{\bar{t}}\gamma$, t$\mathrm{\bar{t}}\gamma^{*}$, and t$\bar{\mathrm{t}}$WW.

Expected yields after the final fit, compared to the observed data for 3$\ell$ t$\bar{\mathrm{t}}$W and three and 4$\ell$ t$\bar{\mathrm{t}}$Z final states. The 4$\ell$ ``Z-veto'' channel has exactly one lepton pair consistent with a Z boson decay; the ``Z'' channel has two. The multiboson process includes WWW and WWZ; t$\mathrm{\bar{t}}$+X includes t$\mathrm{\bar{t}}\gamma$, t$\mathrm{\bar{t}}\gamma^{*}$, and t$\bar{\mathrm{t}}$WW.

More…

Search for heavy top-like quarks decaying to a Higgs boson and a top quark in the lepton plus jets final state in $pp$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration
ATLAS-CONF-2013-018, 2013.
Inspire Record 1229964 DOI 10.17182/hepdata.61326

A search is presented for production of a heavy up-type quark ($t^\prime$) together with its antiparticle, assuming a significant branching ratio for subsequent $t^\prime$ decay into a Standard Model Higgs boson and a top quark, as predicted by vector-like quark models. The search is based on 14.3 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=8$ TeV recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider. Data are analysed in the lepton+jets final state, characterised by an isolated electron or muon with moderately high transverse momentum, significant missing transverse momentum, and at least six jets. The search exploits the high total transverse momenta of all final state objects and the high multiplicity of $b$ jets characteristic of signal events with at least one Higgs boson decaying into $b\bar{b}$, to discriminate against the dominant background from top quark pair production. No significant excess of events above the Standard Model expectation is observed, and upper limits are derived for vector-like quarks of various masses in the two-dimensional plane of $BR(t^\prime \to Wb)$ versus $BR(t^\prime \to Ht)$, where $H$ is the Standard Model Higgs boson, assumed to have a mass of $125$ GeV. Under the branching ratio assumptions corresponding to a weak-isospin doublet (singlet) scenario, a $t^\prime$ quark with mass lower than 790 (640) GeV is excluded at the 95\% confidence level.

3 data tables

The observed and simulated HT distributions in the combined e+jets and mu+jets channels with >=6 jets and 2 b tagged jets.

The observed and simulated HT distributions in the combined e+jets and mu+jets channels with >=6 jets and 3 b tagged jets.

The observed and simulated HT distributions in the combined e+jets and mu+jets channels with >=6 jets and 4 b tagged jets.


Search for top squark pair production in final states with one isolated lepton, jets, and missing transverse momentum in $\sqrt{s}=$ 8 TeV pp collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 11 (2014) 118, 2014.
Inspire Record 1304456 DOI 10.17182/hepdata.68163

The results of a search for top squark (stop) pair production in final states with one isolated lepton, jets, and missing transverse momentum are reported. The analysis is performed with proton--proton collision data at $\sqrt{s} = 8$ TeV collected with the ATLAS detector at the LHC in 2012 corresponding to an integrated luminosity of $20$ fb$^{-1}$. The lightest supersymmetric particle (LSP) is taken to be the lightest neutralino which only interacts weakly and is assumed to be stable. The stop decay modes considered are those to a top quark and the LSP as well as to a bottom quark and the lightest chargino, where the chargino decays to the LSP by emitting a $W$ boson. A wide range of scenarios with different mass splittings between the stop, the lightest neutralino and the lightest chargino are considered, including cases where the $W$ bosons or the top quarks are off-shell. Decay modes involving the heavier charginos and neutralinos are addressed using a set of phenomenological models of supersymmetry. No significant excess over the Standard Model prediction is observed. A stop with a mass between $210$ and $640$ GeV decaying directly to a top quark and a massless LSP is excluded at $95$ % confidence level, and in models where the mass of the lightest chargino is twice that of the LSP, stops are excluded at $95$ % confidence level up to a mass of $500$ GeV for an LSP mass in the range of $100$ to $150$ GeV. Stringent exclusion limits are also derived for all other stop decay modes considered, and model-independent upper limits are set on the visible cross-section for processes beyond the Standard Model.

131 data tables

Expected and observed $H_{T,sig}^{miss}$ distribution for tN_med SR, before applying the $H_{T,sig}^{miss}>12$ requirement. The uncertainty includes statistical and all experimental systematic uncertainties. The last bin includes overflows.

Expected and observed large-R jet mass distribution for tN_boost SR, before applying the large-R jet mass$>75$ GeV requirement. The uncertainty includes statistical and all experimental systematic uncertainties. The last bin includes overflows.

Expected and observed b-jet multiplicity distribution for bCc_diag SR, before applying the b-jet multiplicity$=0$ requirement. The uncertainty includes statistical and all experimental systematic uncertainties. The last bin includes overflows.

More…

Search for standard model production of four top quarks in the lepton + jets channel in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 11 (2014) 154, 2014.
Inspire Record 1318946 DOI 10.17182/hepdata.67344

A search is presented for standard model (SM) production of four top quarks (t t-bar t t-bar) in pp collisions in the lepton + jets channel. The data correspond to an integrated luminosity of 19.6 inverse femtobarns recorded at a centre-of-mass energy of 8 TeV with the CMS detector at the CERN LHC. The expected cross section for SM four top quark production is approximately 1 fb. A combination of kinematic reconstruction and multivariate techniques is used to distinguish between the small signal and large background. The data are consistent with expectations of the SM, and an upper limit of 32 fb is set at a 95% confidence level on the cross section for producing four top quarks in the SM, where a limit of 32 +/- 17 fb is expected.

1 data table

Measurement of an upper limit on tttt is set by performing a simultaneous maximum likelihood fit to the distributions in the BDT event discriminant for signal and background in six event categories in the single muon plus jets and single electron plus jets channels.


Observation of the associated production of a single top quark and a W boson in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.Lett. 112 (2014) 231802, 2014.
Inspire Record 1276827 DOI 10.17182/hepdata.61399

The first observation of the associated production of a single top quark and a W boson is presented. The analysis is based on a data set corresponding to an integrated luminosity of 12.2 inverse femtobarns of proton-proton collisions at sqrt(s) = 8 TeV recorded by the CMS experiment at the LHC. Events with two leptons and a jet originating from a b quark are selected. A multivariate analysis based on kinematic and topological properties is used to separate the signal from the dominant t t-bar background. An excess consistent with the signal hypothesis is observed, with a significance which corresponds to 6.1 standard deviations above a background-only hypothesis. The measured production cross section is 23.4 +- 5.4 pb, in agreement with the standard model prediction.

1 data table

Measured cross section for associated production of a single top quark and a W boson, where the uncertainty is mainly systematic.